CR deformation of cyclic quotient surface
singularities
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ABSTRACT. We compute the first order CR deformation of cyclic quotient
surface singularities.

Introduction

The purpose of this paper is to fix the first order CR deformation of cyclic
quotient surface singularities A, , (cf. Theorem 3.13). Although the first order
deformation of A, , was computed in [Ril] by an algebraic way, deformation of
A, 4 is still interesting and a new duality phenomenon is recently discovered (cf.
[Ri2]). On the other hand, after establishing general CR deformation theory of
normal isolated singularities in [B-E] and [M1], CR analysis on the 3-sphere was
applied to describe deformations of rational quotient singularities; [B] for A,, 1 and
K] for Ay n—1(n > 2), Dpio(n > 2), Eg, E7, Eg. In this paper, we compute the
first order CR deformation of the remaining A, 4.
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1. CR deformation of normal isolated singularities

In this section, we recall the formalism of the CR deformation of normal isolated
singularities in [M1]. Since we are concentrated in the first order deformations, we
will pay no attention to the obstruction to higher order deformations.

1.1. CR structure. A CR structure is given by a sub-bundle Sy, ¢ CTM
such that

(i) Su (N Sar = {0} with denoting Spy = Sar,
(i7) Sps is involutive; that is, [X,Y] € T'(M,Sy) holds for any X,V €
T(M, Su).

We fix a sub bundle CFy; € CT'M such that CFy; ~ CTM/(Syr @ Sar) holds.
Then we have type decompositions of CT'M and CT* M, respectively:

CTM =CFy & Sy @ Su,
CT*M = CF;, & Si, & Sar -
We denote 7'M = CEy © Sy
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56 CR DEFORMATION OF CYCLIC QUOTIENT SURFACE SINGULARITIES

If we denote A?\;fq = T(M, /\‘ZE*)7 the above type decompositions induce the
tangential Cauchy-Riemann complexes;

0 A9, ey 0 %, (1.1)
0 —— AQ(T'M) 2 ASH(TM) s (1.2)

1.2. CR deformation. Let (V,0) be a germ of a reduced normal Stein space
in CV satisfying Sing(V) = {0}. We denote f : V — C¥ the natural embedding
and hy(wy, - ,wy) =+ = hy (w1, - ,wy) = 0 the defining equation of V. We
fix a strongly pseudo-convex domain 0 € @ C C¥ so that V and 9 intersect
transversely. We denote M := V() 0.

A (formal) CR deformation of (V,0) is given by a (4(t), g(t), k(t)) € K [[t1,- .., td]]
(where K3, = Ag}II(T’M) ® A (THOCN ) ® HO(M)™) satisfying

(¢(0),9(0), k(0)) = (0,0,0), (1.3)

(Or6(t) = R(6(1)), (O — 6(t)(f +9(1)), (h+ k) o (f +g(t))) = (0,0,0), (1.4)
where R(¢) is a non-linear partial differential operator (cf. [M1]).

1.3. Deformation complex. Let K3;" be the following double-complex;

0 —— H(M,T“°CV ) —2— HO(M)™

l | 5

K30 o= AQ (T'M) —F— AQ(TVOCN ) —T— (AQ)™

léT, léb Ol by

ASH (T M) s ATy ) —Es (AfhHm
léT, léb léb
AGF(@M) T ARFIMOCN)y) T (AR

léT, léb Ajéb

where HO(M, T*OC¥ ;) (resp. H°(M)) denote the space of CR sections of TH0CN |y,
(resp. the space of CR functions) and F := p*% o df and H denotes the homomor-
phism given by H(v) = (v(h1), ..., v(hy)) for v € THOCN, and i denote the
natural inclusion map.

We denote (K73, d) its total simple complex. That is

Kl =Ky e Ky e K32
d(ag,bg—1,cq—2) = (Orray, Opby—1 + (—1)?Fay, Opcq—o + (—1)7 " Hb, 1)
where we denote Opb_1 := ib_1, Opc_1 1= ic_1.

THEOREM 1.1. ([B-E], [M1]) The first order CR deformation space is Hj(K3;).
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2. CR deformation of cyclic quotient singularities

Let ¢, be a primitive n-th root of 1 and V,, , := C?/G,, , with 0 < ¢ < n and
(n, q) = 1 where G,, 4 is a cyclic group generated by the action (z, w) — (¢,2, (Iw).
If My, q := SS/Gnyq, then M, 4 is a strongly pseudo-convex boundary of a Stein
domain of V,, , with only isolated singularity at the origin.

Since the CR analysis on M, , is treated as a CR analysis on S® which is
invariant under G, 4-action, we will describe CR-deformations of V,, , by means of
invariant CR structures on S3.

2.1. CR structure on S3. Let S C C? be the unit 3-sphere defined by the
equation |z|? + |w|? = 1 then the complex structure of C? induces a CR structure
on S3 by

g = (CTSS ﬂTO’l(CZ‘Ss.
We denote this canonical CR structure on S3 by °T” and its complex conjugate
by °T’. Then, °T" and °T’ are C™ trivial line bundle generated by Z and Z,
respectively, where

_ 0 0 0 _ 0
Zimwgs —ign £ g~
Let
T*Im(z—+wi)
o 0 ow

and CF be a C™ sub-bundle of CT'S? generated by T. We use the abbreviations
T’ and A%9 for T'S3 and Ag,’f , respectively. Then we have

LEMMA 2.1. (1) Opf = (Zf) @ Z* for f € C=(S?),
(2) Or (pZ+4YT) = (Z$)Z R Z* —2/=1¢T R Z* +(ZY)T R Z* for ¢ Z+T €
AO(T).

PROOF. (1) is trivial. B B ) )
(2) Since [Z,7] = =2y —1T and [Z,T] = 0, 0/ (¢Z +YT)(2) = (Z¢)Z +
012, 2] + (ZO)T + ¥IZ,T] = (26)Z — 2/—16T + (ZO)T. O
2.2. CR analysis on S3. A differentiable function f € C°°(S?) is called a
spherical harmonic of bidegree (p,q) if it is the restriction on the sphere S® of a

harmonic polynomial of holomorphic degree p and anti-holomorphic degree ¢ on
the ambient space C2; that is, f = fim with

f= Z Capry 520w 20w and Af = 0.
a+B=p, y+d=q
‘We will abbreviate it as
f = Z ca’g,,y’gzawﬁzi“fﬁ.
a+pB=p,y+é=q

Then there exists an orthonormal bases of L?(S3) consisting of the harmonic poly-
nomials. We denote HP*9 the space of all harmonic polynomials of bidegree (p, q).
Clearly,

d HP,O = {f = Za—i—ﬁ:p Cavﬂvovozawﬁ}?
o H* ={f=3 s, 004527}

and dimcHP? =p+ 1, dimcH"Y = g + 1.



58 CR DEFORMATION OF CYCLIC QUOTIENT SURFACE SINGULARITIES

LEMMA 2.2. ([Ru], Proposition 18.53.3)
(1) Z maps H?? isomorphically onto HP~14%1 4f p > 1.
(2) Z maps HP? isomorphically onto HPT14=1 if ¢ > 1.
maps 4 gnto itself and all junctions in 4 are eigen functions o
3) T HP into itself and all functions in HP9 are ei :
T with the eigen value /—1(p — q).

3. Computation of H'(K}, .)

Let V4 :== C?/G,, 4 be a cyclic quotient singularity as at the beginning of the
previous section.

With the Hirzeburch-Jung continued fraction

n 1
=ag————— (a22>2,a3>2, ..., 01 > 2),
n—q 1
n — —————
’ 1

Ge—1

the first order deformation space of V,, ; was computed in [Ril] as follows:
e—1
)—2(e>4
dimeExt (0], 0y, )= 4 Qo2 8d) ~2(e24) (3.1)
4 e az—1(e=3)

where e is the dimension of the minimal embedding of V;, 4.
Since we have the following isomorphism (cf. [M1])

Ext' (O, Oy, )~ H (K}, )
~ Ker{H" (M q,T' My q) — H' (M, ¢, T"°CV ar, )}, (3.2)
CR description of the first order deformation of V,, , is to fix a canonical basis of the

subspace Ker{H" (M, q,T' My, 4) = H* (M ¢, T*CN 1, )} of H' (M g, T' M, q).

We denote the G, 4-action by
g9: (2, w) = (Cuz, Gw).

First, we remark that
ProrosiTiON 3.1. For p > 0,

(1) AZP(z2wP) = AZP(z0wP) =0,

(2) Alg*ZP(z"wP)) = A(g* 27 (wP)) = 0.
PROOF. (1) is trivial.
(2) follows from (1) and the following lemma. O

LEMMA 3.2. For f € C>(S?),
(1) g°Z(f ; T Z(g ),

2) 9" Z(f) = (I Z(g" f).
Proor. (1) g*Z(f) = C."wg" 5 ~ Cuzg L = G 2(a7 ).
(2) follows from (1). O

Hence, {ZP(2%w®)}oip=s (resp. {ZP(z%wP)}oip=s) forms a basis of H5 PP
(vesp. HP*7P).
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LEMMA 3.3. 1) g-'z=0."2,
(2) ¢.'T =T,
(3) 92 =3, 2",

Proor. (1) g;'Z =g (w2 —z2) = ZHqZ

0z ow n
(2) Since g; '(22 + w) = (2 + w), we have g, 'T =T.
(3) ¢* (Wdz — zdw) = C,, " Z*. O

PROPOSITION 3.4. Let us consider the natural projection S3 — M, 4.
(1) f5" =2 it fap.00Zt(z2wP) € C°°(S3) is pullback of a function on
M,,.q if and only if

fa.p00=0 for (a—t)+ (8 —1t)g # 0mod n.

(2) f*F =2 hms f0.04,62%(ZTw%) € C(S3) is pullback of a function on
M, 4 if and only if
fo.0q.6 =0 for (y—s)+ (6 —s)g# 0mod n.
(3) ¢*tZ* = Dt st ba.p002 (zwP) Z* € Ag’gl 1s pullback of a tangential
.1)-form on M, , if and only 1
0,1)-f My, if and only if
®a,8,00=0 for(a —t—1)+(8—t—1)g# 0mod n.
(4) ¢>tZ* = D oisms $0.0..62° (W) Z* € Ag’gl is pullback of a tangential
,1)-form on M, , if and only i
0,1)-f M., if and only if
$0,0,4,6 =0 for (y—s+1)+ (6§ — s+ 1)g # 0 mod n.

(5) ¢*'Z + ¥ € AL(T), where ¢ = 3 4 bap00Z'(z*wP) and
st = Za+ﬁ:s Y002 (z%w7), is pullback of a tangent vector field on
M,,.q if and only if

$a,.00=0 for (a—t—1)+(8—t—1)g# 0mod n
and
Ya,p,00 =0 for (a—1t)+ (8 —1t)g# 0mod n.
(6) ¢*tZ + ST € Agg (T"), where ¢*t = ZWM:S ¢07O,%5Zs(z77$) and

Pt = Z'y+5=s Y0,0,7,62°(ZTw?), is pullback of a tangent vector field on
M, 4 if and only if
$0,0,4,6 =0 for(y—s+1)+ (6 —s+1)g #0mod n
and
0,046 =0 for (y—s)+ (d — s)g # 0 mod n.

(7) ¢S ZRZ* 4+ TRZ* € A%’Sl (T"), where ¢t = Za_w:s ba.3.0,02 (%W
and >t = Za_w:s 8,002 (z%w7), is pullback of a T'-valued tangential
(0,1)-form on M, , if and only if

bap00=0 for(a —t—2)+(B—t—2)g# O0modn

and

Ya,,00=0 for (a—t—1)+ (8 —t—1)g # 0 mod n.
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(8) ¢V ZRZ* +y TR Z* € Ay (T'), where ™' =3 5 $0.04.02° (ZTwS)
and P>t =37 5. 10,0,4,6 2% (2Tw?), is pullback of a T'-valued tangential
(0,1)-form on M, 4 if and only if

$0,0~4,6 =0 for (y—s+2)+ (6 —s+2)g# 0mod n

and
10,0,4,6 =0 for (y —s+1)+ (6 —s+1)g # 0 mod n.

PRrOOF. We will prove (2), (4), (6) and (8). The other part will be proved by
similar calculations.
(2) By Lemma 3.2 (2), we have

g2 () = (s 2 () = 8O 2 ).

Since {Z°(27w®)} 1 5=s1¢ is linearly independent, g* f** = £ holds if and only if
f0,0,v,6 = 0 holds for (y —s) + (6 — s)g # 0 mod n.
(4) By the same calculation as in the proof of (2) and by Lemma 3.3 (3),
g 70wt (Z7) = ¢ T T ze () 7
Hence, ¢*¢>'Z" = ¢>'Z" if and only if $0,0~,6 =0for (y—s+1)+(0—s+1)g#
0 mod n.
(6) By the same calculation as in the proof of (2) and by Lemma 3.3 (1) and

(2),
S(y=5)+(6-5)a

—=1+q

g 72 (D) g Z = ¢, Z5(2wd)C, ' Z

Z(y=8)+(6—5)q

g* 7 (7w g T =, 175 (ZTuwd)T.
Hence

> 0009 2 (@F) g Z = > 004025 (FTw0)Z and

y+d=s y+é=s
D 00459 2@ w0) g T = D 00.4,52°(ZTwd)T
y+d=s y+é=s

hold if and only if

$0,0~,6 =0 for (y—s+1)+ (6 —s+1)g#0mod n and
Y0,0,7,6 =0 for (y —s) + (6 — s5)g # 0 mod n.

(8) By the same calculation as in the proof of (2) and by Lemma 3.3,

G2 (@) 20 g 2 =Cy TN T 2 0 2
(v=5+2)+(6—-54+2)q

=C, Z5(Zw)Z @ Z*

and

*ZS(Z’Yw) 1T®Q*Z*—C’Y 8)+(6— S) ( )C T®Z*
= Qe RO e R T @ 27,
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Mn,, q

Hence
D 0007092 F0) g Z R 2 = Y G002 (FTw0)Z ® ZF and
y+dé=s y+o=s
Z Y0,0.4,69" 25 (Fw)g ' T @ g* 2" = Z $0,0.4,52° (ZTw)T ® Z*
y+6=s Y+é=s

hold if and only if
$0,0,4,6 =0 for (y —s+2)+ (6§ —s+2)g # 0 mod n and
10,0,y =0 for (y—s+1)+ (6 — s+ 1)g # 0 mod n.

We note that 8, and 7 commute with the pullbacks.

Next, we consider the embedding M, , — C*.
Set Ay == {(a,8)|0 <a<n, 0<B<n, a+fqg=0modn}and N :=

#An q-
qn.g 1 C? = C¥ be a holomorphic map given by

Xa,B = Zawﬁ ((Oé, 6) € An,q)'
We denote gy, 453 : S* — CV by the same symbol ¢, 4.
The tangent map p*° o dgy 4 : T' — g, ,77°C" is given by
Jop = OZ(2°0") + V=1(a + B)pz*w”
if p10 0 dgn,q(6Z +YT) = 3 (1 pren., ., ga,ﬁﬁ'
By Lemmas 2.2 and 2.1,
LEMMA 3.5. For ¢ = 3,50 0" Z @ Z* + 35,5, O T @ Z* (¢™, vOF € H*),

¢ € 0p Ay (T'M,q) holds if and only if ¢ = 0.

»d

(3.3)

PROPOSITION 3.6. Let
o= Z ¢0’tZ ®Z* + Z wO,tT Q7 e A?\jnyq(T/Mn,q)

t>0 t>1

wo.

and Q/)O,t = Zry_»,_a:t ¢0,0,’y,6ﬁﬁ and wo’t = Z»ﬁ-é:t ¢0,0,7,577
Suppose

©0,0~,6 =0 for (y+2)+ (§ +2)g # 0mod n,

0,046 =0 for (y+1)+ (6 +1)g # 0mod n

hold. Then, if p'° o dg, ¢ € 5bA(J)v1n,q(T1’OC\]X/1n,q)’ the following equations hold:
(0& + B +c+ d + 1)(O¢d — 6C)¢O,O,a+c—l,ﬂ+d—l

+vV—=1(a+ B)(a+c)(B + d)voo,ate,s+d =0
for all (o, B) € Ay and c>0,d >0 such thata+c>1,8+d>1, (34)

%0,0,a4+¢,0 = %0,0,0,8+d = 0
for all (o, 0), (0, 8) € Ay andc>0,d>0. (3.5)
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PROOF. Let p'0 0 dgnq¢ = 34, pren,.., 9o B ane © 27 Then, by (3.3),
Ga, 8 = Z Z $0.0.4.627w (2 LT — Bzw " 17)

>0 y+0=t
+ v *1(0! + B) Z Z 1/)070,%527752’0‘106.

t>1 y+o=t

We note that p*° o dgy q¢ € A, (TLOCl]Xh q) implies

< o, gy zwd >=0 for all ¢ >0, d > 0.

For the case of a +¢c¢> 1, 8+d > 1;

< Ga, 8y 2°WE >= 00,0t c—1,8+d-1(a|[zoFeTwlHd| |2 — g|[zateyfrd=T1||2)

+ \/jl(a + 6)%0,0,a+c,8+d| |WW| |2
_ (et DB +d=Dlad—fo) |
N (a+B+c+d) 0,0,at¢~1,5+d~1

(a4 B)(a+c)(B+d)!
Y s d 1)

¢0,0,o¢+6,5+d~

For the case of 5+ d = 0;

[zoFe]|?.

< Ga,0, 2¢ >= V' —=101)0,0,a+c,0
For the case of a + ¢ = 0;
< 90,8, we >=V/=1B40,0,0 p1allw ||
Hence, we have the lemma. O
For e := (o, ) € Ay, 4, we denote
Xg(€) = 00,0,0-2,5-2
Xy(e) :=v0,0,a-1,8-1-

Note that X ((1,1)) = 0 in the case of (n, ¢) = (n, n —1).
Then, the equation (3.4) and (3.5) are written as follows:

(a+B+7+d—1)(ad— By —a+B)Xs(e+¢€)
+V-1(a+B)(a+y—1)(B+5-1)Xye+€)=0 (3.6)
foralle = (a, ), € = (v, 6) € A, 4 satisfyingy > 1, § > 1 and a+y > 2, f+6 > 2,
Xy(e) = Xy(e) =0 (3.7)
for e = (a, B) with a =0 or 8 = 0, and
X,y(e) =0 (3.8)

fore=(a, 8) witha=1or g =1.
We compute X, (e) and Xy (e).
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Mn,, q

By the Hirzeburch-Jung algorithm, we obtain a minimal generators of A,, ; as
follows (cf. [Ril]). Let

1
& =g —— (12>2,a3>2,..., Q1 >2)
n—gq 1
an —
3 1
Ge—1
be the continued fractional expansion. Then, i1 =n > i =n—q > i3 > --- >
lee1=1>4.=0and j; =0< jo=1<j3< -+ < je_1 < je =n are defined by
ic+jq=0modn (e=1,---,e€), (3.9)
lem1 = Qclle —dey1 (6=2,---,e—1), (3.10)
je—l :aejg—je_ﬂ (622, ety 6—1). (3.11)

We denote e, = (ic, je).

DEFINITION 3.7. Let e := (c, ) € Ay q.
(1) e is inside-decomposable if there exist € := (o', 8'), €’ = (", 5") €
Ay, 4 such that
() o/ >1,8>1,a" >1,5">1,
(ii) €', e are linearly independent over R,
(i) e=¢ 4+ €.
(2) e is edge-decomposable if e = e2 + me; or e = e._1 + me. (m > 1).
(3) e is proportional if e = me. (m > 1).

REMARK 3.8. There may be elements which are inside-decomposable and pro-
portional, while there exists no element which is edge- and inside-decomposable or
edge-decomposable and proportional.

PROPOSITION 3.9. (1) Xp(mer) = Xy(mer) =0 (m > 1), Xy(me.) =
Xy(mee) =0 (m>1).
(2) X¢(e2) = O, X¢,(ee,1) =0.
(3) If e is inside-decomposable, Xy4(e) = Xy(e) =
(4) If e is edge-decomposable, X4(e) = Xy(e) = 0.

PRrOOF. (1) and (2) are clear from (3.7) and (3.8).

(3) Let e = € + €” where € = (o, 8), €' = (v,0) witha > 1,8 > 1,v >
1,6 >1and ad — By # 0.

By (3.6) and (3.7), we have

(@+B+v+d—1)(ad - By —a+ B)Xy(e)
+V-1(a+B)(a+y—-1)(B+06—1)Xy(e) =0,

0.

and

(@+B+7+08—1)(By —ad —y+3)X4(e)
TVl 8)(a+ 7~ 1)(B 46— 1)Xy(e) = 0.
Since

ab—Pr—a+f a+p|_
fy—ad—~y+6 ~v+6|

Xys(e) = Xy(e) =0.

(@ = By)(a+B+y+0-2)#0,
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(4) Let e = e3 + mie; or e = e._; + mee.. Then Xy(e) = Xy(e) = 0 follows
by the condition (3.7). O

ProposITION 3.10. (1) All elements in A, 4 are classified into the above
three types; inside-decomposable, edge-decomposable and proportional.

(2) Proportional elements which are not inside- nor edge-decomposable are;
for the case of e > 4, de¢ B3 < e<e—21<A<a —1; €=
20ore—1,1<A<age=1ore A>1),
for the case of e =3, dec (e=2,1<A<as+1;e=10r3, A>1).

By Propositions 3.9 and 3.10,

PROPOSITION 3.11. (1) Fore>4,
X(e) = Xy(e) =0
unlesse = e for3 <e<e—2,1<A<a.—1;e=2o0re—1,1< XA <a,,
and
Xp(e2) = Xp(ee 1) = 0.
(2) Fore=3,
Xy(e) = Xy(e) =0
unless e = Aeg for 1 <A <as+1 and
X¢(€2) =0.
PROPOSITION 3.12. (1) Ife > 4, Xy(e) = Xy(e) =0 for e = ace. (e =
2,e—1).
(2) Ife=3, X¢((a2 + 1)62) =0 and Xw()\EQ) =0 ()\ > 1).

PRrOOF. (1) Recall the relation ase; = e; + es.
By applying (3.6) and (3.7) to e := ageq and e := e; + e3, we have
(aziz + azjz — 1)(j2 — i2) Xy (e)
+ v —1(i2 + j2)(aziz — 1)(azjz — 1) Xy(e) =0,

(11 i3 + j1 + jz — 1) (i1Js — Jriz — i1 + J1) Xy (e)
+ V=11 + j1) (i1 + i3 — 1)(j1 + js — 1) Xy(e) = 0.

11 Ji
2 —13 J2—J3

Jo —i2 iz + J2
i1j3 —Jits — i1+ Jj1 i1+ 51
have X¢(CL2€2) = X¢(a2e2) =0.
Xp(ae—1€e—1) = Xy(ae—1€c—1) = 0 follows by a similar argument.
(2) First, we apply (3.4) to e := Aes.

V—1(ig + j2)(Niz — 1)(N\j2 — 1) Xy (e) = 0.

Next, we use the relation (ag + 1)es = €1 + e2 + e3.
By applying (3.4) to e := e; + (e2 + e3), we have

Since = 2n(l —n) # 0, we

(i1 +i2 + i3+ j1 + J2 + j3 — 1) (i1(j2 + J3) — ji(i2 +1d3) — i1 + j1)Xo(e)
+ vV =1(i1 +j1) (i1 +i2 + i3 — 1) (1 + j2 + jz — 1) Xy(e) = 0.
Therefore we infer Xy(e) = 0 from Xy ((az + 1)ez) = 0. O
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Taking account of (3.1) and (3.2) and by Propositions 3.11 and 3.12 and (3.6),
we have
THEOREM 3.13. We have the following basis of Ker{ H' (M, 4, T'M,, ;) — H'(M,, 4, Tl*OCN‘Mmq)}:
(1) (The case of e > 4)

Aie—2—Aje—2 S (Nie + Nje = D)(Je —ie)  _xii—1-2jo—1 -
z w 2L+ —1— - - - Z w T® Z
(ie + Je)(Nie — 1)(Aje — 1)
(e=2,...,e =1, A=2...;a.—1)
w2202 (e=3,...,e—2), W TIT®Z (e=2,...,e— 1)
(2) (The case of e =3, cf. [K])
2N 27 9 75 (A =2,...,a2)
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