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In 1955, A. Weil published a paper ["On algebraic groups of

transformations", Am. J. of Math., vol.77 (1955), p:355-391] where, starting

from a variety V over some algebraically closed field K, together with a

binary operation on V which has "good" properties (associativity, rationality)

on a large piece of V (generic points), he constructs an algebraic group G over

K, whose multiplication is an extension of the given one on generic points and

which is birationally equivalent to V.

More precisely:

Let K be an algebraically closed field and let V be an irreducible
variety over K such that there is a mapping f: VxV —» V with the following

properties:

(i) if a,b are independent generic points of V over K, then

K(a,b) = K(a,c) = K(b,c)

(ii) if a,b,c are independent generic points of V over K, then

f(f(a,b),c) = f(a,f(b,c)).

Then there is an algebraic group G over K which is birationally equivalent to

V, such that this birational equivalence takes f(a,b), for a,b independent

generics of V, to the product of the images of a and b.

Model-theorists working on stable groups became interested in this
theorem in the following context: first, recall that, by a stable (co-stable) group,

we mean a group (G,-) definable in Mn for M a model of a stable
(co-stable) theory or interprétable, Le. definable on some quotient of Mn by

some definable equivalence relation.
Amongst the first natural examples of co-stable groups are algebraic

groups over an algebraically closed field K (they are definable in the theory of

K in the language of fields).
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Some years ago arose the conjecture that in fact all simple co-stable

groups with finite Morley rank "were" algebraic groups. Now, if one hopes to

be able to define a topology and a variety structure on any such abstract group,

one should certainly first try to do it (and the construction should hopefully be

rather canonical ) in the particular case of a group interprétable in some

algebraically closed field but which has a priori no variety structure which

makes it into an algebraic group.

This question was asked by B. Poizat and a first positive answer was

given at the time by L. van den Dries (unpublished notes, characteristic 0

case): in order to simplify, let us say that the idea is to find a good VÇIG with a

variety structure satisfying the assumptions of Weil's theorem and then, to get

the the algebraic group by applying the theorem.

This was unsatisfactory, even in the characteristic 0 case, for two

reasons: first, if one does not know the proof of Weil's theorem, then one does

not really know much about this structure of algebraic group and the way it

relates to the original group; secondly, using the fact that we start with an actual

group, there should be a more direct proof, avoiding some of the difficulties

encountered when starting with an operation defined only on generic points.

This indeed turned out to be the case: a direct proof was given by E.

Hrushovski (1986), in all characteristics.

This is the proof we want to present here.

Theorem 1:

Let K be an algebraically closed field, let (G,-) be interprétable in K,

then G is definably isomorphic to an algebraic group over K.

More precisely this is decomposed in two parts:

Theorem 1-A: Let (G,-, inv) (inv denotes the inverse on G) c. Kn be a

group definable with parameters in some countable ko < K, such that for a,b

generic independent,
a.b € ko(a,b)

inv(a) € ko(a).

Then there is definably in K a structure of variety on G (over K)

which makes (G,-,inv) into an algebraic group.
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Theorem 1-B: Let H be interprétable in K, then there is G ci Kn satisfying

the assumptions of 1-A, such that H and G are definably isomorphic.

The theorem above certainly qualifies as a model-theoretic version of

Weil's theorem, but it does not deal with the part of the theorem which

constructs a group from an operation on the generic points. Now, the

following result can certainly be considered as the model-theoretic version of

this aspect of Weil's theorem. It was in fact proved by E. Hrushovski prior to

the other one, and is purely model-theoretic.

Theorem 2: (Hrushovski, Ph.D., Berkeley, 1986):
Let T be an o-stable theory, let p e S(0) be a stationary type and let *

be a partial 0 - definable operation such that:

(i) for a,b realizing p, independent,

a*b realizes p|a and pib (where pja denotes the unique non forking

extension of p over a)

(ii) for a,b,c, realizing p, independent,

(a*b)*c = a*(b*c).

Then there is a definable set G, a definable operation • on G and a definable

embedding g of p into G, such that

(G,-) is a group

for a,b t= p, independent, g(a*b) = g(a). g(b)

g(p) is the generic of G.

(In fact this theorem with the weaker conclusion that G be infinitely definable

is proved for all stable theories).

We will not say more about this aspect, but one should note that, from

these two theorems, one recovers the full statement of Weil's theorem: let V

be an irreducible variety satisfying the assumptions in Weil's theorem and

consider p the generic type of V. Then p satisfies the assumptions in

Theorem 2, and by applying first Theorem 2 and then Theorem 1, one gets the

algebraic group.

Remark: The same kind of result was also more recently proved in a different

(and unstable) setting by A. Pillay ["On groups and fields definable in
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O-minimal structures", preprint]. In particular he shows that if a group G is
definable in the reals, then G is a Lie group.
Proof of Theorem 1:

We are going to assume that the group G is connected but this is no

loss of generality as the general case follows from the connected case.
Theorem 1-A:

Let (G,-, inv) £^. Kn be a connected definable group with parameters in
ko < Ksuch that, for a,b generic independent

a.b e ko(a,b)
inv(a) e ko(a),

then there is definably in K a structure of variety on G which makes
(G,-,inv) into an algebraic group.

We are going to need the following easy lemma:

Lemma 0:
a) - Let V be an irreducible variety and let X c: V be a definable set,

X containing the generic of V. Then X contains an open subset O of V
(and of course O contains the generic).

b) - Let V and V be two irreducible varieties, and let f be a definable
map from V to V1 such that, on the generic of V, f is rational. Then there is
O c: V, open, such that flO is a morphism.

Proof:
a) - The set X is definable, therefore it is a finite union of sets of the

form O H F, where O is open in V and F is closed in V. Choose one such
O H F that contains the generic, so F contains the generic, but the complement

of F in V is open and, as V is irreducible, must also contain the generic, so

F = V.
b) - Choose a definable X c= V, containg the generic, such that f (a) is

a given rational function of a, for all a in X. By a) X contains an open set of

V.
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Proof of Theorem 1-A:
The group G is definable, so G = U (Oi fl FI), where we can

assume the Oi's to be principal open sets in Kn and where the FI'S are closed
in Kn. Let V0 be one of these intersections, containing the generic of G,p.
Then on V0 we have the structure of an irreducible prevariety, with generic p;

we also have the usual structure of prevariety on V0 x V0, with generic pxp.
Let X be a definable subset of V0 x V0 containing pxp, such that if (x,y)
e X, then x.y is rational over x,y. Let Xf = {(x,y) € X ; x.y e V0}, X1 is

definable. By the lemma above, there is MO ci X1, open in V0 x V0, such that
multiplication, from MQ in V0, is a morphism. For the same reasons, there is
Vi c: V0, open such that inv is a morphism from Vi in V0.

Now let
Y= {x E Vi ; for all y generic independent from x, (y,x) e MQ

and (inv(y),y.x) e M0}.

By definability of the type p, Y is a definable set, and Y contains the generic

p. By the lemma again, there is ¥2 £JL V ÇL Vi, open, and of course, inv is

still a morphism from V2 in V0. Now let V = ¥2 0 inv (¥2), then V is
open, because V is the inverse image (in ¥2) by a morphism, of an open set,
and V = inv(V). Let M = {(x,y) e MO H VxV ; x.y € V}, again, because

multiplication is a morphism, M is open.
So, by taking smaller and smaller open sets we have come to the

following situation: we have V, open in V0, therefore with the induced
variety structure, and M, open in VxV, such that:
(i) multiplication is a morphism from M into V

(ii) inv is a morphism from V into V and inv(V) = V
(iii) for all x in V, for all y generic independent from x, (y,x) and

(inv(y),y.x) are both in M.

The structure of variety on G is obtained by covering G by translates of V
(i.e. of the form a.V). As G is an co-stable group and V contains the generic

of G, we know that a finite number of translates of V will be sufficient to
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of G, we know that a finite number of translates of V will be sufficient to

cover G.

In order to see that this indeed gives G the structure of a variety and in

fact of an algebraic group, we need the following lemma:

Lemma:

Let a,b G G, let H = {(x,y) G VxV; a.x.b.y € V). Then

- H is open

- the map fab from H into V, which takes (x,y) to a.x.b.y is a

morphism.

Proof of the Lemma:

Let (xo,y0) 6 H, we want to find HO» (xo,yo) e HO CL H, open, such

that fab restricted to HQ is a morphism.

We know that b = c.d, where c and d both realize the generic p; let e

also realize p, independent from {a,c,d,Xo,y0}. Let Ho={(x,y)e VxV;

(e.a,x) G M , (e.a.x,c) G M , (e.a.x.c,d) e M (e.a.x.c.d,y) e M ,

(inv(e),e.a.x.c.d.y) e M}.

First, by the choice of e, and by applying condition (iii) on V each time,

(xo,y0) G HQ.

We see that HQ is open in VxV by applying successively the following
classical facts: if O is open in VxV, if h is a morphism form O in V, if z G

V, then the set
{(x,y); (x,z) G O and (h(x,z),y) G O}

is open, and also,

Oz = {XG V; (z,x) G O}

is open and hz, from Oz in V, is a morphism.
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Now a.x.b.y = inv(e).e.a.x.c.d.y , so HQ c^ H, and over HQ, fab

becomes a composition of morphisms because at each step the elements one

wants to multiply aie in M, and hence it is a morphism.

We can now go back to the proof of the theorem. Choose ai,...,anin
G such that G = ai V U ... U an V (where aV denotes the set {a.x; x E V}).

In order to check that this, together with the left translations fi from V into at

V, is a prevariety on G, we need that for all i,j

_ Vy = {x E V; ai.x E aj V} = {x E V; inv(aj).ai.x G V} is open

- the map fy from Vy into V which takes x to inv(aj).ai.x is a

rporphism.

But, it is a direct consequence of the lemma that, for all a in G, the set

Va= {x E V; a.x e V} is open and the left translation by a is a morphism.

It remains to check that multiplication and inverse are morphisms.

Multiplication:

GxG, as a variety is covered by products of the form aVxbV, which get their

variety structure from VxV. To say that multiplication is a morphism means

exactly that the set

Aabc = {(x,y) e VxV; a.x.b.y E cV} = {(x,y) E VxV; inv(c).a.x.b.

y E V }

is open in VxV and that the map from A into V which takes (x,y) to

inv(c).a.x.b.y is a morphism. This is exactly the lemma.

inverse:

It is a morphism if the set
= {x E V; inv(a.x) E bV} = {x E V; inv(a.x.b) E V}
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is open and the map from Aab into V which takes x to inv(a.x.b) is a
morphism. But (condition (ii)) inv(V) = V, so Aab = {x e V; a.x.b € V}, and

again it is open, as a direct consequence of the lemma, and the map taking x to

a.x.b is a morphism. We also have that, on V, inv is a morphism, so

inv(a.x.b) is the composition of two morphisms. D

Theorem 1-B:

Let (H,-,inv) be a connected group interprétable in K. Then there is a
definable group (G,*, inv1) C_ Kn and some countable ko < K, ko containing

the defining parameters of H and G, such that H and G are definably
isomorphic and, for a,b generic independent in G, a*b € ko(a,b) and inv1 (a)

eko(a).

Proof:

Note first that, by elimination of imaginaries in algebraically closed fields, any

interprétable group is definably isomorphic to some definable group in some

Kn, so we can assume that (H,-, inv) c. Kn. Without loss of generality,

assume K is very staurated.

Now if K has characteristic 0, then there is nothing left to prove, as

any definable function is locally rational, so we assume that K has

characteristic p>0.

Let k ci K be an uncountable algebraically closed field, containg all the

defining parameters of H. There is some q = l/pm such that, for all a, 5 E H,

a. § e k( a*, P)n and inv( a) e k( P)n (where if a = (ai,...,an), k( a<l)

denotes k(a^,...,a^)).

Let a realize the generic of H over k. We define:

k*( a) = k( ai, inv( a)q, HI. a. E2» ^i.inv ( a). E^ FI, &2 e H 0 kn).

We have that k*( a) <= k( a<0, with q1 = q2.

Now k( a*!1) is a finite extension of k( I) hence so is k* ( a), so there are

ci,...,Ck in k( a*!1), such that k* ( a) = k( a,ci,...,Cfc), and of course, each q is

definable over k U a.

Consider f : H —> kn+k, definable injection such that for a generic,
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Trivially, k* ( a) = k* (inv( a)), so k(f( à)) = k(f(inv( i))), so if G is
the image of H by f, with the obvious group law, it is true that, on a generic

of G, the inverse is rational.
Now it is also trivial that, if E e kn D H, then

k*( a. E) = k* ( £), so k(f( £. 5)) = k(f( a))

(*)
k*( E. 5) = k* ( Ï), so k(f( E. a)) = k(f( Ï)).

We also have that, as f is a definable bijection, for a, E generic,
f( a. E) e k(f( a)r, f(JSyy»* for r = 1/p*, for some L

Let ko, countable, ko<k, contain all the necessary parameters.
Letïïe H H kn realize the generic of H over ko» and let a realize the generic of

H over k. By (*) , f( a. E) e k(f( a))n+k , and we also have that

f(ï.5)Eko(f(i)r,f(B)On+k.
But, k(f( a)) 0 ko(f( a)r,f(B)0 = ko(f( a), f(E)0 : because f( a)r remains over
k(f( a)) of the same degree as over ko(f( a), f(B)0, since a is independent from

k, which contains f(E)0» over ko.
Symmetrically, because 5XE and E AÏ" have the same type over ko, we

have that f( a. 5) € (ko(f( i), f(5)0 n ko(f( ï)r,f(E)) )"*k

But these two fields are linearly disjoint over ko(f(a),f(B)): more
generally, it is classical algebra that if KI, K2 are linearly disjoint over ko, if x
eK^ye K2> &Qn Ki(y ) and K2(x) are linearly disjoint over ko(x,y). As a

and E are independent over ko , ko(f( a)0 = KI and ko(f (B)1) = K2 are linearly
disjoint over ko, then we get the result by letting f( a) = x and f( 5) = y. It

follows that f( a. 5) e ko(f( a), f(5)) )n+k, that is, that in G, the multiplication

of two independent generics is rational. D
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