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1. Introduction

This article is an exposition of the analytic proof of the finite generation
of the canonical ring for a compact complex algebraic manifold of general
type [Siu 2006, 2007, 2008]. An algebraic proof was given in [Birkan-Cascini-
Hacon-McKernan 2006].
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1.1. Main theorem. Let X be a compact complex algebraic manifold
of general type. Then the canonical ring

R (X, KX) =
∞⊕

m=1

Γ (X, mKX)

is finitely generated, where KX is the canonical line bundle of X.
In this exposition we will list and discuss the main techniques and explain

how they are put together in the proof. Of the various main techniques some
special attention is given to

(i) the technique of discrepancy subspaces and
(ii) the technique of subspaces of “minimum additional vanishing”

respectively treated in §4 and §6.
The technique of discrepancy subspaces was already discussed in detail

in [Siu 2008]. It measures the deviation from a sufficiently ample line bundle
and is used to terminate the process of possibly infinitely many blow-ups.
Here we explain its motivation from the perspective of dynamic multiplier
ideal sheaves. When multiplier ideal sheaves were first introduced by Kohn
[Kohn 1979] as measurements of failure of estimates in partial differential
equations and introduced by Nadel [Nadel 1990] as destabilizing sheaves,
their definitions are formulated from the most crucial estimates and in-
volve respectively a family of inequalities and a sequence of inequalities.
They are dynamic in contrast to the usual multiplier ideal sheaves used in
algebraic geometry which translate Nadel’s destabilizing subsheaves when
the sequence of inequalities used in the definition becomes a single one.
We detail here in §4 how the notion of discrepancy subspaces arises from
the most crucial estimates for the analytic proof of the finite generation of
the canonical ring.

The technique of subspaces of “minimum additional vanishing”, treated
in §6, is used to handle the extension of sections from the second case of the
dichotomy (see (3.2)) and has so far been discussed only with very sparse
details elsewhere.

At the end of this article there is a very brief discussion of the modifica-
tion needed for the analytic proof of the twisted case of the finite generation
of the canonical ring.

1.2. List of main techniques. Here is a list of the main techniques
used in the analytic proof of the finite generation of the canonical ring, with
numbering from (A) to (H).

(A) The metric e−ϕ = 1
Φ of minimum singularity for the canonical line

bundle KX , which is constructed from an infinite sum Φ of the m-th root
of the absolute-value-squares of the C-basis elements of Γ (X, mKX) for all
m ∈ N (see (2.5)).

(B) The application of Skoda’s theorem for ideal generation to a Zariski
open subset of X which can be regarded as a Stein domain spread over Cn
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so that the finite generation of the canonical ring is reduced to the precise
achievement of all the stable vanishing orders, which means that the infinite
sum Φ is comparable to one of its finite partial sum in the sense that each
one is bounded by a positive constant times the other (see (2.6)).

A stable vanishing order means the vanishing order of Φ across some
subvariety at some generic point and in a generic normal direction, which
more precisely means the vanishing order of Φ across some nonsingular
hypersurface at a generic point of the hypersurface when the subvariety
is blown up to give nonsingular hypersurfaces in normal crossing and Φ is
an infinite sum formed for the blown-up manifold.

(C) The unique decomposition of a closed positive (1, 1)-current on an open
subset U of Cn as the sum of a possibly infinite sum of distinct irreducible
hypersurfaces with positive real coefficients and a residue current whose
Lelong number is zero outside at most a countable union of subvarieties of
complex codimension at least two in U (see (3.2)).

There is a dichotomy into two cases. The first case is when either the
R-linear combination of distinct irreducible hypersurfaces contains an infi-
nite number of terms or the residue current is not identically zero. The
second case is when there are only a finite number of terms in the R-linear
combination of distinct irreducible hypersurfaces and the residue current is
identically zero.

(D) When some stable vanishing order is assumed to be not achievable,
the theorem of Kawamata-Viehweg-Nadel [Kawamata 1982, Viehweg 1982,
Nadel 1990] for multiplier ideal sheaves is applied to the subspace of “min-
inum additional vanishing” (after being blown up to a nonsingular hyper-
surface) to extend a section of the modified pluricanonical line bundle on
it to X (see §6). Such an extension would give the precise achievement
of the stable vanishing order. The modified pluricanonical line bundle
means the canonical line bundle minus the hypersurface times the stable
vanishing order. The section to be extended may need to be constructed
from the second case of the dichotomy in the decomposition of the mod-
ified curvature current of the canonical line bundle on the subspace of
“mininum additional vanishing” (which is now a hypersurface after the
blow-up).

This kind of subspace of “mininum additional vanishing” is the analog of
the minimum center of log canonical singularity [Kawamata 1985, Shokurov
1985] in the techniques used in the study of the Fujita conjecture [Fujita
1987] and in Shokurov’s non-vanishing theorem [Shokurov 1985]. Unlike the
situations in the Fujita conjecture and in Shokurov’s non-vanishing theorem,
in the analytic proof of the finite generation of the canonical ring there is
already the stable vanishing order and the subspace is to be defined by more
vanishing order but only minimally more.

One technique of applying the vanishing theorem of Kawamata-Viehweg-
Nadel for multiplier ideal sheaves is applied to certain subspaces S of X is
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to apply it indirectly through X. We use the vanishing of two sandwiching
cohomology groups on X in the long cohomology exact sequence from the
short exact sequence for the ideal sheaf of S to get the vanishing of coho-
mology on S. The reason is that though X is of general type, there is no
information about the canonical line bundle of the subspace S.

Some positive lower bound for the curvature current can be obtained
from the general type property of X, because a sufficiently small modification
of the construction of the metric in question would not affect its multiplier
ideal sheaf. Moreover, the canonical line bundle of the ambient space X
rather than that of the subspace S should be in the sheaf used in the coho-
mology group.

(E) The technique of constructing positively curved metrics with additional
high-order singularity on a hypersurface of the first case of the dichotomy
(see (5.5)). The construction uses the contribution from the round-up in
the computation of the multiplier ideal sheaf and uses a sufficiently ample
line bundle to guarantee a positive growth order for the dimension of the
space of sections of amply twisted multiples of the modified pluricanonical
line bundle. Here Kronecker’s theorem on diophantine approximation is
used (see (5.2)). The general type property of X is used to take care of the
ample twisting after taking a high-order roots of the sections of the amply
twisted multiples of the modified pluricanonical line bundle. These metrics
are used in extending sections on the subvariety of additional high-order
singularity to the ambient manifold X.

(F) Shokurov’s technique of comparing two results from the theorem of
Hirzebruch-Riemann-Roch, one applied to a line bundle and the other
applied to the line bundle twisted by a flat line bundle. Shokurov origi-
nally introduced his technique for the proof of his non-vanishing theorem
[Shokurov 1985].

Here it is applied to a subspace of “minimum additional vanishing” (see
(6.4)). The flat line bundle occurs, because the second case of the dichotomy
involves only the curvature current which determines the line bundle only
up to an additive flat line bundle.

(G) Kronecker’s theorem on diophantine approximation. Besides its use
in the construction of metrics in (5.2) as described in (E), it is also used
to show that the stable vanishing orders are rational, otherwise the round-
up and round-down process in the construction of multiplier ideal sheaves
would result in the decrease of some stable vanishing orders, which is not
possible.

(H) The notion of a discrepancy subspace, which measures the extent of
failure of achieving stable vanishing order with appropriately-defined uni-
formity in m for all m-canonical bundles (see (4.2)). This uniformity is
obtained by measuring the deviation from a line bundle which is ample
enough for the global generation of multiplier ideal sheaves. Its formulation
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is motivated by the original idea of defining multiplier ideal sheaves from
the crucial estimates.

Discrepancy subspaces are introduced to handle the problem of infi-
nite number of interminable blow-ups in the process of proving the precise
achievement of stable vanishing order. The termination of the infinite pro-
cess of blow-ups in the proof is essential, because the extension of section
can only be done from a subspace of “minimum additional singularity” after
we blow up the subspace.

This technique of measuring the deviation from a sufficiently ample line
bundle was already introduced in the proof of the deformational invariance
of plurigenera [Siu 1998, 2002], though it was not exactly so described in the
proof of the deformational invariance of plurigenera. The independence on
m allows also the division of the fixed sufficiently ample line bundle by m
so that its contribution is so minimized that its removal makes no difference
in the construction of the multiplier ideal sheaf.

The method of pluricanonical extension (which is obtained by this tech-
nique) used in the proof of the deformational invariance of plurigenera holds
the key to the proof, either analytic or algebraic-geometric, of the finite
generation of the canonical ring in making it possible to implement some
process on induction on the dimension by restricting a pluricanonical section
to the base-point set. Here pluricanonical extension itself is not explicitly
used. Instead the key ingredients of its proof are directly used here.

When we inductively use discrepancy subspaces of lower dimension, we
have to introduce some form of “holomorphic fibration” with fibers defined
by multiplier ideal sheaves of metrics which are defined by multi-valued
holomorphic sections vanishing to high order at a generic point of the fiber.
Multiplier ideal sheaves are used to define such a fibration because they are
defined in such a way that they are unchanged by slight perturbations of
the metrics (see (5.5.1), (5.5.2), and (5.6)).

1.3. Notations. The notations C, R, Q, and N denote respectively the
complex numbers, the real numbers, the rational numbers, and the positive
integers.

For a real number u the expression �u� means the round-down of u
which is the largest integer not exceeding u. The expression �u� means the
round-up of u which is the smallest integer not smaller than u.

The reduced structure sheaf of a complex space W is denoted by OW .
The stalk of OW at a point P of W is denoted by OW,P . The maximum
ideal of a point P of W is denoted by mW,P . The canonical line bundle of a
complex manifold Y is denoted by KY . The full ideal sheaf of a subvariety
Z in a complex manifold Y is denoted by IdZ . The canonical section of the
line bundle associated to a complex hypersurface V in a complex manifold
Y is denoted by sV (whose divisor is V ).

A multi-valued holomorphic section σ of a holomorphic line bundle E
over a complex manifold Y means that σm is a holomorphic section of mE
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over Y for some positive integer m. The statement that the vanishing order
of σ at a point P0 (respectively across a regular hypersurface Z) is q means
that the vanishing order of σm at a point P0 (respectively across a regular
hypersurface Z) is mq.

When a Q-divisor αY , with α ∈ Q and Y being an irreducible hyper-
surface, is multiplied by p ∈ N to become a holomorphic line bundle, the
integer p is automatically chosen with the property that pα is an integer
and this choice of p will not be explicitly mentioned and is understood.

2. Reduction of finite generation of canonical ring to
achievement of stable vanishing order

2.1. Definition of multiplier ideal sheaves. For a local plurisub-
harmonic function ϕ on an open subset of Cn, the multiplier ideal sheaf Iϕ

is the sheaf of germs of holomorphic functions f such that |f |2 e−ϕ is locally
integrable.

2.1.1. Remark. This is the usual definition of multiplier ideal sheaf in
algebraic geometry which is defined by a single inequality and is static, as
opposed to a dynamic multiplier ideal sheaf which is defined by a family of
inequalities.

2.2. Statement on global generation of multiplier ideal sheaves
[Siu 1998]. Let L be a holomorphic line bundle over an n-dimensional
compact complex manifold Y with a Hermitian metric which is locally of
the form e−ξ with ξ plurisubharmonic. Let Iξ be the multiplier ideal sheaf
of the Hermitian metric e−ξ. Let A be an ample holomorphic line bundle
over Y such that for every point P of Y there are a finite number of elements
of Γ(Y, A) which all vanish to order at least n + 1 at P and which do not
simultaneously vanish outside P . Then Γ(Y, Iξ ⊗ (L + A + KY )) generates
Iξ ⊗ (L + A + KY ) at every point of Y .

2.3. Skoda’s result on ideal generation [Skoda 1972]. Let Ω be a
domain spread over Cn which is Stein. Let ψ be a plurisubharmonic function
on Ω, g1, . . . , gp be holomorphic functions on Ω, α > 1, q = min (n, p − 1),
and f be a holomorphic function on Ω. Assume that∫

Ω

|f |2 e−ψ(∑p
j=1 |gj |2

)αq+1 < ∞.

Then there exist holomorphic functions h1, . . . , hp on Ω with f =
∑p

j=1 hjgj

on Ω such that∫
Ω

|hk|2 e−ψ(∑p
j=1 |gj |2

)αq ≤ α

α − 1

∫
Ω

|f |2 e−ψ(∑p
j=1 |gj |2

)αq+1

for 1 ≤ k ≤ p.
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2.3.1. Remark. Skoda’s original statement is for a Stein domain Ω in
Cn, but his proof works also for a domain spread over Cn which is Stein.
We need the setting of a domain Ω spread over Cn, which will be a Zariski
open subset of our compact complex algebraic manifold X with a finite-to-
one holomorphic map π : X → Pn and will spread over the affine part Cn of
Pn under π.

2.4. Multiplier-ideal version of skoda’s result on ideal genera-
tion. Let X be a compact complex algebraic manifold of complex dimen-
sion n, L be a holomorphic line bundle over X, and E be a holomorphic
line bundle on X with metric e−ψ such that ψ is plurisubharmonic. Let

k ≥ 1 be an integer, G1, . . . , Gp ∈ Γ(X, L), and |G|2 =
p∑

j=1
|Gj |2. Let

I = I(n+k+1) log|G|2+ψ and J = I(n+k) log|G|2+ψ. Then

Γ (X, I ⊗ ((n + k + 1)L + E + KX))

=
p∑

j=1

Gj Γ (X, J ⊗ ((n + k)L + E + KX)).

Proof. Take F ∈ Γ (X, I ⊗ ((n + k + 1)L + E + KX)). Let S be a
meromorphic section of E. Take a branched cover map π : X → Pn. Let Z0
be a hypersurface in Pn which contains the infinity hyperplane of Pn and
the branching locus of π in Pn such that Z := π−1(Z0) contains the divisor
of G1 and both the pole-set and zero-set of S . Let Ω = X −Z. Let gj = Gj

G1

(1 ≤ j ≤ p) and |g|2 =
∑p

j=1 |gj |2. Define f by

F

Gn+k+1
1 S

= fdz1 ∧ · · · ∧ dzn,

where z1, . . . , zn are the affine coordinates of Cn. Use α = n+k
n . Let ϕ =

ψ − log |S|2. It follows from F ∈ I(n+k+1) log |G|2+ψ locally that∫
X

|F |2
|G|2(n+k+1) e

−ψ < ∞,

which implies that

∫
Ω

|f |2
|g|2(n+k+1) e

−ϕ =
∫

Ω

∣∣∣∣ F
Gn+k+1

1 S

∣∣∣∣2∣∣∣ G
G1

∣∣∣2(n+k+1) e
−ϕ =

∫
Ω

|F |2
|G|2(n+k+1) e

−ψ < ∞.

By Skoda’s theorem on ideal generation (2.3) with q = n (which we assume
by adding some Fp+1 ≡ · · · ≡ Fn+1 ≡ 0 if p < n + 1) so that 2αq + 2 =
2 · n+k

n · n + 2 = 2(n + k + 1), we obtain holomorphic functions h1, . . . , hp on
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Ω such that f =
∑p

j=1 hjgj and
p∑

j=1

∫
Ω

|hj |2
|g|2(n+k) e

−ϕ < ∞.

Define
Hj = Gn+k

1 hjSdz1 ∧ · · · ∧ dzn.

Then F =
∑p

j=1 HjGj and∫
Ω

|Hj |
|G|2(n+k) e

−ψ =
∫

Ω

|hj |
|g|2(n+k) e

−ϕ < ∞.

so that Hj can be extended to an element of Γ(X, (n + k)L + E + KX).
Q.E.D.

2.5. Metric of minimum singularity and definition of precise
achievement of stable vanishing order. Let X be a compact complex
algebraic manifold of complex dimension n which is of general type. Let

Φ =
∞∑

m=1

εm

qm∑
j=1

∣∣∣s(m)
j

∣∣∣ 2
m

,

where
s
(m)
1 , . . . , s(m)

qm
∈ Γ (X, mKX)

form a basis over C and εm > 0 approaches 0 so fast as m → ∞ that
locally the infinite series which defines Φ converges uniformly. The metric
defined by 1

Φ for KX is called a metric of minimum singularity, which we
also sometimes denote by e−ϕ.

For N ∈ N the function

ΦN =
N∑

m=1

εm

qm∑
j=1

∣∣∣s(m)
j

∣∣∣ 2
m

is called the N -th truncation of Φ. For a hypersurface Y in X and a regular
point P0 of Y the stable vanishing order across Y is at P0 the infiumum of

the vanishing order of the local multi-valued holomorphic function
(
s
(m)
j

) 1
m

across Y at P0 for all m ∈ N and 1 ≤ j ≤ qm. The generic stable vanishing
order across Y is the stable vanishing order across Y at a generic point
P0 of Y .

Let V be a subvariety of X and P0 be a regular point of V . We say
that the stable vanishing order is achieved across V at P0 if there exist some
positive number CV and some mP0 ∈ N such that Φ ≤ CV ΦmP0

on UP0 for
some open neighborhood UP0 of P0 in X. We say that the generic stable
vanishing order is achieved across V if the stable vanishing order is achieved
across V at some point P0 of V . We say that all the stable vanishing orders
are precisely achieved if there exists some m0 ∈ N such that Φ ≤ CΦm0 on
X for some positive constant C.
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2.5.1. Rationality of stable vanishing orders. In many steps of the
analytic proof of the finite generation of the canonical ring the rational-
ity of every stable vanishing order needs to be verified so that the R-divisor
αY can be regarded as a Q-line bundle when α is the generic stable vanishing
order across a hypersurface Y . Such a verification of the rationality of every
generic stable vanishing order α comes from the fact that the arguments in
the analytic proof of the finite generation of the canonical ring will lead to
a multi-valued holomorphic section giving a smaller generic vanishing order
across Y than α if α is irrational. In this article we will not put in the
verification for the rationality of the stable vanishing orders and will assume
that all the stable vanishing orders occurring in the arguments presented in
this article to be rational.

2.6. Finite generation of canonical ring from achievement of
stable vanishing order. Suppose all the stable vanishing orders are
achieved at every point of X by the m0-th truncation Φm0 of Φ for some
m0 ∈ N so that Φ ≤ CΦm0 for some constant C. Denote (m0)! by m1. Then
the canonical ring

∞⊕
m=1

Γ (X, mKX)

is generated by
(n+2)m1⊕

m=1

Γ (X, mKX)

and hence is finitely generated by the finite set of elements{
s
(m)
j

}
1≤m≤(n+2)m1, 1≤j≤qm

.

Proof. Since m1 = (m0)! is divisible by ν and
(
s
(ν)
j

)m1
ν ∈ Γ (X, m1KX)

for 1 ≤ ν ≤ m0, it follows that⎛⎝ m0∑
ν=1

qν∑
j=1

∣∣∣s(ν)
j

∣∣∣ 2
ν

⎞⎠m1

≤ C1

qm1∑
j=1

∣∣∣s(m1)
j

∣∣∣2
for some constant C1 and

(Φm0)
m1 ≤ C2

qm1∑
j=1

∣∣∣s(m1)
j

∣∣∣2
for some constant C2. Let e−ϕ = 1

Φ . For m > (n + 2)m1 and any s ∈
Γ (X, mKX) we have ∫

X

|s|2 e−(m−(n+2)m1−1)ϕ(∑qm1
j=1

∣∣∣s(m1)
j

∣∣∣2)n+2 < ∞,
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because |s|2 ≤ C3Φm on X for some constant C3 and Φ ≤ CΦm0 . By Skoda’s
theorem on ideal generation ((2.3) and (2.4)) there exist

h1, . . . , hqm1
∈ Γ (X, (m − m1) KX).

such that s =
∑qm1

j=1 hjs
(m1)
j . If m−(n + 2) m1 is still greater than (n + 2) m1,

we can apply the argument to each hj instead of s until we get

s ∈ Γ (X, (m − 
m1) KX)
(
Γ (X, m1KX)�

)
,

where 
 is the smallest integer such that m − 
m1 < (n + 2)m1. Thus s is
generated by {

s
(m)
j

}
1≤m≤(n+2)m1, 1≤j≤qm

.

Q.E.D.

3. Decomposition of closed positive (1, 1)-currents and their
modified restrictions to hypersurfaces

3.1. Lelong numbers of closed positive (1, 1)-current. For a
closed positive (1, 1)-current Θ on some open subset G of Cn, the Lelong
number of Θ at a point P0 of G is the limit of∫

Bn(P0,r) trace Θ

Vol (Bn−1(0, r))

as r → 0, where Bm (Q, r) is the open ball in Cm of radius r centered at Q
and Vol (Bm (Q, r)) is its volume and trace Θ is

Θ ∧ 1
(n − 1)!

⎛⎝ n∑
j=1

√
−1
2

dzj ∧ d zj

⎞⎠n−1

with z1, . . . , zn being the coordinates of Cn. For c > 0 the set Ec = Ec (Θ)
consisting of all points of G where the Lelong number of Θ is ≥c is a complex-
analytic subset of G and is called a Lelong set of Θ (see, for example, [Lelong
1968, Siu 1974]).

For a complex hypersurface Y in G, integration over the regular points
of Y defines a closed positive (1, 1)-current on G, which we denote by [Y ] or
simply by Y . The Lelong number of [Y ] at a point P0 of Y is the multiplicity
of Y at P0.

3.2. Canonical decomposition of closed positive (1, 1)-current.
Let Θ be a closed positive (1, 1)-current on a complex manifold X. Then Θ
admits a unique decomposition of the following form

Θ =
J∑

j=1

γj [Vj ] + R,
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where γj > 0, J ∈ N ∪ {0, ∞}, Vj is a complex hypersurface in X and
the Lelong number of the remainder R is zero outside a countable union of
subvarieties of codimension ≥2 in X [Siu 1974]. We consider the dichotomy
into two cases. The first case is either R �= 0 or J = ∞. The second case is
when both R = 0 and J is finite.

3.3. Modifications of restrictions of closed positive (1, 1)-
currents to hypersurfaces. Let X be a compact complex algebraic man-
ifold of general type and let e−ϕ = 1

Φ be the metric of minimum singularity
as defined in (2.5). Let

Θϕ =
√

−1
2π

∂∂̄ϕ

be the curvature current of the metric e−ϕ of KX . Let Y be a nonsingular
hypersurface in X. Let γ be the generic stable vanishing order across Y ,
which is equal to Lelong number of Θϕ at a generic point of Y .

We are going to define the restriction to Y of the closed positive (1, 1)-
current Θ − γ [Y ]. We call such a restriction to Y the modified restriction
of Θ to Y , because we are restricting Θ after we modify it by subtracting
γ [Y ] from it. For k ∈ N let γk be the infimum of the vanishing order of

the multi-valued section
(
s
(m)
j

) 1
m across Y for 1 ≤ m ≤ k and 1 ≤ j ≤ qm.

Consider the metric
1

∑k
m=1 εm

∑qm

j=1

∣∣∣∣∣∣∣
(
s
(m)
j

) 1
m

sγk
Y

∣∣∣∣∣∣∣
2

of the Q-line bundle (L − γkY )|Y on Y and its curvature current

Θk =
√

−1
2π

∂∂̄ log
k∑

m=1

εm

qm∑
j=1

∣∣∣∣∣∣∣
(
s
(m)
j

) 1
m

sγk
Y

∣∣∣∣∣∣∣
2

which is a closed positive (1, 1)-current on Y . We know that the sequence
γk is non-increasing and its limit is γ as k → ∞ so that the Q-line bun-
dle (L − γkY )|Y on Y approaches the Q-line bundle (L − γY )|Y on Y as
k → ∞. The restriction of the closed positive (1, 1)-current Θ − γ [Y ] to Y
can be defined as the (weak) limit of Θk (or its subsequence) as k → ∞.

We do not consider using the metric

1

∑∞
m=1 εm

∑qm

j=1

∣∣∣∣∣∣∣
(
s
(m)
j

) 1
m

sγ
Y

∣∣∣∣∣∣∣
2
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of the Q-line bundle (L − γY ) |Y and then using its curvature current as the
restriction of the closed positive (1, 1)-current Θ − γ [Y ] to Y , because the
vanishing order of s

(m)
j across Y may be strictly higher than mγ for each

m ∈ N and each 1 ≤ j ≤ qm so that the multi-valued fraction(
s
(m)
j

) 1
m

sγ
Y

may still be identically zero on Y for each m ∈ N and each 1 ≤ j ≤ qm and
the sum

∞∑
m=1

εm

qm∑
j=1

∣∣∣∣∣∣∣
(
s
(m)
j

) 1
m

sγ
Y

∣∣∣∣∣∣∣
2

may be identically zero on Y , making it impossible to use such a definition.
The nonsingular hypersurface Y in X is said to belong to the first case

of the dichotomy (respectively the second case of the dichotomy) when the
closed positive (1, 1)-current Θ − γ [Y ] on Y belongs to the first case of the
dichotomy (respectively the second case of the dichotomy).

3.3.1. Remark. When Θ − γ [Y ] is in the second case of the dichotomy
in the sense of (3.2), if σ is a nonzero element of Γ (X, mKX) whose generic
vanishing order across Y is mγ, then for any other nonzero element σ̂ of
Γ (X, m̂KX) whose generic vanishing order across Y is m̂ γ the quotient σm̂

σ̂m

has to be equal to a nonzero constant on Y . However, in general it does
not mean that the line bundle KX − γY over Y is flat. The limitation is
only on elements of Γ (Y, m (KX − γY )) which are extendible to elements of
Γ (X, m (KX − γY )).

4. Discrepancy subspaces

4.1. Motivation for the definition of discrepancy subspaces. As
explained in Item (H) in the Introduction, we seek to describe the deviation
of mKX from a prescribed sufficiently ample line bundle A so that the
deviation is formulated to be independent of m. This is essential to terminate
the infinite number of blow-ups in the process of proving that all the stable
vanishing orders are precisely achieved. The final goal is, of course, to show
that Φm is comparable to Φ for some m ∈ N. We would like to measure the
failure of the comparability between Φm and Φ in a way which is independent
of m. The deviation, uniform in m, for mKX from A is just an intermediate
step to achieve the final goal of measuring the failure of the comparability
between Φm and Φ in a way which is independent of m. A discrepancy
subspace is to precisely formulate this measurement of uniform failure of
comparability.

In order to know why the definition which we are going to describe is
to be formulated in the way given here, we have to go back to §2 where it
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is explained how the analytic proof of the finite generation of the canonical
ring is reduced to the precise achievement of all stable vanishing orders.
For the purpose of invoking Skoda’s theorem on ideal generation to show
that s

(m)
j is expressible in terms of s

(m0)
1 , . . . , s

(m0)
qm for m ≥ (n + 2)m0 with

coefficients in Γ (X, (m − m0) KX), we would like to have

(4.1.1)
∫

X

∣∣∣s(m)
j

∣∣∣2(∑qm0
j=1

∣∣∣s(m0)
j

∣∣∣2)n+2

Φm−m0(n+2)

< ∞.

The original philosophy of the use of multiplier ideal sheaves, both from
Kohn’s perspective of partial differential equations [Kohn 1979] and from
Nadel’s perspective of instability [Nadel 1990], is to introduce multipliers
into the most crucial estimates when such estimates fail to hold (see the
Appendix at the end of this article). Here the crucial estimate is (4.1.1).
In case it fails to hold, we introduce a multiplier f , which is a holomorphic
function germ, such that

(4.1.2) |f |2
∣∣∣s(m)

j

∣∣∣2(∑qm0
j=1

∣∣∣s(m0)
j

∣∣∣2)n+2

Φm−m0(n+2)

is locally integrable for all m ≥ (n + 2)m0 or for all m ≥ m̂ for some m̂
independent of m. Since ∣∣∣s(m)

j

∣∣∣2 ≤ 1
(εm)m Φm,

for the integrability of (4.1.2) it suffices to assume that

(4.1.3)m0 |f |2 Φm0(n+2) ≤ Cm0

⎛⎝qm0∑
j=1

∣∣∣s(m0)
j

∣∣∣2
⎞⎠n+2

for some constant Cm0 . Here we switch from integrability in terms of the L2

norm to the supremum norm, because the supremum norm is easier to keep
track of when we blow up. For the L2 norm every time we blow up we have
to worry about the contribution from the Jacobian determinants. It simply
makes things a bit more complicated. See Remark (4.2.3).

We do not know beforehand which m0 is able to give finite generation.
Our goal is to increase the ideal formed by the multipliers f until it becomes
the unit ideal and the method is to increase the m0 used. Thus we need
to have a multiplier f which works for all m0 sufficiently large. In other
words, we should consider multipliers f such that (4.1.3)m0 holds for all
m0 sufficiently large. The power of n + 2 on both sides of (4.1.3)m0 can
be removed at the expense of using the normalization of raising the multi-
plier ideal sheaves to the (n + 2)-th power at the end. Note that this kind



190 Y.-T. SIU

of multiplier ideal sheaves is dynamic, because a sequence of inequalities is
used in the definition instead of just one single inequality. As remarked in
the Introduction this is more in keeping with the original notions of multi-
plier ideal sheaves of Kohn and Nadel and is different from the static kind
which is usually used in algebraic geometry and which is defined by a single
inequality.

The above discussion motivates us to introduce a coherent ideal sheaf J
on X such that the inequality

(4.1.4) |sJ |2 Φm ≤ C̃m,J

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2
holds on X for some constant C̃m,J , where the notation |sJ |2 means the fol-
lowing. For a coherent ideal sheaf I on X generated locally by holomorphic
function germs τ1, . . . , τ�, we define

|sI |2 =
�∑

j=1

|τj |2.

Now the positive constants ε� used in the definition of

Φ =
∞∑

�=1

ε�

q�∑
j=1

∣∣∣s(�)
j

∣∣∣ 2
�

are quite arbitrarily chosen as long as the sequence which they form decrease
sufficiently rapidly to guarantee the convergence of the infinite series. In the
inequality (4.1.4) we could allow the set of positive constants {ε�} for Φ on
the left-hand side to depend on m so that {ε�} is replaced by {εm,�}. In
other words, instead of (4.1.4) we use the inequality

(4.1.5) |sJ |2
(
Φ̌m

)m ≤ C̃m,J

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2,
where

Φ̌m =
∞∑

�=1

ε�,m

q�∑
j=1

∣∣∣s(�)
j

∣∣∣ 2
�

for some positive constants ε�,m. We now incorporate the constants ε�,m and
C̃m,J together to give the following definition of a discrepancy subspace.

4.2. Definition of discrepancy subspace. Let J be a coherent ideal
sheaf on X. The stable vanishing order of the canonical line bundle of X
is said to be precisely achieved modulo the subspace of X defined by J if
there exist some positive integer mJ and some positive constant Cm,k,J for
k, m ∈ N with m ≥ mJ such that the inequality

(4.2.1) |sJ |2
qk∑

j=1

∣∣∣s(k)
j

∣∣∣ 2m
k ≤ Cm,k,J

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2
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holds on X for all k, m ∈ N with m ≥ mJ . Let Z be the zero-set of the
coherent ideal sheaf J . We call the ringed space (Z,OX /J ) a discrepancy
subspace. We call the coherent ideal sheaf J a discrepancy ideal sheaf.

4.2.1. Remark. An intuitive way of describing the discrepancy subspace
is that it gives an m-independent bound for the difference between any stable
vanishing order defined by multi-valued global sections of the m-canonical
line bundle and the vanishing order actually achieved by global single-valued
m-canonical sections, as described by the sum of absolute-value-squares of
local generators of the ideal sheaves.

4.2.2. Remark. In a blow-up X̃ → X of X, the rôle played by the ad-
junction formula is canceled by its effect on both sides of (4.2.1) and |sJ |2
simply transforms as a lifting of a local function from X to X̃. This enables
us to assume that, after replacing X by its blowup, J is the ideal sheaf of
a divisor whose components are in normal crossing. With the blow-up, we
can use the technique of the minimum center of log canonical singularity
[Kawamata 1985, Shokurov 1985] or its analogue in our case.

4.2.3. Remark. A consequence of the inequality (4.2.1) which defines the
discrepancy subspace is that

J Im log Φ ⊂ I
log

∑m
j=1

∣∣∣s(m)
j

∣∣∣
2 ,

which means that the conductor J from the ideal sheaf Im log Φ to the ideal
sheaf I

log
∑m

j=1

∣∣∣s(m)
j

∣∣∣
2 is independent of m.

4.2.4. Remark. From (4.2.1) it follows that after replacing X an appro-
priate blow-up whose base-point set is a union of nonsingular hypersurfaces
in normal crossing, the discrepancy ideal sheaf J can be replaced by the
multiplier ideal sheaf of the metric

e−ψJ =
∏�

ν=1 |sYν |2pαν∑k
j=1 |σj |2

of p
(
KX −

∑�
ν=1 ανYν

)
for some sufficiently large p ∈ N, where {Yν}k

ν=1 is
the set of all hypersurfaces of the base-point set not contained in the zero-set
of J and αν is the generic stable vanishing order across Yν and σ1, . . . , σk

are some multi-valued holomorphic sections of pKX .

4.3. Intersection of discrepancy subspaces. The definition of dis-
crepancy subspaces given in (4.2) allows us to take the intersection of two
discrepancy subspaces in order to decrease a discrepancy subspace all the
way down to the empty set. Suppose we have two discrepancy subspaces
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defined by discrepancy ideal sheaves J and J̃ so that

|sJ |2
qk∑

j=1

∣∣∣s(k)
j

∣∣∣ 2m
k ≤ Cm,k,J

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2
on X for all k, m ∈ N with m ≥ mJ and∣∣sJ̃

∣∣2 qk∑
j=1

∣∣∣s(k)
j

∣∣∣ 2m
k ≤ Cm,k,J̃

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2
on X for all k, m ∈ N with m ≥ mJ̃ . Then we can define their intersection
discrepancy subspace with discrepancy ideal sheaf K by setting K as the
sum of J and J̃ , mK as the maximum of mJ and mJ̃ , and Cm,k,K as the
sum of Cm,k,J and Cm,k,J̃ so that

|sK|2
qk∑

j=1

∣∣∣s(k)
j

∣∣∣ 2m
k ≤ Cm,k,K

qm∑
j=1

∣∣∣s(m)
j

∣∣∣2
on X for all k, m ∈ N with m ≥ mK.

4.3.1. Remark. If we do not use the definition of discrepancy subspaces
given in (4.2) and choose, instead, to define a discrepancy subspace Jm0 for
a fixed m0-canonical line bundle by

(4.3.1.1)
∣∣sJm0

∣∣2 qk∑
j=1

∣∣∣s(k)
j

∣∣∣ 2m0
k ≤ Ck,Jm0

qm0∑
j=1

∣∣∣s(m0)
j

∣∣∣2
on X for all k ∈ N with k ≥ κm0,Jm0

, motivated by (4.1.3)m0 , then when for
m̃0 = pm0 with an integer p > 1 there is another discrepancy subspace J̃m̃0

for a fixed m̃0-canonical line bundle defined by∣∣∣sJ̃m̃0

∣∣∣2 qk∑
j=1

∣∣∣s(k)
j

∣∣∣ 2m̃0
k ≤ C̃k,J̃m̃0

qm̃0∑
j=1

∣∣∣s(m̃0)
j

∣∣∣2
on X for all k ∈ N with k ≥ κ̃m̃0,J̃m̃0

, we can only get the inequality(∣∣sJm0

∣∣2p +
∣∣∣sJ̃m̃0

∣∣∣2) qk∑
j=1

∣∣∣s(k)
j

∣∣∣ 2m
k ≤ Ĉk,J̃m̃0

qm̃0∑
j=1

∣∣∣s(m̃0)
j

∣∣∣2
on X for all k ∈ N with k ≥ max

(
κm0,Jm0

, κ̃m̃0,J̃m̃0

)
. With this kind of

definition for only a fixed pluricanonical line bundle, we can only replace
Jm0 by the smaller ideal sheaf (Jm0)

p + J̃m̃0 instead of by the ideal sheaf
Jm0 + J̃m̃0 as in (4.3). Only by replacing Jm0 by Jm0 + J̃m̃0 can we decrease
the discrepancy subspace to the empty set.

In contrast to the definition given in (4.2) this definition for only a fixed
pluricanonical line bundle given by (4.3.1.1) involves only one inequality
when Φm0 with another sequence of rapidly decreasing positive coefficients
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{εm}m∈N
and is static, whereas the definition given in (4.2) even when it is

expressed in terms of powers of Φ involves a sequence of inequalities and is
dynamic.

To prepare for the construction of discrepancy subspaces we need the
following lemma from the round-up and round-down properties of the usual
multiplier ideal sheaves in algebraic geometry.

4.4. Lemma on sup norm domination of metric by generators
of multiplier ideal. Let fj be holomorphic functions on some open neigh-
borhood U of the origin in Cn. Let εj > 0 and mj ∈ N so that

Ψ =
∞∑

j=1

εj |fj |
2

mj

converges uniformly on compact subsets of U . Let J be the multiplier
ideal sheaf of the metric 1

Ψ and g1, . . . , g� be holomorphic function germs
on Cn at the origin such that the stalk of J at the origin is generated by
g1, . . . , g� over OCn,0. Then there exists an open neighborhood W of the ori-
gin in Cn where g1, . . . , g� are defined and there exists a positive constant Cj

such that

|fj |
2

mj ≤ Cj

�∑
k=1

|gk|2

on W .

4.4.1. Remark. The geometric reason for this lemma is that the min-
imum of the orders of the zeros of the generators of a multiplier ideal J
should be no more than the order of the pole of the metric 1

Ψ . A proof, for
example, is given in [Proposition 3.1, Demailly 1992].

4.5. Construction of initial codimension-one discrepancy sub-
space. As the first step we now construct the initial codimension-one dis-
crepancy subspace by using the technique of the global generation of the mul-
tiplier ideal sheaf (2.2) and the decomposition of KX as a sum of an ample
Q-line bundle and an effective Q-divisor from the general type property of X.

Let A be an ample line bundle on X which is ample enough for the global
generation of multiplier ideal sheaves, as described in (2.2). We write aKX =
A + D, where D is an effective divisor in X and a is a positive integer. We
use the metric

1
Φm |sD|2

for the line bundle

mKX + D = (m + a) KX − A.

Let I(m) be the multiplier ideal sheaf of the metric
1

Φm |sD|2
.
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Then the multiplier ideal sheaf I(m) is generated by elements of

Γ
(
X, I(m) (mKX + D + A + KX)

)
= Γ

(
X, I(m) ((m + a + 1) KX)

)
⊂ Γ (X, (m + a + 1) KX).

From Lemma (4.4) on the sup norm domination of a metric by the generators
of its multiplier ideal we conclude that

∣∣∣s(k)
j

∣∣∣ 2m
k |sD|2 ≤ Ck,j,m

qm+a+1∑
j=1

∣∣∣s(m+a+1)
j

∣∣∣2
for k ∈ N, which implies

∣∣∣s(k)
j

∣∣∣ 2(m+a+1)
k |sD|2 ≤ C̃k,j,m

qm+a+1∑
j=1

∣∣∣s(m+a+1)
j

∣∣∣2
for k ∈ N, because each s

(k)
j is a local holomorphic function, where Ck,j,m

and C̃k,j,m are constants. This shows that we can choose J to be the ideal
sheaf generated by sD and choose mJ as a + 2.

4.5.1. Remark on key points in construction of discrepancy subspace.
The three key points of the construction of the initial discrepancy subspace
of codimension one in (4.5) are the following.

(i) Kodaira’s trick of squeezing out some ample-line-bundle part of
KX by writing KX = A + D for some effective Q-divisor D and
some ample Q-line bundle A, because of the growth order of the
dimension of the space of all global holomorphic sections of mKX

as a function of m so that we can find some nontrivial global
m-canonical section vanishing on the divisor of an ample line bun-
dle. This is a matter of the growth order of the dimension of the
space of global holomorphic m-canonical sections.

(ii) The use of a high enough multiple of the sqeezed-out ample line
bundle A to globally generate any multiplier ideal sheaf (with the
multiple independent of the multiplier ideal sheaf).

(iii) The relation between the local supremum norm and the local L2

norm used in defining multiplier ideal sheaves converts the global
generation of multiplier ideal sheaves with a fixed sufficiently
ample twisting into the inequalities in the definition of discrepancy
subspaces.

This argument of the above three points can be applied also to the case
of a fibration when the holomorphic sections on the fibration are constant
along generic fibers and the ample line bundle is only on the base of the
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fibration and the restrictions of the multiplier ideal sheaves to generic fibers
are already known to be globally generated without any ample twisting.

Such a fibration is needed, because in order to decrease the discrepancy
subspace we have to replace X by the discrepancy subspace in our argument
and the discrepancy subspace in general is not of general type, but can be
described by a fibration whose generic fibers belong to the second case of
the dichotomy.

4.6. Decreasing discrepancy subspace by applying the argu-
ment of constructing initial codimension-one discrepancy subspace
to fibrations. In order to decrease the initial codimension-one discre-
pancy subspace constructed in (4.5) we have to apply the argument of (4.5)
to a fibration on the initial codimension-one discrepancy subspace
(D, OX /J ) as briefly indicated at the end of (4.5.1). Since the tech-
niques require the extension of sections for the two cases of the dichotomy,
before we can decrease the discrepancy subspace we have to first explain the
extension techniques of sections for the two cases of the dichotomy.

5. Construction of pluricanonical sections with fixed
sufficiently ample twisting

5.1. For a compact complex algebraic manifold X of general type, we
consider a nonsingular hypersurface Y in X whose generic stable vanishing
order is γ. Our goal is to show that the generic stable vanishing order across
Y is actually achieved by some global m-canonical section s ∈ Γ (X, mKX)
of X in the sense that the vanishing order of s across Y at some generic
point of Y is precisely mα.

In this §5 we will not be able to produce right away such an s ∈
Γ (X, mKX). We will assume that Y belongs to the first case of the
dichotomy. At any prescribed point P0 of X we will produce for an appro-
priately large p̂ ∈ N a strictly positively curved metric 1

ΦY,P0,ε,N
of p̂KX on

X defined by a finite sum ΦY,P0,ε,N of absolute-value-squares of multi-valued
holomorphic sections of p̂KX over X which has high prescribed vanishing
order N at P0 and yet has a vanishing order γ across Y at a generic point
of Y as close to the best expected value 2p̂α as any prescribed small error
< ε (see (5.5) below).

The prescribed small error comes from using the general type property
of X to fulfill the requirement of the strict positivity of the curvature current
of the metric 1

ΦY,P0,ε,N
and to take care of some ample line bundle A of X

used in an intermediate step to construct multi-valued holomorphic sections
of p (X − αY ) + A over Y .

This metric 1
ΦY,P0,ε,N

enables us to reduce the problem to producing a

section on the subvariety Y1 of Y where the vanishing order of ΦY,P0,ε,N

|sY |2γ is
high. This kind of reduction is one of the techniques commonly used in the
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proof of non-vanishing theorems and in the study of problems related to the
Fujita conjecture [Shokurov 1985, Kawamata 1985, Fujita 1987].

The reason why we cannot produce right away the element s ∈ Γ
(X, mKX) just described is that eventually the process of replacing Y by
Y1 when continued will lead to the second case of the dichotomy if α > 0,
otherwise the definition of the generic stable vanishing order γ will be con-
tradicted (see (5.5.2) below for more details). So the construction of the
metric 1

ΦY,P0,ε,N
is the best we can do when we consider only the first case of

the dichotomy. This technique of the construction and the use of such a kind
of metric constructed from the first case of dichotomy will also be applied
to a generic fiber in a fibration which arises in decreasing the discrepancy
subspace as mentioned in (4.6).

When eventually the second case of the dichotomy occurs, it will be han-
dled in §6 by using the section given by the decomposition of the modified re-
striction of the curvature current and the technique of Shokurov of using the
theorem of Hirzebruch-Riemann-Roch to compare the arithmetic genus of
the line bundle and that of its twisting by a flat line bundle [Shokurov 1985].

5.2. Proposition (sections of amply twisted multiple of line
bundle). Let Y be a compact complex algebraic manifold of complex
dimension n. Let A be a very ample holomorphic line bundle on Y with
A − KY also very ample. Let L be a holomorphic line bundle on Y with
metric e−ϕ whose curvature current Θ is a closed positive (1, 1)-current in
the first case of the dichotomy in the sense of (3.2), i.e., in the decomposition

Θ =
J∑

j=1

γj [Vj ] + R,

with γj > 0, J ∈ N ∪ {0, ∞}, Vj being a complex hypersurface and the
Lelong number of the remainder R being zero outside a countable union of
subvarieties of codimension ≥ 2 in Y , either R �= 0 or J = ∞. Then there
exists some sequence {pν}ν∈N

of positive integers such that

lim
ν→∞

dimC Γ (Y, Ipνϕ (pνL + nA)) = ∞.

Proof. Let p be a positive integer. Take P0 ∈ Y and we will also im-
pose more conditions on P0 later. Let s1 be a generic element of Γ (Y, A)
vanishing at P0 so that the sequence

0 → Ipϕ (pL + A)
θs1−→ Ipϕ (pL + 2A)

−→ (Ipϕ /s1Ipϕ ) (pL + 2A) → 0

is exact, where θs1 is defined by multiplication by s1. For this step we have
to make sure that the maximum ideal mY,P0 of Y at P0 is not an associated
prime ideal in the primary decomposition of the stalk of the ideal sheaf Ipϕ
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at P0. This means that for each p we have to impose the condition that P0
does not belong to some finite subset Z0 of Y . Let Y1 be the zero-set of s1 and

OY1 = (OY /s1OY ) |Y1 ,

which we can assume to be regular with ideal sheaf equal to s1OY because
s1 is generic element of Γ (Y, A) vanishing at P0. By choosing s1 generically
we can also assume that I(pϕ|Y1)

= Ipϕ /s1Ipϕ . We use χ (·, ·) to denote the
arithmetic genus which means

χ (·, ·) =
∞∑

ν=0

(−1)ν dimC Hν (·, ·).

From the long cohomology exact sequence of the above short exact sequence
we obtain

χ (Y, Ipϕ (pL + 2A)) = χ (Y, Ipϕ (pL + A))

+ χ
(
Y1, I(pϕ|Y1)

(pL + 2A) |Y1

)
.

Since A−KY is ample and 2A−KY1 = A−KY is also ample, by the theorem
of Kawamata-Viehweg-Nadel

Hν (Y, Ipϕ (pL + kA)) = 0 for ν ≥ 1 and k = 1, 2,

Hν
(
Y1, I(pϕ|Y1)

((pL + 2A) |Y1)
)

= 0 for ν ≥ 1.

so that

Γ (Y, Ipϕ (pL + 2A)) = Γ (Y, Ipϕ (pL + A))

+ Γ
(
Y1, I(pϕ|Y1)

((pL + 2) A) |Y1

)
5.2.1. Slicing by ample divisors down to a curve. Instead of one single

generic element s ∈ Γ (Y, A), we can choose generically

s1, . . . , sn−1 ∈ Γ (Y, A)

all vanishing at P0 so that inductively for 1 ≤ ν ≤ n−1 the common zero-set
Yν of s1, . . . , sν with the structure sheaf

OYν :=

⎛⎝OY

/
ν∑

j=1

sjOY

⎞⎠∣∣∣∣∣∣
Yν

is regular of complex codimension ν in Y and we end up with the inequality

dimC Γ (Y, Ipϕ (pL + nA))

≥ dimC Γ
(
Yn−1, I(pϕ|Yn−1)

(
(pL + nA) |Yn−1

))
.

For this step we have to exclude P0 from a subvariety Zn−2 of dimension
≤n− 2 in Y , because we have to exclude a finite set in each Y1 which would
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come together as the hypersurface Y1 varies to form a subvariety Z1 of
dimension ≤1 in Y (as one can argue with the quotients of coherent ideal
sheaves by non zero-divisors and with the primary decompositions for cohe-
rent ideal sheaves). Likewise we have a subvariety Zk of dimension ≤ k in
Y so that Zk intersects Yk in a finite number of points and finally we have
end up with a subvariety Zn−2 of dimension ≤ n − 2 in Y which intersects
Yn−2 in a finite number of points and we impose the condition that P0 does
not belong to Zn−2.

Since Yn−1 is a curve, all coherent ideal sheaves on it are principal and
are locally free and they come from holomorphic line bundles. We can choose
s1, . . . , sn−1 so generically that Yn−1 is disjoint from Zn−2. For this step we
need to make sure that P0 does not belong to Zn−2.

5.2.2. Application of the theorem of Riemann-Roch to a curve and com-
paring contributions from the curvature current and the multiplier ideal
sheaf. Let c be the nonnegative number∫

Yn−1

R =
∫

Y
R ∧ (ωA)n−1,

where ωA is the curvature form of some smooth positively curved metric of
the ample line bundle A. Then

dimC Γ (Y, Ipϕ (pL + nA)) ≥ dimC Γ
(
Yn−1, I(pϕ|Yn−1)

(
(pL + nA) |Yn−1

))
≥ 1 − genus (Yn−1) + nA · Yn−1

+
J∑

j=1

(pτj − �pτj�) Vj · An−1 + p

∫
Yn−1

R,(5.2.2.1)

where the last identity is from the theorem of Riemann-Roch applied to the
regular curve Yn−1 and the locally free sheaf

(5.2.2.2) I(pϕ|Yn−1)
(
(pL + nA) |Yn−1

)
on Yn−1. Note that, though for each p, there is a line bundle Ep on Yn−1 as-
sociated to the locally free sheaf (5.2.2.2) the line bundle Ep in general is not
the p-th tensor power of some fixed line bundle E independent of p even just
for p sufficiently large or an infinite sequence of distinct positive integers p.

When R is not identically zero, the nonnegative number c is strictly
positive and we conclude from (5.2.2.1) that

dimC Γ (Y, Ipϕ (pL + nA)) ≥ 1 − genus (Yn−1) + nA · Yn−1 + pc

goes to ∞ as p → ∞.
Now assume the other case where R = 0 and J = ∞. By using argu-

ments of diophantine approximation as explained below, we conclude that
there exists some sequence {pν}ν∈N

of positive integers such that

(5.2.2.3)
J∑

j=1

(pντj − �pντj�) → ∞ as ν → ∞.
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From (5.2.2.1) it follows that

lim
ν→∞

dimC Γ (Y, Ipνϕ (pνL + nA)) = ∞.

This ends the proof of Proposition (5.2) after we explain the derivation of
(5.2.2.3), which we now do. When all γj are rational, the statement (5.2.2.3)
follows from the convergence of

∑J
j=1 γj and a simple comparison test for

divergence or convergence of a series of positive terms. When at least one of
γj is irrational, the statement (5.2.2.1) follows from the Corollary (5.2.2.4)
to Kronecker’s diophantine approximation which is a consequence of Kro-
necker’s theorem listed below as (5.2.2.3) and given as Theorem 444 on
p. 382 of [Hardy-Wright 1960]. A derivation of Corollary (5.2.2.4) from
Kronecker’s diophantine approximation (5.2.2.3) can be found, for example,
in [Siu 2006, §5].

5.2.3. Theorem (Kronecker). Let a1, . . . , aN be Q-linearly independent
real numbers. Let b1, . . . , bN ∈ R. Let ε, T be positive numbers. Then we
can find t > T and integers x1, . . . , xN such that |taj − bj − xj | ≤ ε for
1 ≤ j ≤ N .

5.2.4. Corollary to Kronecker’s Diophantine Approximation. Let γj (1 ≤
j < ∞) be a sequence of positive numbers and Λ be a positive integer such
that 1, γ1, . . . , γΛ are Q-linearly independent and

γj =
Λ∑

λ=1

cj,λγλ

for Λ < j < ∞, where cj,k ∈ Q. For any positive integer N there exists some
positive integer m such that

mγj − �mγj� ≥ 1
4

for 1 ≤ j ≤ N.

5.3. Remark. One important point about Proposition (5.2) is that the
space Γ (Y, Ipνϕ (pνL + nA)) is used instead of the space Γ (Y, pνL + nA).
For the application of Proposition (5.2) in the analytic proof of the finite
generation of the canonical ring, the complex manifold Y will be a nonsin-
gular hypersurface of the compact complex algebraic manifold X of general
type. The conclusion about the dimension of Γ (Y, Ipνϕ (pνL + nA)) is used
in producing nonzero elements of Γ (Y, Ipνϕ (pνL + nA)) whose extensions
to X can be chosen to vanish to high order at a prescribed point of Y .
The high-order roots of the absolute-value-squares of such extensions are
used to construct metrics for KX with nonnegative curvature current and
extra singularities at a prescribed point of Y but no more than the singu-
larities of the metric of minimum singularities at a generic point of Y plus a
small prescribed error. Such metrics hold the key to the proof of the precise
achievement of the stable vanishing order across Y . Only when we use the
space Γ (Y, Ipνϕ (pνL + nA)) instead of the space Γ (Y, pνL + nA), can we
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achieve the purpose of extending elements of Γ (Y, Ipνϕ (pνL + nA)) to all of
X by using the vanishing theorem of Kawamata-Viehweg-Nadel for multi-
plier ideal sheaves. The general type property of X is needed to handle the
small fraction of nA in the process, just as in the proof of the deformational
invariance of the plurigenera for the case of general type [Siu 1998].

5.4. Proposition (extension of modified pluricanonical section
from hypersurface of first case of dichotomy after fixed ample
twisting). Let X be a compact complex algebraic manifold of general type
of complex dimension n and e−ϕ = 1

Φ be the metric of minimum singularity
with curvature current Θ = Θϕ. Let Y be a nonsingular hypersurface of
X and α be the generic stable vanishing order across Y . Assume that the
modified restriction Θϕ − α [Y ] as defined in (3.3) belongs to the first case
of the dichotomy in the sense that in the canonical decomposition

Θϕ − α [Y ] =
J∑

j=1

γj [Vj ] + R,

with γj > 0 and Vj being a hypersurface in Y and the Lelong number of R
vanishing outside a countable union of subvarieties of codimension ≥ 2 in Y ,
either J is infinite or R is nonzero. Then there exists an ample line bundle
A0 on X (which depends only on X and Y ) with the following property. For
any ample line bundle A with A − A0 ample, the complex dimension of

Γ
(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + A)

) ∣∣∣
Y

goes to ∞ as ν → ∞ for some increasing sequence {pν}ν∈N
of positive inte-

gers.

Proof. Let A1 be a very ample line bundle on X such that A1 −
(KX − αY ) is ample on X and

(
A1

∣∣∣
Y

)
− KY is very ample on Y . Let

ψ be the potential for the current Θ−α [Y ] which is the modified restriction
of Θ to Y in the sense described in (3.3) so that Θ−α [Y ] =

√
−1
2π ∂∂̄ψ. Then

by (5.2) there exists some sequence {pν}ν∈N
of positive integers such that

(5.4.1) lim
ν→∞

dimC Γ (Y, Ipνϕ (pνL + (n − 1)A1)) = ∞.

We choose an integer p̂ > n such that (3 + p̂ − n)A1, p̃A1 − Y and
p̃A1 are all globally free on Y . Let p̂ = (1 + �α� − α) p̃. We can construct
multi-valued holomorphic sections σ1, . . . , σ� of p̂A1 such that their common
zero-set is Y and the vanishing order of

∑�
j=1 |σj |2 across Y is precisely

2 (1 + α) at every point of Y by setting σj to be (σ̂sY )1+α (σ̃)	α
−α as σ̂
runs through a finite C-basis of Γ (X, p̃A1 − Y ) and σ̃ runs through a finite
C-basis of Γ (X, p̃A1). We now introduce the metric

hA1 |sY |2(p+1)α

Φp
∑�

j=1 |σj |2
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of p (KX − αY ) − αY + (1 + p̂) A1 whose multiplier ideal sheaf is equal to
Ip(ϕ−α log|sY |2) (IdY ), where hA1 is a smooth strictly positive curved metric
of A1. By the vanishing theorem of Kawamata-Viehweg-Nadel,

(5.4.2) H1
(
X, Ip(ϕ−α log|sY |2) (IdY ) (p (KX − αY ) + (2 + p̂) A1)

)
= 0,

because A1 − KY is ample on Y . An element of Ipψ on Y can be naturally
regarded as an element of

Ip(ϕ−α log|sY |2)
/(

Ip(ϕ−α log|sY |2) (IdY )
)

,

for example, by using the extension theorem of Ohsawa-Takegoshi [Ohsawa-
Takegoshi 1987]. From (5.4.2) it follows that the restriction map

Γ
(
X, Ip(ϕ−α log|sY |2) (p (KX − αY ) + (2 + p̂) A1)

)
→ Γ

(
X,

(
Ip(ϕ−α log|sY |2)

/(
Ip(ϕ−α log|sY |2) (IdY )

))
× (p (KX − αY ) + (2 + p̂) A1)

)
is surjective. Thus the the restriction map

Γ
(
X, Ip(ϕ−α log|sY |2) (p (KX − αY ) + (2 + p̂) A1)

)
→ Γ (Y, Ipψ (p (KX − αY ) + (2 + p̂) A1))(5.4.3)

is surjective. Since (3 + p̂ − n) A1 is globally free on Y and the product
of an element of Γ (Y, Ipψ (p (KX − αY ) + (n − 1)A1)) and an element of
Γ (Y, (3 + p̂ − n) A1) is an element of Γ (Y, Ipψ (p (KX − αY ) + (2 + p̂) A1)),
it follows from (5.4.1) and the surjectivity of (5.4.3) that

lim
ν→∞

dimC

(
Γ

(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + (2 + p̂) A1)

) ∣∣∣∣
Y

)
= ∞.

Let A2 be a holomorphic line bundle on X which is sufficient ample so
that for any ample line bundle E the line bundle A2 + E is globally free.
For example, we can choose A2 such that for every point P of X there exist
elements of Γ (X, A2 − KX) which vanish to order ≥ n + 1 at P and whose
common zero-set in X consists of just the single point P . We now set A0 to
be any ample line bundle over X such that A0 − (2 + p̃) A1 − A2 is ample.
Since for any holomorphic line bundle A on X with A − A0 ample on X the
product of any element of

Γ
(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + (2 + p̂) A1)

)
and any element of Γ (X, A − (2 + p̃) A1) is an element of

Γ
(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + A)

)
,



202 Y.-T. SIU

it follows from the very ample property of A − (2 + p̃) A1 that the complex
dimension of

Γ
(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + A)

) ∣∣∣
Y

goes to ∞ as ν → ∞. Q.E.D.

5.4.1. Remark. In the proof of (5.4) we used the metric

hA1 |sY |2(p+1)α

Φp
∑�

j=1 |σj |2

of p (KX − αY ) − αY + (1 + p̂) A1 to produce the multiplier ideal sheaf
Ip(ϕ−α log|sY |2) (IdY ), which contains precisely the additional factor (IdY ),

compared to the multiplier ideal sheaf Ip(ϕ−α log|sY |2) of the metric e−pϕ

|sY |2pα. The reason why this can be done is the use of the sufficiently ample
line bundle A1 over X.

Of course, later we are able to take care of the effect of the use of A1,
because the dimension of the space of sections under consideration goes to
infinity as pν → ∞ so that we can divide the coefficient of A1 by an ar-
bitrarily large number in the proof of (5.5) below. In the second case of
the dichotomy to be discussed in §6 there will be no such way to get rid of
the effect of A1 due to the uniform bound of the dimension of the space of
sections under consideration.

For the application of the vanishing theorem of Kamawata-Viehweg-
Nadel to extend sections, in §6 below we will be forced to produce an
additional factor J of the multiplier ideal sheaf which is only equal to IdY at
a generic point of Y instead of everywhere. This is obtained by using a metric
|sY |2pα

Φ̃p
not involving any ample line bundle over X, where Φ̃ is a finite sum of

absolute-value-squares of multi-valued holomorphic sections of KX with ap-
propriately higher vanishing orders across Y than the m-th roots of elements
of a basis of the space of m-canonical sections over X. The fact that J is only
equal to IdY at a generic point of Y instead of everywhere poses the difficulty
of “additional vanishing”. This makes the second case of the dichotomy more
complicated than the first case of the dichotomy and will be dealt with in §6.

5.5. Proposition (metric of additional singularity on hypersur-
face of first case of dichotomy after fixed ample twisting). Let X
be a compact complex algebraic manifold of general type of complex dimen-
sion n and e−ϕ = 1

Φ be the metric of minimum singularity with curvature
current Θ = Θϕ. Let Y be a nonsingular hypersurface of X and α be the
generic stable vanishing order across Y . Assume that the modified restric-
tion Θϕ −α [Y ] as defined in (3.3) belongs to the first case of the dichotomy
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in the sense that in the canonical decomposition

Θϕ − α [Y ] =
J∑

j=1

γj [Vj ] + R,

with γj > 0 and Vj being a hypersurface in Y and the Lelong number of
R vanishing outside a countable union of subvarieties of codimension ≥ 2
in Y , either J is infinite or R is nonzero. Then for every point P0 and any
ε > 0 and any N ∈ N there exists a metric

e−ϕY,P0,ε,N =
1

ΦY,P0,ε,N

of p̂KX for some p̂ = p̂Y,P0,ε,N ∈ N such that
(i) ΦY,P0,ε,N is a finite sum of absolute-value-squares of multi-valued

holomorphic sections of p̂KX over X,
(ii) the vanishing order of ΦY,P0,ε,N across Y at some generic point of

Y is a number in the interval [2p̂α, 2p̂α + ε),
(iii) the vanishing order of ΦY,P0,ε,N on X at P0 is at least 2N .
(iv) the curvature current of the metric e−ϕY,P0,ε,N is strictly positive

on X.

Proof. Since X is of general type, we have KX = D + B for some ef-
fective Q-divisor D and some ample Q-line bundle B. Let D = aY +E with
a ≥ 0 and Y not contained in the support of E. Then KX = aY + E + B.
Since α is the generic stable vanishing order across Y , it follows that a ≥ α.

By Proposition (5.4) on the extension of modified pluricanonical sections
from a hypersurface of the first case of dichotomy after fixed ample twisting,
we have an ample line bundle A0 on X such that, for any ample line bundle
A with A − A0 ample, the complex dimension of

Γ
(
X, Ipν(ϕ−α log|sY |2) (pν (KX − αY ) + A)

) ∣∣∣
Y

goes to ∞ as ν → ∞ for some increasing sequence {pν}ν∈N
of positive in-

tegers. Thus, for any q ∈ N there exists some p̃q such that we can find an
element

σq ∈ Γ
(
X, Ip̃q(ϕ−α log|sY |2) (p̃q (KX − αY ) + 2A0)

)
whose restriction to Y is not identically zero and which vanishes to order

≥ q on X at P0.
We choose 
 ∈ N with α−a

� < ε
4 . Choose 
̂ ∈ N such that 1

� B − 2
�̂
A0 is an

ample Q-line bundle over X. Choose q ∈ N with q > 
̂N . Choose a finite
number of multi-valued holomorphic sections τ1, . . . , τk of the Q-line bundle
1
� B − 2

�̂
A0 over X such that the curvature current of the metric

1∑k
j=1 |τj |2
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of the Q-line bundle 1
� B − 2

�̂
A0 is strictly positive on X. Choose N0 ∈ N

such that the generic vanishing order of the N0-truncation ΦN0 of Φ is a
number 2γ in the interval

[
2α, 2α + ε

2

)
. Let p̂Y,P0,ε,N ∈ N = 1 + p̃q. Then

ΦY,P0,ε,N =
∣∣∣(σq)

1
�̂ (sE)

1
� (sY )

α−a
�

∣∣∣2
⎛⎝ k∑

j=1

|τj |2
⎞⎠ (ΦN0)

1− 1
� |sY |2p̂α

satisfies the requirement, because the generic vanishing order of ΦY,P0,ε,N

across Y is 2
(
p̂α + γ + α−a

�

)
and (γ − α) + α−a

� < ε
2 . Q.E.D.

5.5.1. Remark on holomorphic dependence. In the proof of (5.5), instead
of using a single

σq ∈ Γ
(
X, Ip̃q(ϕ−α log|sY |2) (p̃q (KX − αY ) + 2A0)

)
we could also have used a maximal C-linear independent subset σ̂q,1, · · · , σ̂q,tq

of

Γ
(
X,

(
(mX,P0)

q ∩ Ip̃q(ϕ−α log|sY |2)
)

(p̃q (KX − αY ) + 2A0)
) ∣∣∣

Y
,

whose restrictions to Y are still C-linearly independent, to form the metric

Φ̂Y,P0,ε,N =

⎛⎝ tq∑
j=1

|σ̂q,j |2
⎞⎠ 1

�̂ ∣∣∣(sE)
1
� (sY )

α−a
�

∣∣∣2
⎛⎝ k∑

j=1

|τj |2
⎞⎠ (ΦN0)

1− 1
� |sY |2p̂α

of p̂KX . The advantage of using a maximal C-linear independent set to
construct Φ̂Y,P0,ε,N instead of using ΦY,P0,ε,N is that when P0 varies in some
appropriate Zariski open subset of Y , the Lelong set Ec (for η1N ≤ c ≤ η2N
for suitable 0 < η1 < η2 < 1 and for N sufficiently large) of the curvature
current of the metric

|sY |2(p̂α+γ+α−a
� )

Φ̂Y,P0,ε,N

∣∣∣∣∣
Y

of the line bundle K̂X −
(
p̂α + γ + α−a

�

)
Y on Y varies holomorphically as

a function of P0. (See (3.1) for the definition of the Lelong set Ec.)

5.5.2. Remark on the inevitability of eventual occurrence of the second
case of the dichotomy. In the arguments from (5.2) to (5.5) our goal is
to take a step toward producing holomorphic pluricanonical sections s ∈
Γ (X, mKX) on X to achieve the generic stable vanishing order α across the
hypersurface Y in X by assuming that Y is in the first case of the dichotomy.
That is, the vanishing order of s across Y is mα at a generic point of Y . The
step we take is to produce a positively curved metric of KX whose reciprocal
has high-order vanishing at a prescribed point of Y and generic vanishing
order across Y as close to 2α as prescribed.
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However, the construction of such a metric is as good as we can go with
this method. We can replace Y by a subvariety Y ′ in Y defined by high-
order vanishing of the reciprocal of such a metric and apply the argument
to Y ′ instead of to Y and get another metric if Y1 belongs to the first case
of the dichotomy in a naturally corresponding sense. We can keep repeating
this argument of constructing metrics for Y, Y ′, Y ′′, . . . (as long as each of
Y ′, Y ′′, . . . belongs to the first case of the dichotomy), but, without some
additional different techniques, we cannot use such arguments to finally get
actual holomorphic pluricanonical sections s ∈ Γ (X, mKX) achieving the
generic stable vanishing order across Y . The reason is as follows.

The current arguments use extension to X of sections on Y by the
vanishing theorem of Kawamata-Viehweg-Nadel. The vanishing theorem of
Kawamata-Viehweg-Nadel takes a line bundle E on X with a metric whose
curvature current is strictly positive and gives the vanishing of cohomology
of positive degree with the multiplier ideal sheaf I as the coefficient for the
line bundle E + KX . The key point is that a copy of KX is added to E to
give the vanishing of the higher-degree cohomology Hp (X, I (E + KX)) for
p ≥ 1. This is applied to E = m (KX − αY ).

To use H1 (X, I (m (KX − αY ) + KX)) = 0 to extend a nontrivial sec-
tion σ on Y , the section σ should be an element of Γ(Y, m (KX − αY )
+ KX) which locally belongs to an appropriate ideal sheaf. The result σ̃
of the extension would be an element of Γ (X, m (KX − αY ) + KX). The
element in Γ (X, (m + 1)KX) defined by σ̃ would have a generic vanishing
order across Y equal to mα, which is less than the smallest possible number
(m + 1)α, giving a contradiction, unless α = 0.

The best we can get with such arguments is only the construction of a
positively curved metric of KX whose reciprocal has high-order vanishing
at a prescribed point of Y (k) and generic vanishing orders lexicographically
across Y, Y ′, Y ′′, . . . , Y (k−1) as close to the expected smallest value as pre-
scribed (as long as each of Y ′, Y ′′, . . . , Y (k−1) belongs to the first case of the
dichotomy). Finally, we eventually get to Y (k) which belongs to the second
case of the dichotomy, in the lexicographical sense from the nested sequence

Y (k) ⊂ Y (k−1) ⊂ · · · ⊂ Y ′′ ⊂ Y ′ ⊂ Y ⊂ X.

It means that the curvature current on Y is modified from the curvature Θ
of 1

Φ by taking away a rational multiple of Y and restrict to Y and then
is modified by taking away a rational multiple of Y ′ and restrict to Y ′,
et cetera, until the final modification obtained by taking away a rational
multiple of Y (k−1) and restrict to Y (k). Because of the singularities, a rigor-
ous treatment would require blowing up to regular hypersurfaces in normal
crossing at each stage. This meaning of the second case of the dichotomy
by inductive lexicographical description was already sketchily mentioned in
[Siu 2008, (2.2)].



206 Y.-T. SIU

5.6. Holomorphic family of embedded subvarieties of high sta-
ble vanishing order inside a hypersurface whose stable vanishing
order is not yet known to be achieved. We continue the discussion
in (5.5) and use the same assumptions and notations as in (5.5.2). By the
discussion in (5.5.1) the nested subvarieties

Y (k) ⊂ Y (k−1) ⊂ · · · ⊂ Y ′′ ⊂ Y ′ ⊂ Y ⊂ X

defined by the metrics actually form holomorphic families outside appro-
priate Zariski open subsets. From the discussion in (4.5.1) applied to the
fibrations inside each Y ′, Y ′′, . . . , Y (k−1) and (4.6), we can decrease the dis-
crepancy subspace until we get to a finite union Z of subvarieties which
belong to the second case of the dichotomy. The argument to decrease the
discrepancy subspace comes from the use of a sufficiently ample line bun-
dle from the base of the fibration. As a result, the difficulty of “additional
vanishing” described in (6.1) below from the use of pluricanonical sections
with appropriate generic vanishing orders across specified subvarieties does
not occur outside Z.

6. Subspaces of minimum additional vanishing
for the second case of the dichotomy

6.1. Difficulty of additional vanishing. Let X be a compact com-
plex algebraic manifold of complex dimension n of general type. Suppose
the common zero-set of all m-canonical sections of X for all m ∈ N is
Z =

⋃�
j=1 αjYj for some collection {Yj}�

j=1 are nonsingular hypersurfaces of
X in normal crossing. Let αj be the generic stable vanishing order for Yj

for 1 ≤ j ≤ 
.
By relabelling Yν for 1 ≤ ν ≤ 
, we assume that there exists 1 < 
′ ≤ 


such that
(i) for 1 ≤ ν ≤ 
′ there does not exist any multi-valued holomorphic

section of KX over X whose generic vanishing order across Yν is
αν , and

(ii) for 
′ < ν ≤ 
 there exists some multi-valued holomorphic section sν

of KX over X whose generic vanishing order across Yν is precisely
αν .

We let s�+1, . . . , s�̃ be multi-valued holomorphic sections of KX whose com-
mon zero-set is Z. Choose 0 < δ̃ < 1 such that the generic common vanishing
order of s�+1, . . . , s�̃ across Yν is > αν + δ̃ for 1 ≤ ν ≤ 
′. We can take a
multi-valued holomorphic section sν of KX over X such that the generic
vanishing order of sν across Yν is αν + δν with 0 < δν < δ̂ for 1 ≤ ν ≤ 
′.
The set of the multi-valued holomorphic sections s1, . . . , s�̃ of KX over X
satisfies the following conditions.

(i) The common zero-set of the multi-valued holomorphic sections
s1, . . . , s�̃ of KX over X is Z.



TECHNIQUES FOR THE ANALYTIC PROOF OF THE FINITE GENERATION 207

(ii) The common generic vanishing order of s1, . . . , s�̃ across Yν is αν+δν

for 1 ≤ ν ≤ 
′.
(iii) The common generic vanishing order of s1, . . . , s�̃ across Yν is αν

for 
′ < ν ≤ 
.

For any Yν (with 1 ≤ ν ≤ 
) in the first case of the dichotomy, we use the
techniques in §5 to handle so that eventually we end up with the second
case of the dichotomy. We now discuss how to handle the second case of the
dichotomy.

We assume that each Yν for 1 ≤ ν ≤ 
′ belongs to the second of
the dichotomy. Moreover, we assume that the common vanishing order
of s1, . . . , s�̃ across Yν at every point of Yν −

⋃�′

j=1 Yj is αν for 
′ < ν ≤ 
.
So for 1 ≤ ν ≤ 
′ and the modified restriction of the curvature current
Θ − ανYν is of the form

∑Jν
j=1 γν,j [Vν,j ] on Yν . It means that on Yα the

Q-line bundle KX − ανYν is equal to a flat bundle F on Yα plus the line
bundle

∑Jν
j=1 γν,j [Vν,j ] on Yν . Note that the second case of the dichotomy

does not mean that the restriction of KX −ανYν to Yν is flat. It only means
that the curvature current on Yν of the restriction of KX − ανYν to Yν is
the positive linear combination of only a finite number of hypersurfaces of
Yν . There are two things that need to be done.

(i) We have to use Shokurov’s technique to produce, from the special
form of the curvature

∑Jν
j=1 γν,j [Vν,j ], a non identically zero holo-

morphic section ρν of qν (KX − ανYν) on Yν for some sufficiently
large (and appropriately divisible) positive integer qν .

(ii) We have to extend ρν to an element of Γ (X, qν (KX − ανYν)) by
the vanishing theorem of Kawamata-Viehweg-Nadel.

Let us first handle Item (ii). Item (i) will be discussed in (6.4) below.
Since X is of general type, we can write KX = D + B, where D is an

effective Q-divisor of X and B is an ample Q-line bundle over X. We can
choose a multi-valued section σ of B over X such that the coefficients of
Yν in the divisor D + div σ are all distinct for 1 ≤ ν ≤ 
′. By replacing
sν by (sν)

αν (σ)1−αν by appropriately chosing rational numbers 0 ≤ αν < 1
for 1 ≤ ν ≤ 
′, we can assume that the positive rational numbers 1+αν

δν
for

1 ≤ ν ≤ 
′ are all distinct. By relabelling Yν for 1 ≤ ν ≤ 
′, we can assume
without loss of generality that

1 + αν

δν
>

1 + αμ

δμ
for 1 ≤ ν < μ ≤ 
′.

Let qν be any positive integer such that qν − 1 > 1+αν
δν

for 1 ≤ ν ≤ 
′. For
1 ≤ ν ≤ 
′ we introduce the metric

e−ϕν =
1

Φqν−1− 1+αν
δν

(∑�̃
j=1 |sj |2

) 1+αν
δν
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of (qν − 1) KX and the accompanying metric

e−ϕ̃ν =

(∏�
j=1

∣∣sYj

∣∣2aj
)qν

Φqν−1− 1+αν
δν

(∑�̃
j=1 |sj |2

) 1+αν
δν

of

(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj .

The support of the multiplier ideal sheaf Ĩν of the metric e−ϕ̃ν of

(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj

is
⋃�′

j=ν Yj and outside the union of
⋃�′

j=ν+1 Yj and a subvariety Fν of codi-

mension ≥ 1 in
⋃�′

j=ν Yj the ideal sheaf Ĩν is equal to I(qν−1)ϕ−qν
∑�

j=1 log|sYν |2

times the full ideal sheaf IdYν of Yν . The main point is that in general Ĩν

is not equal to I(qν−1)ϕ−qν
∑�

j=1 log|sYν |2 IdYν and we can only conclude that
there exists some nonnegative eν such that

(IdFν )eν I(qν−1)ϕ−qν
∑�

j=1 log|sYν |2 IdYν ⊂ Ĩν ⊂ I(qν−1)ϕ−qν
∑�

j=1 log|sYν |2 IdYν .

This is the phenomenon of “additional vanishing”, which presents difficulties
when we try to extend sections by using the vanishing theorem of Kawamata-
Viehweg-Nadel in the standard way given in the next step.

For this next step we use the general type property of X to slightly
change the metric e−ϕ̃ν of

(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj

so that the curvature of the new metric is strictly positive while its mul-
tiplier ideal sheaf is not changed. We then use the vanishing theorem of
Kawamata-Viehweg-Nadel to get the following vanishing of the cohomology

H1

⎛⎝X, Ĩν

⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
= H1

⎛⎝X, Ĩν

⎛⎝⎛⎝(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj

⎞⎠ + KX

⎞⎠⎞⎠ = 0.
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The restriction map

Γ

⎛⎝X, qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠ → Γ

⎛⎝Yν ,
(
OX

/
Ĩν

) ⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
is surjective. In general we cannot replace the element

ρν ∈ Γ

⎛⎝Yν , qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠
by another element of Γ

(
Yν , qν

(
KX −

∑�
j=1 ajYj

))
whose local extension

to X belongs to (IdFν )eν so that it can be naturally regarded as an element of

Γ

⎛⎝Yν ,
(
OX

/
Ĩν

) ⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
which can then be lifted to an element of

Γ

⎛⎝X, qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠.

We call this difficulty of the inability to extend ρν from Yν to all of X the
difficulty of additional vanishing, because the additional vanishing orders of
the multiplier ideal sheaf Ĩν at points of Yν which are over and above that
of the full ideal sheaf IdYν on X.

6.2. Technique of restricting first to a subspace and then
extending only the restriction. We now discuss one technique of han-
dling the difficulty of “additional vanishing” for the second case of the di-
chotomy. This technique is to consider the section ρ̂ over

⋃�′

j=1 Yν formed
by all ρν (1 ≤ ν ≤ 
′) put together when qν is chosen to be equal to the
same number q̂ for 1 ≤ ν ≤ 
′, to restrict ρ̂ first to a subspace W of X

whose support is contained in
⋃�′

j=1 Yν and then to extend to X only ρ̂|W
if W turns out to be a subspace of

⋃�′

j=1 Yν instead of just a subspace of X
and the restriction of ρ̂ to W is nontrivial.

In general the condition that W is a subspace of
⋃�′

j=1 Yν , instead of
just a subspace of X, cannot be satisfied. So we cannot directly use it.
We present it here simply as a motivation and as some background mate-
rial to understand better the idea and the use of subspaces of “minimum
additional singularity” which we will do in (6.3). The idea of a subspace of
“minimum additional singularity” is the same as doing the extension only
from such a subspace. Any section which we would like to extend has first
to be restricted to such a subspace of “minimum additional singularity” and
only the restriction is to be extended and not the original section. Here
in general we cannot directly use W because we are constraining it to be
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inside the reduced subspace
⋃�′

j=1 Yν . In (6.3) we will use a subspace of
“minimum additional vanishing” to be not necessarily inside the reduced
subspace

⋃�′

j=1 Yν .
Let q̂ be any positive integer and γ be a positive rational number such

that αν (q̂ − 1) > γ (αν + δν) for 1 ≤ ν ≤ 
′. We introduce the metric

e−ϕ̌γ =
1

Φq̂−1−γ
(∑�̃

j=1 |sj |2
)γ

of (q̂ − 1) KX and the accompanying metric

e−ϕ̂γ =

∏�
j=1

∣∣sYj

∣∣2αj

Φq̂−1−γ
(∑�̃

j=1 |sj |2
)γ

of

(q̂ − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj .

The condition αν (q̂ − 1) > γ (αν + δν) for 1 ≤ ν ≤ 
′ is to make sure that
the curvature current of the metric e−ϕ̂γ is a positive current on X. Let Îγ

be the multiplier ideal sheaf of the metric e−ϕ̂γ . Let W denote the subspace
of X whose structure sheaf is OX

/
Îγ .

We are going to choose γ by imposing more conditions on it, and we are
interested in the following two conditions.

(a)
∏�′

j=1 IdYj is contained in Îγ on X.

(b) The restriction of ρ̂ to the subspace OX

/(
Îγ +

∏�′

j=1 IdYj

)
is

not identically zero. In other words, ρ̂OX is not contained in
Îγ +

∏�′

j=1 IdYj as ideal sheaves on X.

In general we cannot hope to be able to choose γ such that both Conditions
(a) and (b) are satisfied. If it is possible to choose γ satisfying both Condi-
tions (a) and (b), then we can use the general type property of X to slightly
modify the metric e−ϕ̂γ to make its curvature current strictly positive while
the multiplier ideal sheaf of the new metric remains the same as Îγ . We then
use the vanishing theorem of Kawamata-Viehweg-Nadel to get the following
vanishing of the cohomology

H1

⎛⎝X, Îγ

⎛⎝q̂

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
= H1

⎛⎝X, Îγ

⎛⎝⎛⎝(q̂ − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj

⎞⎠ + KX

⎞⎠⎞⎠ = 0.
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The restriction map

Γ

⎛⎝X, q̂

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠ → Γ

⎛⎝X,
(
OX

/
Îγ

) ⎛⎝q̂

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
is surjective. Let ρ† be the element of

Γ

⎛⎝X,
(
OX

/
Îγ

) ⎛⎝q̂

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
induced by ρ̂. Condition (a) guarantees that ρ† is well defined and Condition
(b) guarantees that ρ† is nonzero. The element ρ† can be lifted to an element

ρ� ∈ Γ

⎛⎝X, q̂

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠ .

Since ρ† is nonzero, from Condition (a) it follows that the restriction of ρ�

to
⋃�′

j=1 Yj is not identically zero. This gives the conclusion that the generic
stable vanishing order αj of Yj is achieved for some 1 ≤ j ≤ 
′ (which ac-
tually is a contradiction because we assume that none of the generic stable
vanishing order αj of Yj is achieved for 1 ≤ j ≤ 
′).

6.3. Subspaces of minimal additional vanishing. We now intro-
duce subspaces of minimal additional vanishing to handle the difficulty of
additional vanishing. We use the same notations as in (6.2). We blow up
X to π : X̃ → X such that the pullback of

∑�̃
j=1 |sj |2 to X̃ is of the form∏ê

j=1

∣∣sEj

∣∣2βj for some nonsingular hypersurfaces Ej in X̃ in normal cross-
ing with each βj being a nonnegative rational number and KX̃ − π∗KX is a
divisor whose support is contained in

⋃ê
j=1 Ej .

We now work with X̃ instead of X. Then Ej is one of Y1, . . . ,

Y� and
∑�̃

j=1 |sj |2 is
∏�

j=1

∣∣sYj

∣∣2βj with each βj being a nonnegative

rational number. Now for ν = 
′ the ideal sheaf Ĩν is precisely equal to
I(qν−1)ϕ−qν

∑�
j=1 log|sYν |2 times the full ideal sheaf IdYν of Yν . The difficulty

of additional vanishing is no longer a problem for the extension of the section

ρν ∈ Γ

⎛⎝Yν , qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠
to an element of Γ

(
X, qν

(
KX −

∑�
j=1 ajYj

))
when ν = 
′. The subspace

Yν with ν = 
′ is the subspace of “minimal additional singularity”.
This procedure is analogous to the use of the minimum center of log

canonical singularity in the arguments for Fujita-conjecture-type problems
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[Shokurov 1985, Kawamata 1985, Fujita 1987]. Though “additional van-
ishing” may pose a problem when we insist on doing the extension from
a prescribed subspace, yet “additional vanishing” can be used to define
another subspace from which extension can be done and in general this new
subspace is different from the prescribed subspace. In the arguments for
Fujita-conjecture-type problems the minimum center of log canonical singu-
larities is this new subspace. In our case this ndew subspace is Yν with ν = 
′.

What is attempted in (6.2) is to introduce the subspace W as the sub-
space of “minimum additional vanishing” and require at the same time that
W is inside the old hypersurfaces Yν in the old X in (6.2). To go to the
subspace of “minimum additional vanishing” we have to move out in some
direction transversal to the old hypersurfaces Yν in (6.2). If we insist on the
underlying subvariety of W to be inside the old hypersurfaces Yν in (6.2),
we would have to consider the situation of W being a subspace of the unre-
duced space

(
Yν , OX

/
(IdYν )b

)
for some integer b > 1, though W may be a

subspace inside another reduced hypersurface Y ′. Only after blowing up, we
can make W inside the new hypersurface Yν and, as a matter of fact, even
precisely equal to one of them. That is precisely what we are doing here in
blowing up X to X̃.

One problem with this kind of blow-up argument to get the subspace
of “minimum additional vanishing” is that we have to worry about the pro-
cess not terminating before we arrive at any of our original hypersurfaces of
the second case of the dichotomy. Such a termination is obtained by using
the technique of discrepancy subspaces in §4 and the technique of the con-
struction of metrics of additional singularity on hypersurface of first case of
dichotomy after fixed ample twisting in §5.

6.4. Shokurov’s technique of comparing the theorem of
Hirzebruch-Riemann-Roch for a line bundle and for its flat-
twisting. We now consider Item (i) of (6.2). It has the same difficulty
of “additional vanishing” as in Item (ii) of (6.2). It can simply be dealt with
in the same way as in Item (ii) of (6.3) by using the technique of subspaces
of “minimum additional vanishing” presented in (6.3). For 1 ≤ ν ≤ 
′ we
take the metric

e−ϕ̃ν =

(∏�
j=1

∣∣sYj

∣∣2aj
)qν

Φqν−1− 1+αν
δν

(∑�̃
j=1 |sj |2

) 1+αν
δν

of

(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj

on X, which was introduced in (6.2) and whose multiplier ideal sheaf Ĩν is
equal to I(qν−1)ϕ−qν

∑�
j=1 log|sYν |2 IdYν when ν = 
′. We can now define the
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metric

e−ϕ�
ν =

(∏�
j=1

∣∣sYj

∣∣2aj
)qν

|sYν |2

Φqν−1− 1+αν
δν

(∑�̃
j=1 |sj |2

) 1+αν
δν

∣∣∣∣∣∣∣
Yν

of

(qν − 1)

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ −
�∑

j=1

ajYj − Yν

on Yν when ν = 
′, whose multiplier ideal sheaf Iν
� on Yν is equal to

I((qν−1)ϕ − qν
∑�

j=1 log|sYν |2)|
Yν

when ν = 
′. By using the general property

of X to slightly change the metric e−ϕ�
ν on Yν , we can assume (by keep-

ing the same symbol) that the curvature current of the metric e−ϕ�
ν on

Yν is strictly positive for ν = 
′. By applying the vanishing theorem of
Kawamata-Viehweg-Nadel to Yν , we conclude for ν = 
′ that

Hλ

⎛⎝Yν , Iν
�

⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠ = 0 for λ ≥ 1

because KYν = KX +Yν . Moreover, for any flat bundle F over Yν for ν = 
′

we also have

Hλ

⎛⎝Yν , Iν
�

⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠ + F

⎞⎠ = 0 for λ ≥ 1.

Since for ν = 
′ the modified restriction to Yν of the curvature current of
the metric 1

Φ of KX is equal to
∑Jν

j=1 γν,j [Vν,j ], it follows that the section∏Jν
j=1

(
sVν,j

)γν,jqν is a holomorphic section of qν (KX − ανYν)|Yν
+ F over

Yν for some flat line bundle F over Yν . Clearly
∏Jν

j=1
(
sVν,j

)γν,jqν can be
naturally regarded as a nonzero element of

Γ

⎛⎝Yν , Iν
�

⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠ + F

⎞⎠⎞⎠
for ν = 
′. By comparing the results of the application of the theorem of
Hirzebruch-Riemann-Roch respectively to Iν

�
(
qν

(
KX −

∑�
j=1 ajYj

)
+ F

)
and to Iν

�
(
qν

(
KX −

∑�
j=1 ajYj

))
on Yν for ν = 
′, we conclude that there

is a nonzero element

ρν ∈ Γ

⎛⎝Yν , Iν
�

⎛⎝qν

⎛⎝KX −
�∑

j=1

ajYj

⎞⎠⎞⎠⎞⎠
for ν = 
′.
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7. Big sum of a line bundle and the canonical line bundle

For finite generation of the canonical ring when X is not of general type,
the case of adding a line bundle L over X to the canonical line bundle KX

with the sum being big can be essentially considered as the case of just the
canonical line bundle over the total bundle space of the dual L∗ of L (when
only pluricanonical sections whose coefficients with respect to the fiber co-
ordinates of L∗ are constant along the fibers of L∗ are considered). The
reason is as follows.

Let z1
j , . . . , zn

j be the local holomorphic coordinate system on an open
subset Uj of X and gjk be the transition function for the line bundle L∗

from the fiber coordinate wk on Uk to the fiber coordinate wj on Uj so that
wj = gjkwk. Then dwj = (dgjk) wk + gjkdwk and

dz1
j ∧ · · · ∧ dzn

j ∧ dwj =
∂

(
z1
j , . . . , zn

j

)
∂

(
z1
k, . . . , zn

k

) dz1
k ∧ · · · ∧ dzn

k ∧ gjkdwk

over Uj ∩ Uk. For any element s ∈ Γ (X, m (L + KX)) represented by {sj}j

with sj being a holomorphic function on Uj , we have

sj

(
dz1

j ∧ · · · ∧ dzn
j ∧ dwj

)⊗m = sk

(
dz1

k ∧ · · · ∧ dzn
k ∧ dwk

)⊗m

over Uj ∩ Uk. This means that when we consider only elements of Γ(L∗,
mKL∗) whose coefficients with respect to the fiber coordinates of L∗ are
constant along the fibers of L∗, we can assume that the canonical line bun-
dle KL∗ of L∗ to be big and L∗ is of general type (in the sense that only
elements whose coefficients with respect to the fiber coordinates of L∗ are
constant along the fibers of L∗ are being considered). Then we can modify
the analytic proof of the finite generation of the canonical ring for a compact
complex algebraic manifold of general type to give us the analytic proof of
the finite generation of the canonical ring over L∗ when only pluricanonical
sections over L∗ whose coefficients with respect to the fiber coordinates of
L∗ are constant along the fibers of L∗ are being considered.

Appendix: Multiplier ideal sheaves of Kohn and Nadel
as defined by crucial estimates

As mentioned at the beginning of the Introduction and in (4.1) the def-
inition of discrepancy subspaces is motivated by the original philosophy of
formulating multiplier ideal sheaves from the most crucial estimates when
multiplier ideal sheaves were first introduced by Kohn as measurements of
failure of estimates in partial differential equations [Kohn 1979] and intro-
duced by Nadel as destabilizing sheaves [Nadel 1990]. In this Appendix we
examine the definitions of the original multiplier ideal sheaves of Kohn and
Nadel and, especially, recast Nadel’s definition in the context of formulation
in terms of the most crucial estimates.
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A.1. Kohn’s subelliptic multipliers for the complex Neumann
problem. The setting of Kohn’s multiplier ideal sheaf is a bounded domain
Ω in Cn with smooth weakly pseudoconvex boundary defined by r < 0 with
dr being nowhere zero on the boundary ∂Ω of Ω. Here weakly pseudoconvex
boundary means that

√
−1 ∂∂̄r|

T
(1,0)
∂Ω

≥ 0. The problem is to study the fol-

lowing regularity question: given a smooth (0, 1)-form f on Ω̄ with ∂̄f = 0,
whether the solution of ∂̄u = f on Ω with u perpendicular to all holomorphic
functions on Ω is smooth on Ω̄.

A sufficient condition for regularity is the following subelliptic estimate
at every boundary point. For P ∈ ∂Ω there exist some open neighborhood
U of P in Cn and positive numbers ε and C satisfying

(A.1.1) ‖|g|‖2
ε ≤ C

(
‖∂̄g‖2 + ‖∂̄∗g‖2 + ‖g‖2)

for every (0, 1)-form g supported on U ∩ Ω̄ which is in the domain of ∂̄ and
∂̄∗. Here ‖|·|‖ε is the L2 norm on Ω involving derivatives up to order ε in the
boundary tangential directions of Ω, ‖ · ‖ is the usual L2 norm on Ω with-
out involving any derivatives, and ∂̄∗ is the actual adjoint of ∂̄ with respect
to ‖ · ‖.

The reason why some positive ε is needed is that in applying a differen-
tial operator D to both sides of ∂̄u = f to get estimates of the Sobolev norm
of u up to a certain order of derivatives in terms of that of f , an error term
from the commutator of the differential operator D and ∂̄ occurs, which
needs to be absorbed and one way to do the absorption is to use an estimate
involving a Sobolev norm with derivative higher by some positive number
ε. This stronger Sobolev norm is used also to absorb the error term from
partitions of unity or cut-off functions.

The reason why only the tangential Sobolev norm ‖| · |‖ε is used is that
we need to preserve the condition that (0, 1)-form g belongs to the domain of
∂̄∗ (which means vanishing complex-normal component at boundary points)
by using only differentiation along the boundary tangential directions. The
missing estimate in the real-normal direction can be obtained from the
complex-normal component of the equation ∂̄u = f .

The theory of multiplier ideal sheaves introduces multipliers into the
most crucial estimate, which in this case is the subelliptic estimate (A.1.1).
A subelliptic multiplier F is a smooth function germ of Cn at P such that
the following subellitpic estimate of order εF holds for any test (0, 1)-form
g after replacing it by its product with F .

(A.1.2) ‖|Fg|‖2
ε
F

≤ CF

(
‖∂̄g‖2 + ‖∂̄∗g‖2 + ‖g‖2)

for every test (0, 1)-form g described above. The multiplier ideal IP at the
boundary point P is the ideal of all such subelliptic multipliers F . Kohn’s
multiplier ideal sheaf is the sheaf of such ideals IP .

Since each test (0, 1)-form g presents one inequality (A.1.2), Kohn’s mul-
tiplier ideal sheaf is actually defined by a family of inequalities (A.1.2),
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parametrized by the set of all test (0, 1)-forms g. Kohn’s multiplier ideal
sheaf is therefore a dynamic multiplier ideal sheaf.

In Kohn’s case it is clear that the definition (A.1.2) of the multiplier
ideal sheaf is formulated from the most crucial estimate (A.1.1). However,
the situation is by no means clear in Nadel’s original formulation of his mul-
tiplier ideal sheaves. Here we are going to recast Nadel’s multiplier ideal
sheaves in the context of formulation in terms of the most crucial estimates.

A.2. Nadel’s multiplier ideal sheaves. The setting of Nadel’s mul-
tiplier ideal sheaves is a compact complex manifold X of complex dimension
n with an ample anticanonical line bundle −KX of X . Let gij̄ be a Kähler
metric of X in the anticanonical class of X. Let

Rij̄ = −∂i∂j̄ det
(
gij̄

)
1≤i,j≤n

be the Ricci curvature of gij̄ . There is a smooth positive function F on X
such that

Rij̄ − gij̄ = ∂i∂j̄ log F.

We consider the complex Monge-Ampère equation

(A.2.1) det
(
gij̄ + ∂i∂j̄ϕ

)
1≤i,j≤n

= e−ϕF det
(
gij̄

)
1≤i,j≤n

,

formulated by Calabi [Calabi 1954a, Calabi 1954b, Calabi 1955] for the con-
struction of a Kähler-Einstein metric of X. If the equation (A.2.1) is solved,
by taking ∂∂̄ log of both sides of (A.2.1), we get

−R′
ij̄ = −

(
g′
ij̄ − gij̄

)
+

(
Rij̄ − gij̄

)
− Rij̄ = −g′

ij̄ ,

(where g′
ij̄

= gij̄ + ∂i∂j̄ϕ and R′
ij̄

is the Ricci curvature of the Kähler met-
ric g′

ij̄
) and conclude that g′

ij̄
is a Kähler-Einstein metric of X. Continuity

method is applied to solve the equation (A.2.1) by considering the solution of

(A.2.2)t det
(
gij̄ + ∂i∂j̄ϕt

)
1≤i,j≤n

= e−tϕtF det
(
gij̄

)
1≤i,j≤n

,

for 0 ≤ t ≤ 1, starting with t = 0 by using [Yau 1978, p.363, Theorem 1].
The openness part of the continuity method is clear from the usual el-

liptic estimates and the implicit function theorem. Nadel’s multiplier ideal
sheaf arises from the closedness part of the continuity method in the follow-
ing way. Suppose for some 0 < t∗ ≤ 1 we have a sequence ϕtν which satisfies
(A.2.2)tν with tν → t∗ monotonically strictly increasing as ν → ∞.

Since the first Chern class of −KX , which (up to a normalizing universal
constant) is represented by

(A.2.3)t

n∑
i,j=1

(
gij̄ + ∂i∂j̄ϕt

) (√
−1
2

dzi ∧ dzj

)
,

is independent of t < t∗, the (1, 1)-form (A.2.3)t would converge weakly when
t goes through an appropriate sequence tν to t∗. Let ϕ̂t be the average of ϕt

over X with respect to the Kähler metric gij̄ . Since the Green’s operator for
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the Laplacian, with respect to the Kähler metric gij̄ , is a compact operator
from the space of bounded measures on X to the space of L1 functions on
X, we conclude that ϕtν − ϕ̂tν converges to some function in the L1 norm
for some subsequence tν of t → t∗.

The second-order and third-order estimates used to obtain [Yau1978,
p.363, Theorem 1] work also for applying the continuity method to solve
(A.2.2)t for 0 ≤ t ≤ 1. Alternatively the Hölder estimate for the second-
order derivatives can be used instead of the third-order estimates (see e.g.,
[Siu 1987, Chapter 2, §3 and §4]).

The obstacle in the closedness part t → t∗ of the continuity method
for solving (A.2.2)t occurs when ϕ̂tν → ∞ as ν → ∞. After multiplying
(A.2.2)tν by etν ϕ̂tν to get

etν ϕ̂tν det
(
gij̄ + ∂i∂j̄ϕtν

)
1≤i,j≤n

= e−tν(ϕtν −ϕ̂tν )F det
(
gij̄

)
1≤i,j≤n

and integrating over X and taking limit as ν → ∞, we get

(A.2.4) lim
ν→∞

∫
X

e−tν(ϕtν −ϕ̂tν ) = ∞

when ϕ̂tν → ∞ as ν → ∞, because∫
X

det
(
gij̄ + ∂i∂j̄ϕtν

)
1≤i,j≤n

n∏
j=1

(√
−1
2

dzj ∧ dzj

)

=
∫

X
det

(
gij̄

)
1≤i,j≤n

n∏
j=1

(√
−1
2

dzj ∧ dzj

)
= (−KX)n

which is independent of t.
We now know that the crucial estimate in Nadel’s setting is

lim
ν→∞

∫
X

e−tν(ϕtν −ϕ̂tν ) < ∞.

Since the multiplier ideal sheaf is introduced to make the crucial estimate
hold after using a multiplier, we introduce the multiplier ideal sheaf I in
Nadel’s setting as consisting of all holomorphic function germs f on X
such that

lim sup
ν→∞

∫
U

|f |2 e−tν(ϕtν −ϕ̂tν ) < ∞,

where U is an open neighborhood of the point of X at which f is a germ.
This multiplier ideal sheaf I in the sense of Nadel is defined by using a se-
quence of functions ϕtν −ϕ̂tν as ν → ∞ and is therefore a dynamic multiplier
ideal sheaf.
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de fonctions holomorphes avec poids. Ann. Sci. École Norm. Sup. 5 (1972), 545–579.
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