
ORDERED SETS.

2. Ordered sets. A theorem of Hausdorff.

One obtains a more complete idea of Cantor's work by studying his theory
of ordered sets. As to the notion "ordered set" this is nowadays mostly de-
fined in the following way:

A set M is ordered by a set P E M2, if and only if the following state-
ments are valid:

1) No pair (m,m), meM, is eP.

2) For any two different elements m and n of M either (m,n)eM or (n,m)eM
but not both at the same time.

3) for all m,n,peM we have (m,n)eP & (n,p)eP—«-(m,p)eP (transitivity).

As often as (m,n)eP, we also say m is less than n or m preceeds n, written
m< n.

K M and N are ordered sets and there exists a one-to-one order-preserv-
ing correspondence between them, Cantor said that they were of the same
order type and wrote M - N. They are also called similar. Evidently two
ordered sets of the same order type possess the same cardinal number; but
the inverse need not be the case. Only for finite sets is it so that two O£dered
sets of the same cardinality are also of same type. Cantor denoted by M the
order type of M.

That two infinite ordered sets possessing the same cardinal number may
have different order types is seen by the simple example of the set of positive
integers on the one hand and that of the negative integers on the other. Both
sets are denumerable, but obviously not ordered with the same type, because
the former has a first member, which the other has not, whereas the latter
has a last member, which the former does not possess. Cantor studied to a
certain extent the denumerable types, also types of the same cardinality as
the continuum, but above all he studied the so-called well-ordered sets. In
this short survey of Cantor's theory I shall only mention some of the most
remarkable of his results and add a theorem of Hausdorff.

It will be necessary to define addition and multiplication of ordered sets.
If A and B are ordered by PA and PB while A and B are disjoint, the sum set
A + B will be ordered by PA + PB + A • B. We have of course to distinguish
between A + B and B + A. This addition may be extended to the case of an
ordered set T of ordered sets A,B,C,... which are mutually disjoint. Indeed
the union (or sum) ST will then be ordered by the sum of the sets PA,PB>PC>
.... and the products X • Y when (X,Y) run through all pairs which are the
elements of the ordering set PT for T.

By the product of two ordered sets A and B we understand A • B ordered
lexicographically: that means that ai, bi precedes ai, b2 if either ai precedes
a2, or ai = a2, but bi precedes b2. This definition also admits generalization,
but that will not be necessary just now.

If a 1-1-correspondence exists between the ordered^ sets M and N such
that the order is reversed by the correspondence, then N is said to be the
inverse order type of M. For example the order type of the set of negative
integers is the inverse of the type of the positive integers. Cantor denotes
the inverse of the order type a by a*. Thus a; and u>* denote the types of the
sets of positive and of negative integers.
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An interesting class of ordered sets are the dense ones. An ordered set
is called dense, if there is always an element between two arbitrary ones.
The simplest example is the set of rational numbers in their natural order.
This set is also open, that means that there is no first and no last member.
Now we have the remarkable theorem:

There is one and only one open and dense denumerable ordertype.

Proof. Let A = {ai, a2,....} and B = {bi, b2,....} be two denumerable sets,
both open and dense. First we let ai correspond to bi. Then ai divides the
remaining elements of A into those < ai and those > ai. Let ami be the aj

with least index < ai and am2 the a^ with least index > ai. Either mi or m2

is 2. Letting bnj be the bj with least j < fy , while bnj2 is the bj with least

j > bi, then either ni or n2 is 2. We let bni correspond to ami and bn to

am . Now every remaining a^ from A is either < am or > ami but < ai, or

> ai but < am2 or > am2, which gives 4 cases. There are 4 corresponding

cases for the remaining bj. Then if am3 is the a^ with least i such that aj <

ami and bna the b; with least j such that bj<bmi, we let am3 correspond to bna

and so on. It is easily seen how we obtain in this way an order-preserving
correspondence between the at and the bj. One has only to remark that if am
is the ai with the least i which has not already got any corresponding bj, then
it gets one when in the different intervals between the already chosen am the
further amg are chosen. r

We have further:

In an open and dense denumerable set a subset can be found similar to any
given denumerable ordered set. This is seen in a similar way as in the proof
of the preceding theorem. Indeed if bi, b2,.... are elements of an arbitrary
denumerable ordered set while ai a2 .... is an open and dense denumerable
set, then we may map bi on ai. Then according as b2 < bi or > bi we map
b2 on an element a"< ai or > ai. Then b3 is either less than both bi and b2
or lies between bi and b2 or is greater than both. Respectively we map b3
on an element a f l f having the same order relation to ai and aff and so on.

Let us use the term scattered set for a set having no dense subset. Then
an interesting theorem of Hausdorff says that every ordered set is either
scattered or the sum of a set T of such sets, where T is dense.

Proof: It is easy to understand that if an interval a to b in an ordered
set is scattered and the interval b to c as well, then the whole interval a to c
has the same property. Indeed, if d < e both belong to a dense set S then the
set of all xeS such that d ^ x i e constitute a dense subset of S, and an eventual
dense subset of the interval a to c must either contain at least 2 elements in
the interval a to b or at least 2 in the interval b to c. Therefore the statement
that the interval between a and b in an ordered set M is scattered is transitive
so that we can divide M into classes A,B,C,... such that in each class any two
different elements furnish a scattered interval. These classes are therefore
successive parts of M, each of them scattered. On the other hand, if there are



ORDERED SETS 9

two different ones A and B, there must always be a C between, else A and B
would amalgamate into one class. Thus a set T of the successive scattered
parts of M must be dense.

As to the denumerable ordered sets I should like to mention two facts
which will be useful when I talk about Cantor's second number class. If a
denumerable ordered set M has no first element, then it is coinitial with a;*,
and if it has no last element, it is cofinal with cu These statements mean
that we can in the first instance find an infinite sequence of type co* in the set
such that there is no earlier element than all these in M, and in the second
instance we may find an infinite sequence of type cu such that there is no ele-
ment in M after all these.

Proof: Let in the first case ai€M, ani be the a^ with least i such that

aj < ai , further anz be the aj with least i such that ai < anj , etc. Clearly

1 < ni < j\2 < ... If am were < every an , then we should have m > 1, ni, n2 ,

..., which is absurd. Similarly in the second case.

Among the ordered sets, the well-ordered ones, namely those possessing
a least element in every non-empty subset, are especially important. That
well-ordering is equivalent to the principle of transfinite induction is well
known. This principle says that if a statement S is always valid for an ele-
ment of a well-ordered set M when it is valid for all predecessors, then S is
valid for all elements of M. Further I ought to mention that the sum of a
well-ordered set T of well-ordered sets A,B,C,.... is again a well-ordered
set. If T is denumerable and a denume ration is simultaneously given for
each element A,B,C,... of T, then the sum is a well-ordered denumerable set.
Also the product of two well-ordered sets is again well-ordered.

The order types of the well-ordered sets are called ordinal numbers.
These ordinals Cantor has introduced by a creative process which is very
characteristic of his way of thinking. I will now give an exposition of this
creative process.

He begins with the null set 0 containing no element. Then since this 0 is
an object of thought he has obtained one thing which he denotes by 1. (We
may think of 1 as the set {0}, see the later axiomatic theory). Now, conceiv-
ing 0 and 1 as ordinals he has the right to write 0 < 1. Then he has this set
of two ordinals which represents the ordinal 2. Having obtained 0 < 1 < 2 he
has an ordered set representing the ordinal 3. Now he has 0 < 1 < 2 < 3
which furnishes a well-ordered set with 4 elements, etc. Now he thinks this
process continued infinitely so that he obtains the set of all positive integers
0 < 1 < 2 <.... This well-ordered set, however, represents an infinitely
great ordinal co . Then he has

a set containing all finite integers together with co. This is a well-ordered
set representing a greater ordinal than co, denoted by cu+ 1. Proceeding in
this way he obtains after a while

a well-ordered set consisting of two infinite series of increasing ordinals.
This set represents a still greater ordinal written as cu + cu.
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It is evident that all the infinite sets hitherto introduced are denumerable.
But now Cantor collects all ordinals of denumerable well-ordered sets. This
set represents an ordinal that is not denumerable. Strictly speaking the
axiom of choice is being taken into account here, but Cantor uses that as an
evident principle without even being aware of it. According to this principle
we have that a denumerable set of denumerable or finite sets has a denum-
erable union. Now let us assume that the ordinals of finite and denumerable
sets constitute a denumerable set. Then this set is cofinal with co, because
there is evidently no greatest ordinal of this kind. Thus we may assume
that oil < a2 < a 3 < ..... is a sequence of type co, such that every denumer-
able ordinal is = some ar- However we <iould then find finite or denumer-
able ordinals &, &,.... such that

but now the ordinal

y = ai + Pi + $2 + ...
must be denumerabie. Nevertheless y is clearly > every ar, so that we get
a contradiction. Therefore the sequence of all finite and denumerable ordi-
nals represents a non-denumerable ordinal. This was by Cantor denoted by
Q.

Cantor used the first letter aleph, written N, of the Hebraic alphabet
with indices to denote the cardinal numbers of well-ordered sets. The cardi-
nal of a), that is the cardinal number of the denumerable sets he called N0,
the cardinal of Q he called HI . He proved that every subset of Q is either
finite or has the cardinal N0 or the cardinal tf j. . Indeed if we have a subset
of Q we may enumerate successively the elements of the subset by the ele-
ments 0,1,2,..., co, co + 1, ... of Q and then either this enumeration will stop
with a finite number n or it will stop with some a < Q or it does not stop, so
that the subsequence also has the ordinal Q .

The finite ordinals are also called those of the first number class, the
denumerable ones those of the second class. Now Cantor again collects the
ordinals of cardinal number NI and proves similarly that they constitute a
sequence of still greater cardinality N2 • There is no cardinal between NJ
and N2 - The ordinals belonging to well-ordered sets whose cardinal number
is NI are said to be the numbers of the third number class. In this way he
continues and obtains an increasing infinite sequence of alephs

each Nn+l being the cardinal number of the set of all ordinals represented by
well-ordered sets with cardinal number Nn. These latter ordinals are those
of class n + 2.

But now he collects all ordinals belonging to all the classes with finite
number. Then he obtains a set with a cardinal number which is suitably de-
noted NU, being > every Nn, n finite, while there is no cardinal between the
Nn and this Nw . From Nwhe then derives Kw+1 , ^w+2 etc. Quite generally
there is an K^fc r every ordinal a.

It must be conceded that Cantor's set theory, and in particular his crea-
tion of ordinals, is a grandiose mathematical idea. But what was at that time
the reaction of the mathematical world to all this? In the first instance the
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reaction was rather unfavourable. No wonder, these ideas were too new and
too strange. However, very soon the reaction got favourable for two reasons;
1) Cantor's way of thinking was of the same nature as, for example, Cauchy's
and Weierstrass's treatment of analysis and the theory of functions, 2) Many
of the notions introduced by Cantor were useful in ordinary mathematics.
There were, however, also some opponents, above all Kronecker and Poin-
care. Kronecker did not only attack Cantor's theory of sets but also most
of ordinary analysis. He required decidable notions. Poincare's main objec-
tion was that in set theory so called non-predicative definitions are used
which according to him (and also Russell) are logically objectionable. The
situation for Cantor's theory became indeed very much changed after 1897.
In this year the Italian mathematician Burali-Forti discovered that the theory
of transfinite ordinals leads to a contradiction. According to the Platonist
point of view the existing ordinals are well-defined and well-distinguished
objects such that they, according to Cantor's definition, should constitute a
set. This set is well-ordered, therefore it represents an ordinal. However
the ordinal represented .by a well-ordered set of ordinals is always greater
than all ordinals in the set. Thus we obtain an ordinal which is greater than
all ordinals, which is absurd.

Another still better known antinomy was discovered a few years later
(1903) namely Russell's. Ordinary sets are not elements of themselves.
According to platonism the existing sets which are not elements of themselves
ought to constitute a set U. We have then the logical equivalence

x e x-—«~x e U.

If, however, we put here U instead of x, which should be allowed because the
equivalence should be generally valid, we get

Ue"u—UeU

which of course is absurd. Also Cantor's theorem that the set UM of all sub-
sets of M is of greater cardinality than M leads to an absurdity when we ask
if there is a greatest cardinal or not. Indeed according to this theorem there
is no greatest cardinal. But the union of all sets ought on the other hand to
have the greatest possible cardinal number.


