
APPENDIX TO CHAPTER H. POINTWISE LIMITS OF BAYES PROCEDURES

This appendix contains a proof of Theorem 4.14, which was used to

establish the complete class Theorems 4.16 and 4.24, and wi l l be used again

in Chapter 7. As already noted, this theorem has nothing in particular to

do with exponential families, but i ts proof is included here since i t is not

readily accessible elsewhere. We wi l l state and prove i t below in a convenie

form which is more general than that stated in Theorem 4.14.

4A.1 Setting

Let ίp Q (x): θ e 0} be any family of probability densities relativ

to a σ-finite measure v on a measure space X,B. Assume

(1) pθ(x) > 0 x € X , θ € Θ

(This assumption is a c t u a l l y used only i n Proposition 4A.11 and Theorem 4A.12

Let the action space, A, be a closed convex subset of Euclidean space. The

loss function is L: Θ x A -> [ 0 , <»). Assume L ( θ , •) is a lower semi continuous

function f o r each θ e Θ. Assume also t h a t

( 2 ) l im L ( θ , a ) = °° , Θ 6 Θ ,
l l a | | - * »

( I f A is a bounded set this is t r i v i a l l y satisfied.) I f A is bounded l e t

A* = A; i f A is unbounded l e t A* = A u {1} denote the one-point compactifi-

cation of A. Extend the function L(θ, •) to A* by defining

(3) L(θ, I) = -a .

A randomized decision procedure on A* i s . a kernel 6( | ) f o r which
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δ ( t | x ) is a Borel measure on A*, f o r x € X

(4)

δ(A| ) is 8 measurable f o r each measurable set A ^ A * .

A nonrandomized procedure is one f o r which δ( |x) is concentrated on a single

p o i n t , δ ( x ) , f o r almost every ( v ) , x € X. Note we use the symbol 6 both for the

kernel δ( | ) and f o r the r e l a t e d function δ( ) Let V* denote the c o l l e c t i o n

of a l l randomized decision procedures. Let V c V* denote those giving mass 1

to A c A*, and l e t V c V denote the nonrandomized procedures i n V.

As usual, the r i s k of any procedure is

( 5 ) R(θ, 6) = / / L ( θ , a) 6(da|x) p ( x ) v ( d x ) .
X A* θ

Note t h a t R(θ, 6) may take the value °°. A procedure 6 is admissible i f

(6) R(θ, 6 ' ) < R(θ, δ) V θ € Θ => R(θ, δ 1 ) = R(θ, δ) V θ € Θ .

The proof of the main r e s u l t of the appendix is broken down i n t o

six main prel iminary steps as fol lows:

( i ) V* is compact in an appropriate topology;

( i i ) R(θ, •) is lower semi continuous on V*;

( i i i ) δ. + δ n with δ. e 0 . I = 0 , 1 , . . . , implies δ ; -> δ n i n measure

( v ) ;

( i v ) the mini max Theorem for f i n i t e Θ;

(v) the closure of the Bayes procedures is a complete c l a s s ; and

( v i ) V is a complete class when L ( θ , •) is s t r i c t l y convex.

Formal statements of a l l these r e s u l t s and some c o r o l l a r i e s are given below.

Complete proofs are also given f o r a l l but ( i ) f o r which the reader can consult

the references c i t e d below.

4A.2 D e f i n i t i o n s

We now define the topology on V*. Let lχ = L ^ X , B χ , v) denote

the Banach space of v i n t e g r a b l e functions. Let C* denote the (Banach) space
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of continuous, real-valued functions on the compact set A*. For every δ € P*,

f e L,, c € C* there is a number

S6(f, c) = //c(a)δ(da|x) f(x)v(dx) .

Define the topology on V* according to the convergence criterion δ •*• δ i f

(2) βΛ ( f , c) -> β Λ ( f , c) f ε L v c ε C* .

C o 1
α

(This is a "weak" topology. The collection of sets of the following form

comprise a basis for this topology:

{δ € V : 3χ(f, , c •) - 3χ. (f, > c ) I < ε, 1 < i < I, 1 < j < J,

δ 0 € P * f f € l v c . 6 C * , i = l 9 . . . , 1 , j = l , . . . , J ,

ε > 0 } . )

4A.3 Theorem

V* is compact in the topology defined above.

Proof. This theorem appears in Le Cam (1955) in a form similar to the

above. In a somewhat more primitive form the result appears already in Wald

(1950). I t is interesting to note that this theorem is actually a special

case of a result in abstract functional analysis. I t follows directly from

Theorems V.8.6 and IV.6.3 (the Riesz representation theorem) of the classic

treatise of Dunford and Schwartz (1966). For a complete, detailed proof see

Farrell (1966, Appendix). ||

As has already been noted in the text, Wald's book, and the paper

of Le Cam, both cited above, continue from their versions of Theorem 4A.3 and

prove results similar to most of those below; but they do not expl icit ly state

a version of Theorem 4A.12 which is our ultimate goal. See especially Wald

(1950, Sections 3.5 and 3.6) and Le Cam (1955, Theorem 3.4).
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4A.4 Proposit ion

The map R(θ, •): V* -> [ 0 , « ] is lower semi-continuous. I n other

words, i f ό + 6 Q then

( 1 ) Ίim i n f R ( θ , δj >_ R(θ, ό Q ) , θ e θ

Proof. Let 6 α -> ό Q . Let θ e 0 and l e t c β ( ) = m i n ( L ( θ , •)> B ) . Then

c β € C* and, for any 6 £ V*9 3 6 ( p θ , c β ) t R(θ, δ) as B t °°. Thus,

( 2 ) l i m α i n f R(θ, δ α ) > l i m α i n f 3 f i ( p 0 , c β )

(1) follows directly from (2). ||

We will apply this proposition in roughly the following form:

4A.5 Corollary

Let { Θ 1 , . . . , θ m } c Θ. Let Γ f <= Rm be the s e t o f a v a i l a b l e f i n i t e

r i s k points -- i . e .

( 1 ) f f = { r € Rm: 3 6 G P* , R ( θ j , ό ) = r j , j = l , . . . , m } .

Let rf c Rm be the set of points dominated by r f -- i . e .

( 2 ) Γ f = { r e Rm: 3 s € Γ f , s <_ r }

where (as usual) s £ r means s. <. r . , j = l , . . . , m . Then f f is a non-empty,

donvex, closed subset of Rm.

Notation: In the current context, when R(θ > ό) < <», j = l , . . . , m , we w r i t e

R ( . , δ) to denote the p o i n t r € Rm with r. = R ( θ , , 6 ) , j = l , . . . , m .

Proof. R(θ, a Q ) = L ( θ , a Q ) < «,, Θ € Θ, so Γ f ϊ φ, and consequently

Tf t Φ Γf is convex, so also Γ f is convex. Suppose r^ € Γ f , 1 = 1 9 . . . 9

and r -> r. Then there e x i s t δ ; e V* with R( , 6 y ) <_ r , 1=1 Since V*
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is compact there must exist a subsequence {V} such that 6., is convergent;

δ., -*- δ. Then

(3) (r)j = Hm(r^,)j > lim inf R(θj, 6^,)

by Proposition 4A.4. It follows that r € Γ.. This proves that r^ is

closed. 11

Here is another useful consequence of Theorem 4A.3 and Proposition

4A.4.

4A.6 Corollary

The set of admissible procedures forms a minimal complete class.

?H.ooi. We give a proof only for the case where Θ = {θ,,...,θ } is finite.

The corollary will be applied in this form in the proof of Theorem 4A.10.

(The proof for general Θ is basically similar, but involves some form of

Zorn's lemma. See, e.g. Brown (1977).)

Let δ
Q
 € V*. To each 6 € V* associate the point r(δ) = r € [0, ~ ] m

for which r. = R(θ , δ), j = l,...,m. Let
j J

(1) f = {r € [0, oo]m
: r = r

(δ) for some 6 6 £>*} .

(This is the same as 4A.5(1), except for the fact that here r. = » is possible
j

so that r(δ) is defined for all δ € V*9 not merely for those δ having finite

risk.) Let r 6 r be a minimal point of f which dominates r(δ
Q
). That is,

(2) r <_ r(δ
Q
); r <_ r and r ί r => r ί f .

(It is shown in Lemma 4A.8 that r. < °°, j = l,...,m, but that fact is not
~ J

essential here.) Such a point, r, can be constructed as the limit of a

sequence of points r(ό .) ξ r.
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By Theorern 4A.3 the sequence δ. has an accumulation point in V*,

say δ. By Proposition 4A.4 r(δ) ± r <_ r(δ
Q
). Since r was minimal it follows

that 6 is admissible.

It has thus been shown that any procedure, δ
Q
, is dominated by an

admissible procedure, as asserted by the corollary. ||

4A.7 Proposition

Let δ € P , o = 1,..., and suppose δ + δ
Q
 in P* with δ

Q
 € V^. Then

δ (•)•»• δn( ) in measure (v). Thus there is a subsequence V for which

δ^.ί ) •> θ
o
( ) a.e.(v).

PΛ.OOI5. Suppose δ^ -> δ
Q
 in P* but δ

α
 / δ

Q
 in measure (v). If δ

Q
 € P*-P then

there is an an € A, an e > 0, and a set S with v(S) > 0 such that

(1) |δ
Q
(x) - a

Q
| < ε for all x € S

and

(2) lim sup v({x € S: |6 (x) - aQ| > 2ε}) > 0 .

(To verify (1) and (2) is a standard but nontrivial exercise in measure theory

which uses the fact that A is a separable metric space. If δ
Q
 € V* then

(1) may need to be replaced by |θ
Q
(x)| > 1/ε and, correspondingly, the statement

|δ (x)| < l/2ε would need to be substituted in (2). Similar substitutions would
α

then need to be made in what follows.) Let c € C* satisfy 0 <_ c( •) ± 1, and

c(a)

1 |a - aQ| i ε

0 I a - a
n
| _> 2ε

and let f( ) = x
s
( ) € L]. Then

(3) β, (f, c) = v(S),
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but

3
6
 (f, c) < v({x: |δ

α
(x) - a

Q
| < 2ε})

= v(S) - v({x € S: |δ(x) - a
Q
| >. 2ε})

so that

(4) lim inf 3. (f,c) <_ v(S) - lim sup v({x € S: |δ (x) - a
π
| >. 2ε})

α α α α u

< v(S) .

Taken together (3) and (4) contradict the assumption that δ ^ 6Q in V*. This

contradiction shows that δ -> δQ in Ό* implies 6 + δQ in measure (v). The

second conclusion of the proposition is a standard consequence of this. ||

We now come to the minimax theorem. In preparation for this

theorem we prove a simple lemma.

4A.8 Lemma

Let Θ be f i n i t e . Then the set of procedures having f i n i t e risks

is a complete class of procedures in Ό*. ( In other words, for every δ € V*

t h e r e i s a p r o c e d u r e δ 1 € V* w i t h R ( θ , δ 1 ) <_ R ( θ , 6 ) a n d R ( θ , δ 1 ) < ° °, θ € Θ . )

Proof. L e t a Q € A and A . = max { L ( θ , a j : θ e θ } < °°.

B = { a € A: min { L ( θ , a ) : θ € 0 } <_ A - } . B i s a bounded s e t b e c a u s e o f

A s s u m p t i o n 4 A . 1 ( 2 ) . Hence

Ap = max { L ( θ , a ) : θ € Θ , a € B } < « .

D e f i n e δ 1 t o s a t i s f y

( 1 ) δ ( { a o } | x ) = δ ( { a Q } | x ) + δ ( B c | x )

δ ' ( A | x ) = δ ( A | x ) , { a Q } t A , A c B .

( I n w o r d s , δ 1 t a k e s a c t i o n a Q w h e n e v e r δ t a k e s a n a c t i o n o u t s i d e B . ) T h e n
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ό'(B|x) a 1 ; hence R(θ, ό 1 ) £ A2 < «. Also, by c o n s t r u c t i o n ,

(2) / L ( θ , a ) ό ' ( d a | x ) <. / L ( θ , a)δ(da|x) + L ( θ , a Q ) δ ( B c | x )
B

± JL(Θ, a)6(da|x) .

Hence R(θ, ό1) £ R(θ, δ). ||

In the language of Corollary 4A.5, used below, the preceding

can be interpreted as saying that the set of procedures with risk points in

Γ f is a complete class.

4A.9 Theorem

Let Θ be f i n i t e . Let δQ € V* be any procedure for which

R( , δQ) € Γ f, and such that

(1) R( , δ0) - ε £ Γ f

for every ε > 0. Then δQ is Bayes — i .e. there exists a prior G giving

mass π. to θ. e Θ, j = l , . . . , m such that
J J

m m
( 2 ) Σ τr.R(θ., δ n ) < i n f * Σ π.R(θ., δ) .

j = l J J U 6€0 j = l J J

Remark. The minimax risk — M = inf* max {R(θ, δ): θ € 0} ~ must be

f in i te by Lemma 4A.8. (Also, as a consequence of Corollary 4A.5 there must

exist a minimax procedure.) I f δQ is any minimax procedure then i t must

satisfy (1) and hence must be Bayes. This does not yet prove that the

resulting prior 6 is least favorable -- i . e . Σ π.R(θ.* δ) >. M for a l l
J J

δ € Ό*. Indeed, this need not be the case. To get a least favorable prior

apply the proof of the theorem to the point with coordinates r. Ξ M,
ϋ

j=l,...,m. This point need not correspond to any procedure in V*, but it is
in f, and the proof of the theorem applies directly to yield {π.} such that

m m
M = Σ π.M £ i n f * Σ π.R(θ., δ ) . This {π.} corresponds to the l e a s t

j = l J P J J J
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favorable distribution.

Proof. Γ
f
 is a closed convex subset of R

m
 by Corollary 4A.5. Condition (1)

implies that the point r
Q
 = R(θ, δ

Q
) lies on the boundary of Γ-. Hence there

exists a nonzero vector {α.} which defines a supporting hyperplane to Γ* at

r
Q
 - i.e.

(3) Σ αj(r
o
)j = 1nf {ΣαjΓjΓ r € Γ

f
} .

Since r
Q
 € Γ

f
, so also is r

Q
 + ae^ for any unit vector e^, and a_> 0.

Thus (3) yields

(4) - J ^ o ^ ' 3 * aι{roh> a ^ °

I t follows t h a t α . _> 0 , ^ = l , . . . , m . Let

( 5 ) \ =
m
Σ α

Then

m
( 6 ) Σ π . ( r n ) . = i n f {Σπ r : r € Γ f } .

Furthermore, by Lemma 4A.8, for every δ € V* there is an r € Γ f such that

m
r. < R ( θ . , δ ) , j = l , . . . , m ; so t h a t Σ π.r. < Σπ.R(θ., δ ) . The desired r e s u l t ,
J "~ 3 j_2 J J ~ 3 3
(2), now follows from (6). ||

4A.10 Theorem

Let BQ denote the set of Bayes procedures for priors concentrated

on f i n i t e subsets of Θ. Then BQ, the closure of BQ in P*, is an essentially

complete class.

Proof. (Note: the following proof is written in the language of directed

sets, nets, and subnets. See, e.g. Dunford and Schwartz (1966). The reader

unfamiliar with these concepts, or the equivalent concept'of f i l t e r s and
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u l t r a f i l t e r s can understand the essence of the proof by considering the case

where Θ is countable, for then the nets and subnets can be cooverted to

ordinary sequences and subsequences. I f X, B is Euclidean space -- as in the

exponential family situation — i t can be shown by an auxi l iary argument that

sequences and subsequences also can suffice for the proof, since the topology

of V* has a countable basis.) Let <5Q be any procedure.

Let A denote the collection of a l l f i n i t e subsets of Θ formed into

a directed set under the obvious p a r t i a l ordering: α- £ ou i f α- c o u .

Consider a fixed α € A; α c 0. Consider the s t a t i s t i c a l problem

with parameter space just the f i n i t e set α. There must exist a procedure,

call i t 6 , which is admissible in this restr icted problem and is a t least

as good as δQ — i . e .

(1) R(θ, ό α ) < R(θ, δ 0 ) θ G α

Since δ is admissible in the restr icted problem i t sat isf ies condition

4A.9(1) there. (The existence of 6^ is guaranteed by Corollary 4A.6.) Hence

6 is Bayes with respect to a prior G concentrated on the f i n i t e set α c 0 .

Let A1 = {α 1 } be a ( c o - f i n a l ) subnet of A and l e t δ e V* be such

that δ , •> δ. (The existence of A' and δ follows from Theorem 4A.4 by standard

topological arguments.) Let ΘQ € 0. Then α1 => {ΘQ} for every α 1 far enough

out in A1. Hence R(θQ,δ ,) <_ R(θ Q J δQ) for any such α1 and, by Proposition

4A.5,

R(ΘQ, δ) <_ l im i n f R(θ Q , δ α . ) £ R(θ Q , δQ) .

Since ΘQ £ θ is a r b i t r a r y , this proves that δ € BQ is as good as δQ. Since

δQ € V* is also arbitrary this proves BQ is an essentially complete class. ||

So far we have not assumed that L(θ, •) is s t r i c t l y convex, as is

the case in the applications in Chapter 4. We now add this assumption, which

is required for the desired complete class theorem.
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4A.11 Proposition

Assume

(1) L(θ, •) is s t r i c t l y convex on A for each θ € Θ

Let δ € V*9 δ (. Όn. Then there is a δ1 € £>n such that

(2) R(θ, δ1) < R(θ, δ) , θ € Θ

with s t r i c t inequality for some θ Q € Θ. In particular, the procedures in V

are a complete class.

Proof. I f δ € V* but δ £ V then v ( { x : δ ( U } | χ ) } ) > 0 . Hence R ( θ , δ) Ξ « ,

θ e Θ, by 4 A . 1 ( 1 ) . L e t a Q € A and l e t δ 1 be d e f i n e d by <S'(x) = a Q . Then

( 3 ) R ( θ , δ 1 ) = L ( θ , a Q ) < oo = R ( Θ , δ) , θ e Θ

Now, suppose 6 e V but 6 f. V . If R(θ, δ) = «> then, again,

δ'(x) Ξ a
Q
 satisfies (3). So, assume R(θ

o
,δ') < » for some θ

Q
 € Θ. Condition

(1) and 4A.1(2) guarantees that for some ε > 0, A
Q
 >̂  0

(4) L(θ
Q
, a) > ε||a|| - A

Q
 .

(We leave this as an exercise on convex functions. A \/ery s imi lar r e s u l t is

proved in 5 . 3 ( 3 ) and ( 5 ) ; see 5 . 3 ( 4 ' ) . )

Hence

(5) co > R(ΘQ, δ) = / ( / L ( θ , a ) δ ( d a | x ) ) p θ Q ( x ) v(dx)

|| δ ( d a | x ) ) p θ (x)v(dx) - AQ .

I t follows t h a t

(6) f\ | a | I δ ( d a | x ) < <» a . e . ( v )

since pA (x) > 0 a . e . ( v ) by 4 A . 1 ( 1 ) .

Define
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/ a ό ( d a | x ) i f /| |a| |ό(da|x) < °°

a Q otherwise

Then

/ L ( θ , a ) δ ( d a | x ) 1 L ( θ , ό ' ( x ) ) a . e . ( v )

with strict inequality whenever 6( |x) is not concentrated on the point ό'(x).

Since 6 (. V^ this occurs with positive probability under v — and hence by

4A.1(1) under P
Q
 .

θ
o

Consequently

(7) R(θ, ό1) £ R(θ, 6)

with s t r i c t inequality for ΘQ e Θ. (In fact, there is s t r i c t inequality in (7)

whenever R(θ,ό) < °° .) | |

The desired result now follows as an easy consequence.

4A.12 Theorem

Assume 4A.11(1). Then the set of pointwise limits of sequences of

procedures in BQ is a complete class. (B is defined in 4A.10.)

Proof. As a consequence of 4A.11(1), Jensen's inequality and 4A.1(1)

eyery procedure in BQ is non-randomized. Also, there cannot be two non-

equivalent admissible procedures with equal risk functions, for i f δ 1 f 6 2 then

(1) (R(θ, 6λ) + R(θ, 6 2 ) ) / 2 ^ R(θ, ( 6 χ + 6 2 )/2)

with s t r i c t inequality whenever the right-hand side is f i n i t e .

The theorem now follows as a direct consequence of Corollary 4A.6,

Proposition 4A.11, Theorem 4A.10, and Proposition 4A.7. Here's how:

Because of Corollary 4A.6 there is a unique minimal complete

class. I t is contained in V by Proposition 4A.11 and in BQ by Theorem 4A.10

and ( 1 ) , above. I f δQ is in this minimal complete class ( i . e . , i f 6Q is
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admissible) there is therefore a net 6 € BQ = V^ such that 6 α + δQ € V^

in the topology on V*. Then, by Proposition 4A.7, δα( ) •* δQ( ) a . e . ( v )

which is the desired condition. II

4A.13 Generalizations

( i ) Assumption 4A.1(1) and the s t r i c t convexity assumption 4A.11(1)

are used in the proof of Theorem 4A.12 for only two purposes; namely, to

guarantee that

(1) δ € BQ => δ € Vn ,

and that

(2) (δy δ 2 admissible; R(θ, δ χ ) = R(θ, δ 2 ) , θ e Θ) =* δ χ = δ 2 .

I f (1) and (2) can be established separately, as is the case in some of the

applications in Section 7 to the theory of hypotheses t e s t s , then the conclusion

of Theorem 4A.12 remains val id without 4A.1(1) and 4A.11(1).

( i i ) There is not much hope for something l i k e the conclusion of

Theorem 4A.12 unless (1) and (2) are s a t i s f i e d . However, a l l the e a r l i e r

results of this appendix, through Theorem 4A.10, remain val id without the

assumptions 4A.1(1) and 4A.11(1) (or (1) and ( 2 ) ) .

( i i i ) The remaining assumption which can be relaxed without major

alterat ions in the theory is the assumption 4A.1(2) on the loss function. I f

this assumption is replaced by

(3) lim L(θ, a) = sup {L(θ, a ) : a e A}
a-κc

and

( 4 ) sup {L(θ, a ) : a e A} < «

then a l l results through Theorem 4A.10 remain val id with only a simple

modification needed in the statement and proof of Lemma 4.8 to establish that

the procedures in V are a complete class.
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( iv) I f (3) is valid but not (4) or 4A.1(2), then a peculiar

situation may arise. The results through Corollary 4A.7 remain valid, but i t is

then possible that there may exist admissible procedures having R(θ, 6) = °° for

some θ € Θ. When this peculiarity occurs the minimax theorem is not valid in

the strong form of Theorem 4A.9. (There may exist admissible minimax procedures

satisfying 4A.9(1) for which no prior exists satisfying 4A.9(2).) A weaker form

of Theorem 4A.9 i s , however, valid. Its conclusion is that there exists a

sequence of priors defined by {πv , £=1,...} and corresponding Bayes procedures

ό' £ ) such that R(θ, δ ' A ' ) + R(θ, 6 Q ) , θ £ Θ. (The most convenient proof I know

of this fact proceeds in a somewhat roundabout fashion using a device found in

Wald (1950).)

(v) Brown (1977) contains versions of Theorem 4A.3 and Proposition

4A.4 valid for some situations where i t is useful to compactify A in some

fashion other than the one point compactification, A*, used above; or where the

loss L depends on the observed x € X, as well as on Θ, A; or where the decision

rules are restricted a priori to l i e in some proper subset of V. In many of

these situations i t is possible to proceed further and also establish the

conclusion of Theorem 4A.10.

I t is also possible to derive some satisfactory results in the

(unusual) situation where A is not a Borel subset of Euclidean space, nor

imbeddable as such a subset. Such an extension involves intricacies not present

in the preceding treatment of the Euclidean case.
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Exercises

4A.2.1

Suppose A = { a Q , a - } , corresponding to a hypothesis testing

problem. (aQ = "accept", a. = "reject".) For any procedure 6 l e t

Φ(χ) == Φδ(x) = δ(ίa,|x}) denote the c r i t i c a l function of the test. Then,

6η •*• 6 in the topology on V* i f and only i f φ^ •* Φδ in the weak* topology

on L ( i . e .
00 V

(i) yiΦδ Cx) - Φδ(χ)|f(χ)v(dx) - o

f o r every f e L.. (See e . g . Lehmann ( 1 9 5 9 , Section A 4 ) . )




