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Modularity of 2-dimensional Galois

representations

Mark Kisin

Introduction

Our aim is to explain some recent results on modularity of 2-dim-
ensional potentially Barsotti-Tate Galois representations. That such
representations should arise from modular forms is a special case of a
remarkable conjecture of Fontaine and Mazur [FM]. One of its concrete
consequences is that if A/Q is an abelian variety of GL2-type, then A
is a subquotient of a product of Jacobians of modular curves.

The first breakthrough in the direction of this conjecture was the
work of Wiles and Taylor-Wiles [Wi], [TW], which established that
(under mild hypothesis) the conjecture holds for 2-dimensional p-adic
representations ρ which are Barsotti-Tate at p provided that the associ-
ated mod p representation ρ̄ is modular and irreducible. These results
were extended by a number of authors [Di 1], [CDT], [BCDT], and a
lifting theorem of this type for fairly general potentially Barsotti-Tate
representations was proved in [Ki 1]. For ordinary representations with
ρ̄ reducible, the conjecture was proved by Skinner-Wiles [SW].

The condition that ρ̄ was modular could be verified in certain spe-
cial cases. The results mentioned in the previous paragraph were then
sufficient to deduce the conjecture of Shimura-Taniyama-Weil that any
elliptic curve over Q is modular. The case of semi-stable elliptic curves
was established by Wiles [Wi] and the general case by Breuil-Conrad-
Diamond-Taylor [BCDT].

However, Serre [Se 1] had conjectured that any two-dimensional
mod p representation with odd determinant was modular. A few years
ago Taylor established a weaker form of this conjecture [Ta 1], [Ta 2],
which asserts that for some totally real field F in which p is unramified,
ρ̄|F arises from a Hilbert modular form. Combining this with the kind
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of modularity lifting theorem mentioned above, he was able to show
that certain Barsotti-Tate representations - or more generally crystalline
representation of small weight - could be put into compatible systems
of λ-adic representations (cf. also [Die]).

In a spectacular development, Khare-Wintenberger [KW 1] and
Khare [Kh 1] were able to build on these results and prove Serre’s con-
jecture for representations of level 1. More recently [KW 2], [KW 3]
they have extended their methods to prove the conjecture for odd level,
and to reduce the case of even level to a 2-adic modularity lifting the-
orem which was finally proved in [Ki 5]. One of the consequences of
Serre’s conjecture - observed by Serre [Se 1, 4.7] and Ribet [Ri 2] - is
the modularity of abelian varieties of GL2-type.

To state the results we are going to explain, fix an algebraic closure
Q̄ of Q and an algebraic closure Q̄p of Qp for each finite prime p. If
E is a number field, we will refer to an embedding λ : E →֒ Q̄p as a
finite prime λ|p. We write Eλ for the closure of λ(E). This is an abuse
of terminology, since a prime of E (in the usual sense) may correspond
to several different embeddings, however this convention will prove to
be very useful. For a finite set of primes S of Q we denote by GQ,S the
Galois group of the maximal subfield of Q̄ unramified outside S.

The following theorem was proved by Eichler and Shimura for k = 2,
Deligne [De] for k ≥ 2, and Deligne-Serre when k = 1 [DS].

Theorem. Let k ≥ 1, N ≥ 1, and f ∈ Sk(Γ1(N),C) a cuspidal
eigenform on Γ1(N), normalized so that f has Fourier expansion f =∑∞

i=1 anq
n, with a1 = 1. Then

(1) The field Ef := Q(an)n≥1 ⊂ C is a number field.
(2) For any finite prime λ|p of Ef , there exists a continuous rep-

resentation

ρf,λ : GQ,S → GL2(Ef,λ)

such that tr(ρf,λ(Frobv)) = av for any rational prime v ∤ pN.
Here S is the set of primes dividing pN together with ∞, and
Frobv ∈ GQ,S denotes an arithmetic Frobenius.

If E/Qp is a finite extension (always assumed contained in Q̄p) with
ring of integers O and residue field F, and ρ : GQ,S → GL2(E) is a
continuous representation, then ρ is called modular if there exists a
modular eigenform f, and a prime λ|p of Ef , such that ρ ∼ ρf,λ. (That
is, ρ and ρf,λ become isomorphic after an extension of scalars.)

Given such a ρ, we will denote by ρ̄ : GQ,S → GL2(F) the repre-
sentation obtained by choosing a Galois stable O-lattice and reducing
modulo the radical of O. Although ρ̄ depends on the choice of lattice,
its semi-simplification does not. We will say ρ̄ is modular if there exists
f and λ such that the semi-simplifications of ρ̄ and ρ̄f,λ are equivalent.
If det ρ̄ sends complex conjugation to −1, we say that ρ̄ is odd.
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Theorem 0.1. Suppose that

(1) ρ̄ is modular and ρ̄|Q(ζp) is absolutely irreducible and has insol-
uble image if p = 2.

(2) ρ is potentially Barsotti-Tate at p, and det ρ = ψχ, where χ
denotes the p-adic cyclotomic character, and ψ has finite order.

Then ρ is modular.

This result was proved in [Ki 1] and [Ki 5] when p = 2.. Recall that
the second condition means that there exists a finite extension K/Qp

such that ρ|GK arises from the Tate module of a p-divisible group, where
GK = Gal(Q̄p/K).

As already remarked, thanks to the work of Khare-Wintenberger,
completed in [Ki 5], we have the following result conjectured by Serre:

Theorem 0.2. Suppose that ρ̄ : GQ,S → GL2(F) is odd and abso-
lutely irreducible. Then ρ̄ is modular.

Corollary 0.3. Let A/Q be an abelian variety of dimension g,
and suppose that there exists a number field F with [F : Q] = g, and
an embedding F →֒ End QA ⊗Z Q. (i.e A is of GL2-type). Then A
is a quotient of Jac(X1(N))m for some N,m ≥ 1. Moreover the L-
function L(A, s) is entire and satisfies a functional equation with respect
to s 7→ 2 − s.

That the theorem implies the corollary was established by Ribet
[Ri 2, Thm. 4.4] following an argument of Serre [Se 1, Thm. 5], who
considered the case when F is totally real. Khare [Kh 1] observed that
one can adapt Serre’s argument to show that Theorem (0.2) implies the
odd two dimensional Artin conjecture:

Corollary 0.4. Let ρ : GQ,S → GL2(C) be a continuous, irre-
ducible, odd representation. Then ρ arises from a weight 1 cusp form
on Γ1(N) for some N ≥ 1. In particular, the Artin L-function L(ρ, s)
is entire.

We remark that Artin’s conjecture for odd, two dimensional rep-
resentations was previously known in many cases, thanks to the work
of Langlands [La], Tunnel [Tu], Buzzard–Dickinson–Shepherd-Barron–
Taylor [BDST], and Taylor [Ta 4].

Finally, one may re-inject Theorem (0.2) into Theorem (0.1) (which
is of course used in the proof of Serre’s conjecture) to obtain

Corollary 0.5. Let ρ : GQ,S → GL2(O) be an continuous, repre-
sentation such that

(1) ρ is potentially Barsotti-Tate at p, and det ρ is equal to the
cyclotomic character times an even character of finite order.

(2) ρ̄|Q(ζp) is absolutely irreducible and has insoluble image if p = 2.

Then ρ arises from a holomorphic modular eigenform of weight 2.
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In the first section of this article we explain the refined form of
Serre’s conjecture, and why it implies (0.3) and (0.4) above. In fact we
extend this result to motives over Q of rank 2. This extension is already
suggested by Serre’s article, where the case of a smooth projective vari-
ety with 2-dimensional cohomology is considered. In the second section
we explain some of the ideas behind the proof of Theorem (0.1). In
the third we sketch the argument for Taylor’s result that ρ̄|F is mod-
ular for some totally real field F. Finally we explain some of the ideas
which go into the work of Khare-Wintenberger on Serre’s conjecture. In
particular, we explain Khare’s argument in the level one case.

Acknowledgment. I would like to thank A. Beilinson, G. Böckle,
K. Buzzard, M. Emerton, C. Khare and the referee for useful remarks.

1. Serre’s conjecture and its consequences

1.1. The strong Serre conjecture. For a subfield F ⊂ Q̄ (resp.
F ⊂ Q̄p) we will denote by GF the Galois group Gal(Q̄/F ) (resp.
Gal(Q̄p/F )). If S is a finite set of places of F, we denote by GF,S the
Galois group of the maximal extension of F in Q̄ unramified outside S.

In this section we recall the precise form of Serre’s conjecture which
predicts not only that an odd representation ρ̄ : GQ,S → GL2(F) arises
from a modular form, but also the minimal weight and level of the
form which gives rise to it. We then recall Serre’s argument deducing
the modularity GL2-type abelian varieties (or more generally of two
dimensional odd motives), as well as Khare’s modification of this ar-
gument, which allows one to deduce the Artin conjecture for odd, two
dimensional representations. These applications use the refined form of
Serre’s conjecture, which will also be needed at various points later in
this article.

1.1.1. Let IQp ⊂ GQp denote the inertia subgroup. We denote by

ωi : IQp → F×
pi

; σ 7→ σ( pi−1
√
p)/ pi−1

√
p (mod p)

the fundamental character of level i. We will write ω for ω1, which is
the mod p reduction of the p-adic cyclotomic character, and we again
denote by ω : GQ,S → F× the mod p cyclotomic character.

Suppose we are given a representation ρ̄p : GQp → GL2(F). Then

ρ̄p|IQp
is either of the form

(
ωi ∗
0 1

)
⊗ ωj with i, j ∈ Z or

(
ωi2 0

0 ωpi2

)
⊗ ωj

for some integers i, j ∈ Z, and p+ 1 ∤ i.
When ρ̄IQp

is semi-simple (i.e., tamely ramified) we may choose i, j ≥
0 and such that j ∈ [0, p − 2] and i + j ∈ [1, p − 1]. When ρ̄IQp

is

wildly ramified, i, j ∈ [0, p− 2] are uniquely determined. We set k(ρ̄) =
1 + i + (p + 1)j unless ρ̄p|IQp

∼ ( ω ∗
0 1 ) ⊗ ωj with ∗ très ramifiée, which
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means that the cocycle ∗ has the form σ 7→ σ( p
√
u)/ p

√
u for some u ∈ Q×

p

such that p ∤ vp(u). In this exceptional case we set k(ρ̄) = (p+1)(j+1).
For a continuous representation ρ̄ : GQ,S → GL2(F), we set k(ρ̄) =

k(ρ̄|GQp
) and we set

N(ρ̄) =
∏

l 6=p

cond(ρ̄|GQl
)

where l runs over the finite primes of S not equal to p, and cond(ρ̄|GQl
)

denotes the Artin conductor of ρ̄|GQl
. If V denotes the underlying F-

vector space of ρ̄, then this is an integral power of l with

vl(cond(ρ̄|GQl
)) =

∞∑

i=0

1

(G0 : Gi)
dimV/V Gi ,

where the Gi ⊂ GQl are the ramification subgroups.
Serre made the following:

Conjecture 1.1.2. Let ρ̄ : GQ,S → GL2(F) be odd and absolutely
irreducible. Then ρ̄ ∼ ρ̄f,λ where f is an eigenform of weight k(ρ̄) and
level N(ρ̄).

1.1.3. Remarks.
(1) We have stated the conjecture in a way which differs slightly

from the formulation in [Se 1]. First, Serre specified a character for the
form f in terms of ρ̄. As observed by Serre [Se 2, p. 197], this form
of the conjecture is correct when p ≥ 5 (in which case it is easily seen
to be equivalent to the form we have given here using Carayol’s lemma
[Ca 2, Prop. 5]), but wrong for p = 2, 3. In the latter case this can be
rectified by using Katz modular forms (cf. [Ed]). Secondly, when p = 2
and ρ̄p|IQp

∼ ( ω ∗
0 1 ) ⊗ ωj with ∗ très ramifiée, Serre set k(ρ̄) = 4 rather

than 3. The reason for this is that Serre’s choice of character is even, so
k(ρ̄) = 3 is impossible if one insists on it. Without this choice, k(ρ̄) = 3
seems to be a more natural convention.

(2) When ρ̄|GQp
is a sum of two unramified characters - so that

k(ρ̄) = p - Serre predicted that ρ̄ also arises from a weight 1 Katz
modular form. Here one is really forced to use Katz modular forms, since
in general there is an obstruction to lifting a form from characteristic
p to characteristic 0. However, if we fix N, then this obstruction is
contained in the p-torsion of a finite Z[1/N ]-module (more precisely of
the cohomology of a line bundle on a modular curve over Z[1/N ]-cf.
[Ka, 1.6, 1.7]), and hence vanishes for almost all p.

Serre’s conjecture on weight 1 forms was proved by Gross [Gr] as-
suming that ρ̄|GQp

has non scalar semi-simplification, and by Coleman-

Voloch [CV] assuming p > 2. The remaining case with ρ̄|GQp
having

scalar semi-simplification and p = 2 still seems to be open.
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(3) One can ask for the weights of all the modular forms giving
rise to ρ̄. By using the mod p representation theory of GL2(Fp), and
considering ρ̄ together with all its twists, one can reduce this to the
question of whether there is a modular form of weight k ∈ [1, p+1] (and
prime to p level) giving rise to ρ̄.

For example, if ρ̄|IQp
∼

(
ωi2 0

0 ωpi2

)
for some i ∈ [1, p− 1], then k(ρ̄) =

1 + i. However, given that ρ̄ is modular, a twist of it also arises from a

form of weight p+2− i, because ρ̄|IQp
∼

(
ωp+1−i

2 0

0 ω
p(p+1−i)
2

)
⊗ωi−1. (For

i = 1 this is not formally implied by (1.1.2), but is still true).
Similarly, if ρ̄|IQp

∼
(
ωi 0
0 1

)
, so k(ρ̄) = i+1, then ρ̄|IQp

∼
(
ωp−1−i 0

0 1

)
⊗

ωi, which suggests that ρ̄⊗ω−i is modular of weight p−i.More precisely,
if i 6= p − 1 then this is predicted by (1.1.2) and was proved in above
papers of Gross and Coleman-Voloch. If i = p then this is the situation
already mentioned in (2). Serre called the weight i+ 1 form giving rise
to ρ̄ and the weight p + 1 − i form giving rise to ρ̄ ⊗ ω−i, companion
forms.

Theorem 1.1.4. Suppose that ρ̄ : GQ,S → GL2(F) arises from some
modular eigenform. Then it arises from a form of weight k(ρ̄) and level
N(ρ̄).

Proof. This is the consequence of the work of several people, chiefly
Ribet [Ri 1], [Ri 3] for results regarding the level N(ρ̄) and Gross,
Coleman-Voloch and Edixhoven [Ed] for the weight k(ρ̄). For p > 2,
the general statement was completed by Diamond [Di 3].

When p = 2 this was proved by Buzzard [Bu, Prop. 2.4, Thm. 3.2]
provided that ρ̄|GQp

is not scalar, and by Wiese [Wie] when ρ̄ is dihedral

(cf. also [Se 1, Prop. 10]). The general non-dihedral case when k(ρ̄) = 2
is contained in the work of Khare-Wintenberger [KW 2, Thm. 1.2].
However, this uses the techniques introduced by Khare-Wintenberger
in a serious way. �

1.2. Modularity of Abelian varieties of GL2-type. Recall
[Ri 2] that an abelian variety over Q of GL2-type is an abelian variety
A/Q with an embedding E →֒ End QA⊗Z Q, where E is a number field
of degree g = dimA. (Here and below, by such an embedding we will
always mean a map of rings with unit, although we do not repeat this
condition explicitly below).

If λ|p is a prime of E, let VA,λ = Tp(A) ⊗E⊗QQp Eλ, where Tp(A)
denotes the p-adic Tate module of A. For v ∤ p a prime where A has good
reduction the characteristic polynomial Pv(A, T ) := det(1−TFrobv|Vλ)
has coefficients in the ring of integers OE of E, and is independent of λ.

The following result was proved by Serre [Se 1, 4.7] for E totally
real and by Ribet [Ri 1, §4] in general.
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Theorem 1.2.1. Assume that (1.1.2) holds. Let A/Q be of GL2

type, and E a number field of degree dimA, which admits an embedding
E →֒ End QA⊗Z Q. Then for any prime λ|p of E, Vλ is modular. That
is Vλ ∼ ρf,λ′ for some cusp eigenform f of weight 2, and a prime λ′|p
of Ef .

Proof. Let S be the set of primes of bad reduction of A together
with the infinite prime and p. Let c ∈ GQ,S be a complex conjugation.
Since c is a continuous involution of A(C), it induces an involution of
the rational Betti cohomology H1

B(A,Q), and the induced involution of
H1
B(A,C) exchanges the H1,0 and H0,1 pieces of the Hodge decompo-

sition. Hence c cannot act as a scalar on the 2-dimensional E-vector
space H1(A,Q), so that it has eigenvalues −1 and +1, and det(c) = −1.
It follows that Vλ, which is dual to the étale cohomology H1(A,Qp), is
an odd representation.

Now let λ|p be any prime of E. Write ρA,λ for the representation of
GQ,S on Vλ. Suppose that A has good reduction at p. Then VA,λ arises
from a p-divisible group over Zp, and hence ρ̄A,λ arises from a finite flat
group scheme. A result of Raynaud [Ra, Thm. 3.4.3] therefore implies

that ρ̄A,λ|IQp
has the form

(
ω2 0
0 ωp2

)
or ( ω ∗

0 1 ) with ∗ peu ramifiée. Hence

k(ρ̄A,λ) = 2. Moreover, if N denotes the conductor of A, then N(ρ̄A,λ)
divides N. Hence, if ρ̄A,λ is absolutely irreducible, then ρ̄A,λ ∼ ρ̄fλ,λ′ for
some eigenform fλ ∈ S2(Γ1(N),C), and some prime λ′|p of Efλ .

Now suppose that ρ̄A,λ is absolutely irreducible for infinitely many
λ. Since the space S2(Γ1(N),C) is finite dimensional, there are only
finitely many possibilities for the form fλ. Hence there is an infinite
set I of primes of E such that ρ̄A,λ is absolutely irreducible, and f =

fλ is independent of λ ∈ I. Let Ẽf ⊂ C be a finite extension of Ef
which contains all embeddings E →֒ C, and for each λ ∈ I, fix an
extension Ẽf →֒ Q̄p of λ′. We again denote this extension by λ′. Then

λ = λ′ ◦ iλ : E →֒ Q̄p for some embedding iλ : E → Ẽf . After replacing
I by an infinite subset, we may assume that all the iλ are equal to a
fixed embedding i.

Then for any λ ∈ I, and any v ∤ Np, we have

i(trEλ(Frobv|VA,λ)) = trEf,λ′ (Frobv|ρf,λ′) = av(f) (modλ′).

Note that the left hand side depends only on v and not on λ.
Since this holds for infinitely many primes λ′ of Ẽf , we conclude
that i(trEλ(Frobv|VA,λ)) = av(f) for all v ∤ Np, and that Ef ⊂ i(E).
(More precisely, we see that av(f) ∈ E for v ∤ N. One can show that
this implies that also av(f) ∈ E for v|N.) Hence, for any prime λ|p,
ρA,λ ∼ ρf,λ′ where λ′ = λ ◦ i−1 : Ef → Q̄p. Note that ρA,λ is absolutely
irreducible, since we have assumed this for infinitely many ρ̄A,λ.
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Finally we have to check our assumption that infinitely many of the
ρ̄A,λ are absolutely irreducible. If this were not true then the semi-
simplification of ρ̄A,λ would be the mod p reduction of ǫ1 + ǫ2χ, where
χ : GQ,S → Z×

p is the p-adic cyclotomic character, and ǫ1, ǫ2 are Dirichlet
characters of conductor dividing N. Then a finiteness argument as above
would show that the character of ρA,λ itself was of this form. This
is impossible, because for v ∤ Np, ρf,λ(Frobv) has eigenvalues whose

complex absolute values are |v|1/2. �

1.2.2. We could also have proved (1.2.1) by using a modularity lift-
ing theorem. As in the argument above, all but finitely many of the
ρ̄A,λ are absolutely irreducible, and a similar argument shows that if all
but finitely many of these representations are dihedral, then the ρA,λ
are themselves dihedral and arise from a CM form. Since the ρ̄A,λ are
modular by assumption, ρA,λ is modular by (0.1).

Corollary 1.2.3. Let A/Q be an abelian variety of GL2-type. Then
A is a quotient of Jac(X1(N))m for some N,m ≥ 1.

Proof. This follows immediately from (1.2.1) by Faltings’ isogeny
theorem [Fa]. �

1.2.4. Recall that for a finite prime v, and any abelian variety A/Q,
the local L-factor Lv(A, T ) is defined by

Lv(A, T ) = det Qp(1 − Frob−1
v T |H1(A,Qp)

Iv)−1,

where Iv denotes the inertia subgroup at v. This is the inverse of a
polynomial with rational coefficients, which depends only on v and not
on p ∤ v. The complex L-function is defined by the Euler product

L(A, s) =
∏

ℓ

Lℓ(A, ℓ
−s)

where ℓ runs over the finite primes. This converges in the half plane
Re s > 3/2.

If λ|p is a prime of E, and λ ∤ v, we may also define

Lv,E(A, T ) = detEλ(1 − Frob−1
v T |H1(A,Qp)

Iv ⊗E⊗QQp Eλ)
−1.

This is the reciprocal of a polynomial with coefficients in E, and depends
only on v and not on λ. We have Lv(A, T ) =

∏
σ:E →֒C σ(Lv,E(A, T )).

Corollary 1.2.5. Assuming (1.1.2), let A be an abelian variety
of GL2-type. Then L(A, s) has an analytic continuation to the whole
complex plane, and satisfies a functional equation with respect to the
symmetry s 7→ 2 − s.

More precisely, if N(A) denotes the conductor, g = dimA, and we
set

Λ(A, s) = N(A)s/2((2π)−sΓ(s))gL(A, s),
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then we have

Λ(A, s) = ±Λ(A, 2 − s).

Proof. Let E ⊂ End QA ⊗Z Q be a field of degree g, and for a
prime λ|p of E, let

f =
∞∑

n=1

anq
n ∈ S2(Γ1(N),C)

be the normalised eigenform given by (1.2.1), so that VA,λ ∼ ρf,λ′ for a
prime λ′|p of Ef . More precisely, we fix inclusion Ef ⊂ E ⊂ C so that
λ|Ef = λ′. We may also assume that f is a newform, so that there is no
f ′ ∈ S2(Γ1(N

′),C) with N ′ < N and av(f
′) = av(f) for v ∤ N.

If σ : Ef →֒ C is an embedding, then fσ :=
∑

n=1 σ(an)q
n is again

a normalized eigenform in S2(Γ1(N),C). This follows from the fact that
the space S2(Γ1(N),C) is spanned by the Hecke stable Q-subspace con-
sisting of cusp forms with rational Fourier coefficients.

If ε : (Z/NZ)× → C denotes the character of f, (extended to a
function on Z by setting ε(m) = 0 if (m,N) > 1) then

L(f, s) =
∞∑

n=1

ann
−s =

∏

ℓ

(1 − aℓℓ
−s + ε(ℓ)ℓ1−2s)−1

has analytic continuation and satisfies a functional equation with respect
to the symmetry s 7→ 2 − s. More precisely, if

Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s),

then

Λ(f, s) = W (f)Λ(f c, 2 − s),

where W (f) ∈ Ef is a root of unity, and c denotes complex conjugation.
Since VA,λ ∼ ρf,λ′ we have

L(f, s) =
∏

ℓ

detEλ(1 − Frobℓℓ
−s|(VA,λ)Iℓ)−1 =

∏

ℓ

Lℓ,E(A, ℓ−s),

where we view E ⊂ C via the embedding chosen earlier. More precisely,
we see that the Euler factors corresponding to primes ℓ ∤ N on the two
sides agree. It follows from a result of Carayol [Ca 1], building on work
of Deligne and Langlands, that the factors at ℓ ∤ N also agree. Finally
we compute

L(A, s) =
∏

ℓ

Lℓ(A, ℓ
−s) =

∏

ℓ

∏

σ:E →֒C

σ(Lℓ,E(A, ℓ−s)) =
∏

σ:E →֒C

L(fσ,C).

This shows that L(A, s) is entire, and that Λ(A, s) =
∏
σ Λ(fσ,C). That

N(A) = Ng follows from the work of Carayol loc. cit. �
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1.3. Artin’s conjecture. Khare [Kh 2] observed that one could
modify the above arguments to show that (1.1.2) implies Artin’s con-
jecture for odd, two dimensional representations.

Theorem 1.3.1. Assume (1.1.2), and let ρ : GQ,S → GL2(C) be an
odd, irreducible Artin representation. Then the Artin L-function

L(ρ, s) =
∏

ℓ

det C(1 − Frobℓℓ
−s|ρIℓ)−1

is entire. More precisely, there exists an eigenform f of weight 1 such
that L(ρ, s) = L(f, s).

Proof. This was observed by Khare [Kh 2]. Since ρ has finite im-
age, after conjugation we may assume that ρ factors through GL2(E) for
some number field E. For λ|p a prime of E, denote by ρ̄λ the reduction
of ρ modulo λ. It is not hard to see that ρ̄λ is absolutely irreducible,
except for finitely many λ.

Suppose that ρ is unramified at p, and λ|p. Then k(ρ̄λ) = p, and
so ρ̄λ = ρ̄f,λ′ for some eigenform f ∈ Sp(Γ1(N),C) and λ′|p a prime
of Ef . Here N denotes the conductor of ρ. The result of Coleman-
Voloch mentioned in (1.1.3)(2) shows that there exists an eigenform
g ∈ S1(Γ1(N),C) such that ρ̄g,λ′′ = ρ̄f,λ′ = ρ̄λ for λ′′|p a prime of
Eg. More precisely, there exists a weight 1 Katz modular eigenform
whose q-expansion is equal to that of f modulo p. If we exclude finitely
many primes, we may assume that this form lifts to an eigenform g ∈
S1(Γ1(N),C).

Since we can make this argument for infinitely many p, an argument,
as in (1.2.1) shows that ρ ∼ ρg,λ′′ for some g ∈ S1(Γ1(N),C). �

1.4. Modularity of motives of GL2-type. To finish this section,
we explain how to extend the above results for Abelian varieties of GL2-
type to Grothendieck motives of GL2-type.

Let X be a smooth projective variety over Q of dimension d. We
denote by Zi(X) the group of cycles on X of codimension i, and by
Ci(X) the quotient of Zi(X) ⊗Z Q by the subspace spanned by cycles
whose classes in cohomology are trivial. This condition is independent
of the cohomology theory used, since any of the standard theories (l-
adic, de Rham, crystalline) may be compared with the Betti cohomology
H2i
B (X(C),Q). If X,Y, Z are smooth projective varieties over Q we have

a map

CdimX+i(X × Y ) × CdimY+j(Y × Z) → CdimX+i+j(X × Z)

given by (U,W ) 7→ p13∗(U×Z∩X×W ), where p13 denotes the projection
from X × Y × Z to X × Z. In particular, CdimX(X ×X) is a ring.

Recall [Ja] that a Grothendieck motiveM over Q is a tuple (X,π,m)
where X is a smooth projective variety over Q of dimension n, π ∈
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Cn(X ×X) satisfies π2 = π, and m ∈ Z. One defines

Hom((X ′, π′,m′), (X,π,m)) = πCdimX−m+m′
(X ×X ′)π′.

Given any cohomology theory H∗ on smooth projective varieties over
Q, and M = (X,π,m) we set H i(M) = π(H i+2m(X))(m). With our
conventions this is contravariant in M. We refer to this as the realization
of M (in degree i) corresponding to the theory H∗.

Let E be a number field, and consider an embedding E →֒ EndM.
If λ|p is a prime of E, we set H i

λ(M) = H i(M,Qp) ⊗E⊗Qp Eλ. Here

H i(M,Qp) denotes the p-adic étale realization of M.

Lemma 1.4.1. Suppose that M = (X,π,m), and E →֒ EndM. If v is
a prime of Q where X has good reduction then detEλ(1-TFrob−1

v |H i
λ(M))

has coefficients in E, and is independent of λ ∤ v.

Proof. Let Q ∈ E[X]. It suffices to show that for any Q,

tQ,λ := trEλ(Q(Frob−1
v )|H i

λ(M)),

a priori an element of Q̄p, is in E and independent of λ. Now
∑

λ|p

tQ,λ = trQp(Q(Frob−1
v )|H i(M,Qp))

= trQp(πQ(Frob−1
v )|H i+2m(X)(m)).

The right hand side has coefficients in Q, and is independent of p by
[KM, Thm 2]. It follows that for any a ∈ E,

∑
λ|p λ(a)tQ,λ ∈ Q, since we

may apply the above observations to aQ instead of Q. Hence
∑

λ tQ,λλ
is a Q-linear map, E → Q ⊂ Q̄p. Since the embeddings λ : E →֒ Q̄p,
are Q̄p-linearly independent, this implies that there is some t ∈ E such
that tQ,λ = λ(t) for all λ. So tQ,λ ∈ E, and depends only on p.

If λ, λ′ ∤ v are two primes of E, then the above shows that for a ∈ E,
we have

trE/Q(atQ,λ) = trE/Q(atQ,λ′) ∈ Q.

Hence trE/Q(a(tQ,λ−tQ,λ′)) = 0 for all a, which implies tQ,λ = tQ,λ′ . �

1.4.2. Given M and E, as above, we will say that M is of GL2-
type, if the Betti cohomology H i

B(M,Q) is two dimensional over E. The
de Rham realization H i

dR(M) is then also a two dimensional E-vector
space. We call the two degrees in which gr•H i

dR(M) are non-zero the
Hodge weights of hi(M). According to standard (perhaps unfortunate)
conventions, these are the negatives of the Hodge-Tate weights of the
GQp-representation H i(M,Qp).

If λ|p is a prime of E, thenH i
λ(M) is a two dimensional Eλ-represent-

ation of GQ,S where S the union of {p,∞} and the set of primes at which
X has bad reduction.



202 MARK KISIN

Theorem 1.4.3. Let M be of GL2-type with Hodge weights r 6

s. Suppose that H i
λ(M) is an absolutely irreducible representation of

GQ,S , and if r = s assume that detEλ H
i
λ(M) is odd. Then for some

N ≥ 1, there exists an eigenform f in Ss−r+1(Γ1(N),C), such that
ρf,λ′ ∼ H i

λ(M)(s) for some prime λ′|p of Ef .

Proof. If r = s, then the main theorem of citeKiW implies that the
action of GQ,S on H i

λ(M)(s) factors through a finite quotient, and hence
the theorem follows from (1.3.1). Alternatively, the same argument as
in (1.3.1) can be applied directly to show that H i

λ(M) comes from a
weight 1 form.

Thus we may assume that r < s. Then an argument with the Hodge
decomposition, as in the proof of (1.2.1), shows that detH i

λ(M) is odd.
Write ρM,λ forH i

λ(M)(s). Note that the Hodge-Tate weights of ρM,λ as a
GQp-representation are 0 and j = s−r. By a result of Fontaine-Messing,
[FMe, 2.3], if s− r < p− 1, then ρM,λ arises from a weakly admissible
module, and using Fontaine-Laffaille theory [FL, §8, Thm. 5.3] one sees

that ρ̄M,λ|IQp
is either of the form

(
ωj2 0

0 ωpj2

)
or

(
ωj ∗
0 1

)
. Moreover, if

j = 1, then ρ̄M,λ|GQp
arises from a finite flat group scheme [FL, §9], so

in the second case ∗ is peu ramifiée. It follows that k(ρ̄M,λ) = s− r+1.
To bound N(ρ̄M,λ), let N0 be the product of the primes of bad

reduction of X. If g = [E : Q], the image of ρ̄M,λ has order dividing
(p2g − 1)(p2g − pg). There exists a positive integer a, and a class y ∈
Z/Na

0 Z such that (y2g−1)(y2g−yg) 6= 0 (mod la) for any l|N0. Hence, if
p = y (mod Na

0 ), then the order of the image of ρ̄M,λ has l-adic valuation
at most a− 1, and [Se 1, 4.9.4] implies

vl(N(ρ̄M,λ)) 6 2(a+
1

p− 1
).

It follows that for λ|p with p = y (mod Na
0 ), there exists fλ ∈

Ss−r+1(Γ1(N),C) such that ρ̄fλ,λ′ ∼ ρ̄M,λ for some prime λ′|p of Efλ ,
where N is an integer which does not depend on λ. The rest of the
proof is identical to that of (1.2.1), using the fact that for v /∈ S, the
characteristic polynomial of ρM,λ(Frobv) does not depend on λ ∤ v.

We could also have used an argument involving a modularity lifting
theorem as in (1.2.2). �

Corollary 1.4.4. Keep the above notation and assumptions. Then

Lv(h
i(M), T ) := detEλ(1 − TFrob−1

v |H i
λ(M)Iv)−1

is the reciprocal of a polynomial with coefficients in E, which does not
depend on λ ∤ v. Moreover, for any embedding σ : E →֒ C, the product

Lσ(h
i(M), s) =

∏

ℓ

σ(Lℓ(h
i(M), ℓ−s))

which converges for Re s sufficiently large, extends to an entire function.
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Proof. This follows immediately from (1.4.3) and the correspond-
ing properties of the L-function L(f, s). Note that the claim regarding
L-factors at primes ℓ|N follows from the results of Carayol already sited
above [Ca 1]. �

2. Modularity lifting theorems

2.1. Statement of results. In this section we explain some of the
ideas which go into the proof of Theorem (0.1). For simplicity, we will
restrict ourselves to the case p > 2. While the case p = 2 presents some
technical difficulties, the main ideas are similar.

When proving results of the type ρ̄ modular =⇒ ρ modular, it is
more convenient to work with Barsotti-Tate representations rather than
potentially Barsotti-Tate representations. This is because in the former
case, the p-adic Hodge theory, which is used to control the deformation
rings appearing in the argument, is better behaved. For the purposes of
proving Theorem (0.1), we can reduce ourselves to the case of Barsotti-
Tate representations if we replace Q by a suitable finite, solvable totally
real extension F. If one can show that ρ|GF arises from a Hilbert modular
form, then Theorem (0.1) follows by Langlands base change (cf. the end
of the proof of [Ta 4, Thm. 2.4]).

The modularity of ρ|GF can be deduced from the following result
over totally real fields. (As for modular forms, if π is a Hilbert modular
eigenform over F, and λ the prime of its coefficient field, we denote by
ρπ,λ (resp. ρ̄π,λ) the corresponding λ-adic (resp. mod λ) representation.
In the following λ will usually be a prime dividing p, and we will write
ρπ,λ without further comment.)

Theorem 2.1.1. Let F/Q be totally real, p > 2, S a finite set of
primes of F, and ρ : GF,S → GL2(E) a continuous representation.
Suppose that

(1) ρ is Barsotti-Tate at each prime µ|p of F, and has cyclotomic
determinant.

(2) ρ̄ ∼ ρ̄π,λ for some Hilbert modular form π over F of parallel
weight 2 and prime to p level, such that ρπ,λ is ordinary at a
prime µ|p of F if and only if ρ is.

(3) ρ̄|F (ζp) is absolutely irreducible, and [F (ζp) : F ] > 2 if p = 5.

Then ρ ∼ ρπ′,λ for some Hilbert modular form π′ over F.

2.1.2. Here and below, when we say that ρ is ordinary at µ we mean
that ρ|GFµ has a rank 1 quotient on which the action of inertia at µ is

trivial. We will say that ρ is potentially ordinary at µ if this condition
holds on the restriction of ρ to an open subgroup of GFµ .

Note that the hypothesis (2) is stronger than just asking that ρ̄ ∼
ρ̄π,λ. Since p may be ramified in F, it may happen that ρ̄ arises as the
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reduction of both ordinary and non-ordinary Barsotti-Tate representa-
tions. Hence (0.1) does not follow immediately from (2.1); one needs
to show that if ρ arises from a representation of GQ, one can find a π
satisfying the stronger condition in (2). Sometimes one can improve this
result. The following corollary can be deduced from the theorem using
exactly the same methods as in [Ki 2, §2].

Corollary 2.1.3. Let p > 2, F/Q a totally real field, S a finite set
of primes of F, and ρ : GF,S → GL2(E) a continuous representation.
Suppose that

(1) ρ is potentially Barsotti-Tate at each prime µ|p of F, and that
if ρ is potentially ordinary at µ then Fµ = Qp.

(2) ρ̄ ∼ ρ̄π,λ for some Hilbert modular form π over F of parallel
weight 2.

(3) ρ̄|F (ζp) is absolutely irreducible, and [F (ζp) : F ] > 2 if p = 5.

Then ρ ∼ ρπ′,λ for some Hilbert modular form π′ over F.

In the remainder of this section we will try to outline the proof
of (2.1). Further details may be found in [Ki 1] and [Ki 2]. More
precisely, the theorem is proved there assuming that if µ|p is a place of
F then the residue field at µ is equal to Fp. This assumption has been
removed by Gee [Ge].

2.2. Barsotti-Tate deformation rings. Suppose that K/Qp is
a finite extension, F a finite extension of Fp, and ρ̄ : GK → GL2(F)
a continuous representation. We will suppose that End F[GK ]ρ̄ = F,
although there is a variant of the theory without this assumption.

Let R(ρ̄) denote the universal deformation ring of ρ̄. If E/W (F)[1/p]
is a finite extension, and x : R(ρ̄) → E a map of W (F)-algebras, then
we denote by Vx the two dimensional E-representation of GK obtained
by specializing the universal representation via x.

Proposition 2.2.1. There exists a p-torsion free quotient R0,1(ρ̄)
of R(ρ̄) with the following properties:

(1) If x : R(ρ̄) → E is a map of W (F)-algebras then x factors
through R0,1(ρ̄) if and only if Vx is Barsotti-Tate with Hodge-
Tate weights equal to 0, 1, and detVx is equal to the cyclotomic
character.

(2) R0,1(ρ̄)[1/p] is formally smooth over W (F)[1/p] of dimension
[K : Qp].

(3) Suppose that K has residue field Fp. If x1, x2 : R0,1(ρ̄) → E
are two W (F)[1/p]-algebra maps, then the images of associated
maps of spectra lie on the same component of SpecR0,1(ρ̄)[1/p]
if and only if Vx1 and Vx2 are either both ordinary or both non-
ordinary. Moreover if E/Qp is a finite extension, then the
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connected components of R0,1(ρ̄)⊗W (F) E are in bijection with

those of R0,1(ρ̄)[1/p].

2.2.2. The proof of (2.2) uses p-adic Hodge theory. To construct the
ring R0,1(ρ̄) consider first the quotient Rfl(ρ̄) of R(ρ̄) which corresponds
to deformations of ρ̄ which are the generic fiber of a finite flat group
scheme [Ram]. Let Rfl,χ(ρ̄) denote the quotient of Rfl(ρ̄) corresponding
to deformations with cyclotomic determinant. Then we take R0,1(ρ̄) to
be Rfl,χ(ρ̄) modulo its ideal of p-power torsion elements.

It is not hard to see that R0,1(ρ̄) satisfies (1). The most delicate
point is to show that it satisfies (3). The proof uses a classification
of finite flat group schemes initiated by Breuil [Br 2]. Rather than
studying deformations of ρ̄ directly, one studies the finite flat group
schemes over OK which give rise to them (finite flat models).

We will give some of the ideas below. First we explain how this
result implies (2.1.1). We remark that although we use (2.2.1) in the
proof of (2.1.1) below, we have stated (2.1.1) without any assumption
on the residue fields of F at primes v|p. This is because Gee [Ge] has
proved (a variant of) (2.2.1) without any assumption on the residue
field in the case when ρ̄ is trivial. The case of trivial image is enough
for applications to modularity, since one can always reduce to this case
by base change. Of course even to formulate (2.2.1) in this situation
requires the use of framed deformation rings, which we have avoided
here.

2.3. The modified Taylor-Wiles method.

Sketch of (2.2.1) =⇒ (2.1.1) : We will explain the proof in the so
called “minimal case”; namely when the conductor of ρ̄ at any prime
µ ∤ p is equal to that of ρ, and the action of the inertia at µ is unipotent.

Recall the original method of Taylor-Wiles [TW] for proving mod-

ularity. One wants to check that θ : R
∼−→ T where R is a global defor-

mation ring with certain local conditions imposed, and T is a localized
Hecke algebra. The representation ρ corresponds to a map R → E,
and we would like to show that this factors through T. By considering
deformation rings and Hecke rings with auxiliary primes in the level
and applying a patching argument, one finds that the map θ sits in the
following diagram

W (F)[[x1, . . . xr]] // R∞
θ∞

// //

��
��

T∞

��
��

R
θ

//// // T

Here r is some non-negative integer. One knows the following informa-
tion:

(1) θ is obtained from θ∞ by factoring out by (x1, . . . , xr)



206 MARK KISIN

(2) T∞ is finite flat over W (F)[[x1, . . . xr]].
(3) There is a surjective map W (F)[[z1, . . . zr]] → R∞.

The condition (2) is deduced using the geometry of modular curves,
while (3) follows from a calculation with Galois cohomology and Poitou-
Tate duality.

From (2) it follows that T∞ is pure of dimension r + 1, and hence
the composite of the surjective maps

W (F)[[z1, . . . zr]]
(3)→ R∞ → T∞

is an isomorphism. It follows that θ∞ is an isomorphism, and so is θ by
(1).

In the situation of Theorem (2.1.1), (3) no longer holds, and one
does not know how to prove (2) (it may well be false). Instead one
replaces them with the following weaker conditions

(2)′ There exists a faithful, finite, rank 1, T∞-module M∞ which is
finite flat over W (F)[[x1, . . . , xr]].

(3)′ Let R0,1
v|p =→

v|p
⊗̂R0,1(ρ̄|GFv ), where the tensor product is taken

over W (F). We can assume that r ≥ d = [F : Q], and there
exists a surjection

R0,1
v|p[[z1, . . . , zr−d]] → R∞.

The module M∞ is built by patching spaces of modular forms at
auxiliary level. (The idea of replacing (2), which is a condition involv-
ing Hecke algebras, with a condition on modular forms goes back to
Diamond [Di 2] and Fujiwara.)

We can now finish the argument as follows: From (2)’ it still follows
that T∞ is pure of dimension r + 1. Consider the map on spectra

(2.3.1) Spec T∞ →֒ SpecR∞ →֒ SpecR0,1
v|p[[z1, . . . , zr−d]]

induced by composing (3)’ and θ∞. We have already observed that the
left hand side is pure of dimension r + 1, and the right hand side has
dimension

1 +
∑

p|p

[Fp : Qp] + r − d = r + 1

by (2.2.1)(2). The formal smoothness of (2.2.1)(2) implies that
the image of (2.3.1) is a union of irreducible components of

SpecR0,1
v|p[[z1, ..., zr−d]]. The description of these components in (2.2.1)(3),

together with the condition (2.1.1)(2) guarantees that the point corre-
sponding to ρ is in the image of (2.3.1). Hence ρ factors through T∞,
and hence through T.

Finally let us remark that the argument in the non-minimal case
is very similar, but one needs to patch over a tensor product of local
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rings at the non-minimal primes of ρ̄ as well as primes dividing p. (cf. §3
below).

2.4. Moduli of finite flat group schemes. We now explain some
of the ideas which go into the proof of (2.2.1). We begin by recalling a
construction of finite flat group schemes introduced by Breuil [Br 2].

2.4.1. Let k denote the residue field of K, and let W = W (k). Let
S = W [[u]], and equip the ring S with an endomorphism ϕ which acts as
the usual Frobenius on W, and sends u to up. Fix a uniformiser π ∈ OK ,
and let E(u) be the Eisenstein polynomial of π.

Denote by ′(Mod/S) the category of S-modules M, equipped with
a ϕ-semi-linear map ϕ : M → M such that the cokernel of ϕ∗(M) → M,
the S-linear map induced by ϕ, is killed by E(u). We give ′(Mod/S) the
structure of an exact category induced by that on the abelian category
of S-modules.

Let (Mod FI/S) be the full subcategory of ′(Mod/S) consisting of
those M such that as an S-module M is isomorphic to ⊕i∈IS/p

niS,
where I is a finite set and ni is a non-negative integer. We denote
by (Mod/S) the full subcategory of ′(Mod/S) consisting of objects M

which are successive extensions of objects whose underlying S-modules
are finite free S/pS-modules. This is equivalent to asking that the S-
module M is killed by a power of p, and has projective dimension 1
[Ki 3, 2.3.2]. Finally, we denote by (Mod/S)Zp the full subcategory of
′(Mod/S) consisting of objects whose underlying S-modules are finite
free.

We will write (p-Gr/OK) for the category of finite flat group schemes
over OK of p-power order, and (p-div/OK) for the category of p-divisible
groups over OK .

Theorem 2.4.2. For p > 2, there is an exact equivalence

(2.4.3) (Mod/S)
∼−→ (p-Gr/OK).

This induces an equivalence between (Mod FI/S) and the category of
finite flat groups schemes G such that G[pn] is finite flat for n ≥ 1 as
well as an equivalence

(Mod/S)Zp

∼−→ (p-div/OK).

2.4.4. To explain some of the ideas behind the proof of (2.4.2), we
need to introduce another category of modules. Let S denote the p-
adic completion of W [u,E(u)i/i!]i≥1. We equip S with a Frobenius ϕ,
which is the usual Frobenius on W and sends u to up, and we denote by
Fil1S ⊂ S, the kernel of the map of W -algebras S → OK which sends u
to π.

Let ′(Mod/S) be the category of triples (M,Fil1M, ϕ1), where M
is an S-module, Fil1M ⊂ M is a submodule containing Fil1SM, and
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ϕ1 : Fil1M → M is a Frobenius semi-linear map which satisfies

ϕ1(sx) = (ϕ(E(u))/p)−1ϕ1(s)ϕ1(E(u)x)

for s ∈ Fil1S and x ∈ M. Note that ϕ(E(u))/p is a unit in S, so the
formula makes sense. We denote by (Mod FI/S) the full subcategory of
′(Mod/S) such that

(1) M ∼−→ ⊕i∈IS/p
niS as an S-module, for I a finite set, and ni

non-negative integers.
(2) ϕ1(Fil1M) generates M as an S-module.

We denote by (Mod/S) the full subcategory of ′(Mod/S) consisting of
objects which are successive extensions of objects in (Mod FI/S) which
are killed by p. Finally, we denote by (Mod FI/S)Zp the full subcategory
of ′(Mod/S) consisting of those objects whose underlying S-modules are
finite free, and which satisfy (2) above.

There is a functor

(Mod/S) → (Mod/S); M 7→ S ⊗ϕ,S M,

where Fil1(S ⊗ϕ,S M) is the preimage of Fil1S ⊗S M under

S ⊗ϕ,S M
1⊗ϕ→ S ⊗S M,

and the map ϕ1 is the composite

S ⊗ϕ,S M
1⊗ϕ→ Fil1S ⊗S M

ϕ/p⊗1→ S ⊗ϕ,S M.

2.4.5. Remarks on the proof of (2.4.2). The functor in the theo-
rem was constructed by Breuil [Br 2], who showed that that it was
fully faithful and an equivalence on objects killed by p. This uses an-
other result of Breuil [Br 1], which asserts that for p > 2 there is an
anti-equivalence between (Mod/S) and the category of finite flat group
schemes over OK . This equivalence can then be composed with Cartier
duality and the functor (Mod/S) → (Mod/S) defined above to give the
functor of (2.4.2).

The connection between finite flat group schemes and S-modules is
via the theory of crystals attached to finite flat group schemes initiated
by Grothendieck [BBM]. If G is a finite flat group scheme over OK ,
there is crystal D(G) on the crystalline site of OK/W attached to G.
The values of this crystal on a thickening T in this site are coherent (but
not in general free) OT -modules. Since S is a divided power thickening
of OK , one can evaluate D(G) on S, and this gives the underlying S-
module of the object of (Mod/S) corresponding to G.

Breuil’s results can be combined with a deformation theoretic argu-
ment to obtain the classification of p-divisible groups in (2.4.2) [Ki 1,
2.2.22]. From this, one can deduce that (2.4.3) is an equivalence by writ-
ing a finite flat group scheme as a kernel of p-divisible groups [BBM,
3.3.1].
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There is another way of obtaining the classification of p-divisible
groups directly, without first constructing the functor (2.4.3) for finite
flat group schemes [Ki 3, 2.3]: The crystalline theory allows one to
describe deformations of p-divisible groups [Me]. Using this one can
show directly that for p > 2 there is an equivalence

(p-div/OK)
G7→D(G∗)(S)−→ (Mod FI/S)Zp ,

where G∗ denotes the Cartier dual of G.
Then, using a classification of crystalline representations in terms of

S-modules, one shows that the composite

(Mod/S)Zp → (Mod FI/S)Zp → (p-div/OK)

is an equivalence.
For p = 2 the above functor is an equivalence up to isogeny, and is

an equivalence if one considers only connected objects [Ki 5]. However
Breuil conjectured that (2.4.2) should be true for all p. The difficulties
at p = 2 seem to occur because the crystalline theory no longer works
as well, one reason for this being that the divided powers of 2, are
not topologically nilpotent (2i/i! does not tend 2-adically to 0). This
suggests that there should be an approach to (2.4.2) which does not go
through the crystalline theory. There are some intriguing calculations
of Breuil which point in this direction [Br 2].

2.4.6. Before applying the above theory to prove (2.2.1), we need
to relate the above classification to Galois representations. Fortunately,
there is a very simple way of doing so.

Let OE denote the p-adic completion of S[1/u]. The Frobenius ϕ
extends to OE by continuity. The ring OE is a complete discrete valua-
tion ring, with residue field k((u)). We denote by ΦMOE

the category

of finite OE -modules M equipped with an isomorphism ϕ∗(M)
∼−→ M.

Then one has the following [Ki 1, 1.1.13], [Br 3, 3.4.3].

Proposition 2.4.7. There is a commutative diagram of functors

(p-Gr/OK)
∼

//

G7→G(OK̄)

��

(Mod/S)

M7→M[1/u]

��

(f.fl GK-reps) // ΦMOE

where (f.fl GK-reps) denotes the category of GK-representations on fi-
nite length Zp-modules, which arise from a finite flat group scheme.
Moreover both horizontal functors are fully faithful.

2.4.8. To describe the ring R0,1(ρ̄) one studies the finite flat group
schemes which give rise to deformations of ρ̄. It turns out that, in gen-
eral, these have moduli of positive dimension, so that Artin rings are
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insufficient to describe them. For this reason we replace finite flat group
schemes by the S-modules with Frobenius introduced above.

Let A be a W (F)-algebra, set SA = S⊗ZpA, and extend ϕ to SA by
A-linearity. We denote by (Mod FI/S)A the category of finite projective
SA-modules MA, equipped with a map ϕ∗(MA) → MA, whose cokernel
is killed by E(u).

Let VF denote the underlying F-vector space of ρ̄. According to
(2.4.7), attached to VF there is an object MF of ΦMOE

. It is equipped
with an action of F by functoriality, and one can check that it is finite
free over k((u)) ⊗Fp F.

Let AugW (F) denote the category of pairs (A, I) consisting of aW (F)-

algebra A and a nilpotent ideal I ⊂ A such that (p) ⊂ I. We define a
functor DS,MF

on AugW (F) by declaring DS,MF
(A, I) to be the set of iso-

morphism classes of pairs consisting of an object MA in (Mod FI/S)A,
together with an isomorphism

MA ⊗S OE
∼−→MF ⊗F A/I

which is OE ⊗Fp A/I-linear, and compatible with Frobenius.

Theorem 2.4.9. The functor DS,MF
is represented by a projective

Rfl(ρ̄)-scheme

ΘVF
: G RVF

→ SpecRfl(ρ̄).

Moreover, ΘVF
becomes an isomorphism after inverting p.

Proof. [Ki 1, 2.1.11, 2.4.8]. In fact this holds for any (not neces-
sarily two dimensional) ρ̄. The statement that G RVF

represents DS,MF

is an abuse of terminology, since G RVF
is not actually an object of

AugW (F). It means that there is a functorial isomorphism

DS,MF
(A, I)

∼−→ HomW (F),I(SpecA,G RVF
)

where the right hand side means maps of W (F)-schemes such that under
the composite

SpecA→ G RVF
→ SpecRfl(ρ̄)

the radical of SpecRfl(ρ̄) pulls back into I.
The fact that ΘVF

becomes an isomorphism after inverting p can
be thought of as an incarnation of Tate’s theorem that the functor
which associates to a p-divisible group over OK its generic fibre is fully
faithful. �

2.4.10. To prove (2.4.2), we need to consider a subfunctor of DS,MF
.

We define D0,1
S,MF

(A, I) to be the set of MA in DS,MF
(A, I) such that

the image of the composite

ϕ∗(MA) → MA → MA/E(u)MA

is a maximal isotropic submodule in MA/E(u)MA (that is, locally
on SpecSA, it is its own annihilator under a symplectic pairing on
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MA/E(u)MA, which is locally free of rank 2 over OK ⊗Zp A), and the
rank 1 W (k) ⊗Zp A-module det MA/uMA is spanned by sections on
which ϕ acts by p.

Theorem 2.4.11. The subfunctor D0,1
S,MF

is represented by a closed

subscheme G R
0,1
VF

⊂ G RVF
. The morphism ΘVF

induces a projective map

Θ0,1
VF

: G R
0,1
VF

→ SpecR0,1(ρ̄)

which becomes an isomorphism after inverting p.
Moreover, the complete local rings on G R

0,1
VF

are isomorphic to those

on integral models of Hilbert modular varieties. In particular, G R
0,1
VF

⊗Z

Z/pZ is reduced.

Proof. [Ki 1, 2.4.6, 2.4.8]. The integral models in the proposition
are those studied by Deligne-Pappas [DP]. In more general situations
where dimVF > 2, the local geometry of the analogous schemes is con-
trolled by local models of Shimura varieties. The reason for the rela-
tionship is that both moduli problems are controlled by the same linear
algebra. We do not know if this has some deeper meaning. �

2.4.12. Sketch of (2.4.11) =⇒ (2.2.1). That R0,1(ρ̄)[1/p] satisfies
(2) follows from (2.4.11), because the description of the local structure

of G R
0,1
VF

implies, in particular, that G R
0,1
VF

[1/p] is formally smooth over

W (F)[1/p].
For a topological space X, write H0(X) for the set of its connected

components. Let G R
0,1
VF,0

denote the fibre of G R
0,1
VF

over the closed

point of SpecR0,1(ρ̄), and denote by Ĝ R
0,1

VF
the completion of G R

0,1
VF

along G R
0,1
VF,0

.
Then one has isomorphisms

H0(SpecR0,1(ρ̄)[1/p])
∼−→ H0(G R

0,1
VF

⊗Zp Qp)

∼−→ H0(G R
0,1
VF

)
∼−→ H0(Ĝ R

0,1

VF
).

The first isomorphism follows directly from (2.4.11), while the second

follows easily from the fact that G R
0,1
VF

⊗Z Z/pZ is reduced. The third

isomorphism is a consequence of formal GAGA [GD, III, 5.5.1].

Finally, the underlying topological space of Ĝ R
0,1

VF
is the same as that

of G R
0,1
VF,0

. In the situation of (3) one can check by a direct computation

that two closed points on G R
0,1
VF,0

are connected by a chain of rational

curves, provided they give rise via (2.4.2) to group schemes which are
either both ordinary or both non-ordinary. Not surprisingly, the latter
case is much more delicate.
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It is this final step which was carried out in [Ki 1] in the non-
ordinary case only when K has residue field Fp. This was the condition
removed by Gee in the case when ρ̄ has trivial image.

3. The work of Taylor

3.1. The results of this section are contained in [Ta 1], [Ta 2] and
[KW 3, §5]. The starting point is a “potential” version of Serre’s con-
jecture:

Theorem 3.1.1. Let p > 2, and ρ̄ : GQ,S → GL2(F) be odd and
irreducible. Then there exists a Galois totally real number field F in
which p is unramified, and a Hilbert modular form π over F of parallel
weight 2, such that ρ̄π,λ ∼ ρ̄|GF .

Sketch of Proof. The idea is to find an abelian variety A/F,
equipped with an embedding OL →֒ End FA, where OL is the ring of
integers of a totally real field L such that [L : Q] = dimA, and primes
λ|p and λ′ ∤ p of L such that

(1) A[λ] ∼ ρ̄|GF .
(2) A[λ′] is dihedral and not induced from a subfield of F (ζp).

Given such an A, we find that A[λ′] is evidently modular, since it
arises from a CM form, and hence A is modular by a modularity lifting
theorem of the type in §1. Hence A[λ] is modular and so is ρ̄|GF .

Collections of data of the above type are classified by a twisted
Hilbert modular variety M (once we fix L, λ and λ′, and the dihedral
extension appearing in (2)). These have points over large enough num-
ber fields F, and we want to check that F can be chosen so that F is
totally real and p is unramified in F. A general result of Moret-Bailly
[MB] asserts that F can be so chosen, provided that there are no local
obstructions. That is, provided that M has a point over R and over
some unramified extension of Qp. This can be proved by giving an ex-
plicit construction of the required Hilbert-Blumenthal abelian varieties
by using CM abelian varieties. �

3.1.2. In fact, Taylor proves a more precise result: F can be cho-
sen so that p splits in F if ρ̄|GQp

is absolutely irreducible, and such

that the residue field extensions at primes over p have degree at most
2 if not. This refinement is especially important in the absolutely ir-
reducible case, since it allows one to show that ρ̄ arises from a Hilbert
modular form over F of parallel weight k(ρ̄) - the Serre weight of ρ̄ (see
§3). This is used in [Ta 2] to establish potential modularity theorems
for 2-dimensional crystalline representations with distinct Hodge-Tate
weights in [0, p− 2]. That is, Taylor shows that such a representation is
modular when restricted to some totally real field.

Corollary 3.2. Suppose that ρ : GQ,S → GL2(E) is potentially
Barsotti-Tate at p, and that ρ̄|Q(ζp) is absolutely irreducible. Then there
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exists a Galois totally real extension F/Q such that p is unramified in F
and ρ|GF arises from a Hilbert modular form π over F of parallel weight
2.

Proof. If ρ̄ has dihedral image then it is modular, and the theo-
rem follows from (2.1.3). Otherwise we can apply (3.1.1) and choose
F totally real, Galois such that ρ̄|GF is modular, and p is unramified
in F. Since ρ̄(GF ) ⊂ ρ̄(GQ,S) is a normal subgroup, GQ,S normalizes
ρ̄(F[GF ]) ⊂ M2(F). Since ρ̄(GF ) contains a non-scalar semi-simple ele-
ment - the image of any complex conjugation - ρ̄(F[GF ]) is either a Borel
subalgebra, a Cartan subalgebra, or M2(F). In the first case ρ̄(GQ,S)
would be contained in a Borel subgroup, while in the second it would be
dihedral. Hence ρ̄(F[GF ]) = M2(F), and ρ̄|GF is absolutely irreducible.
Thus the condition (3) of (2.1.3) holds.

If ρ is not potentially ordinary at p, then the theorem follows from
(2.1.3). If ρ|GQp

is potentially ordinary at p, then the abelian variety

A in the proof of (3.1.1) can be chosen to have either potentially good
ordinary reduction or potentially multiplicative reduction at each prime
v|p of F (cf. [Ta 1, Lem. 1.2] and [KW 1, Prop. 2.5]). If π is the
Hilbert modular form corresponding to A, then by Hida theory there
is a form π′ of parallel weight 2 such that π′ principal series at all v|p,
the representation ρπ′,λ is potentially Barsotti-Tate and ordinary, and
ρ̄π′,λ ∼ ρ̄π,λ ∼ ρ̄|GF . Thus, there is a totally real solvable extension F ′/F
such that the base change of π′ to F ′ is ordinary and Barsotti-Tate at
all v|p. Hence ρGF ′ is modular by (2.1.1), and ρ|GF is modular by base
change. �

3.3. Let F be a number field, and S a finite set of primes. Suppose
that L is a number field, and for each finite place λ of L write N(λ) =
NL/Q(λ). Let Sλ denote the union of S and the primes v of F such that
v|N(λ).

A compatible system with coefficients in L, is a collection {ρλ} where
λ runs over the finite places of L, and for each such λ, ρλ : GF,Sλ →
GLn(Lλ) is a continuous representation such that

(1) ρλ is unramified outside Sλ.
(2) For v /∈ Sλ, tr(ρλ(Frobv)) ∈ L.
(3) If λ, λ′ are two finite primes of L and v /∈ Sλ ∪ Sλ′ is a finite

prime of F, then tr(ρλ(Frobv)) = tr(ρλ′(Frobv)).

We can strengthen these conditions as follows. Recall that for each
λ, and any v ∤ N(λ) one can attach a semi-simple representation of the
Weil-Deligne group at v to ρλ|GFv . If v|N(λ) one can also attach such
a representation if ρλ is potentially semi-stable at v. The construction
uses the theory of weakly admissible modules and is given in [Fo]. More
precisely, we take the semi-simplification of the representation produced
in loc. cit.
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We call {ρλ} strongly compatible if in addition to the above condi-
tions we have

(4) For each λ and any finite prime v of F with v|N(λ), ρλ is
potentially semi-stable at v.

(5) For each λ and v the semi-simple Weil-Deligne representation
at v attached to ρλ is defined over L.

(6) If λ and λ′ are two finite primes of L and v is any finite prime
of F, then the Weil-Deligne representations at v attached to
ρλ and ρλ′ are isomorphic (when viewed as L-representations
using (5)).

In fact (5) and (6) imply (2) and (3) respectively.
Fix an embedding σ : L →֒ C. Then as in (1.4.4) the Weil-Deligne

representation at v given by (5) gives rise to a local L-factor, which the
reciprocal of a polynomial with coefficients in L. For any λ, we denote
by Lσ(ρλ, s) the formal product of these L-factors.

Corollary 3.3.1. Keep the assumptions of (3.2). Then

(1) ρ occurs as part of a strongly compatible system {ρλ} of λ-adic
representations with coefficients in a number field L.

(2) For any σ : L →֒ C, The L-function Lσ(ρ, s) converges for Re s
sufficiently large and has a meromorphic continuation to C.

(3) If there exists a prime ℓ 6= p such that ρ|GQℓ
∼ ( εχ ∗

0 ε ) , where

ε is a character of finite order, then ρ ∼ TλA for some abelian
variety A of dimension [L : Q], equipped with an embedding
L →֒ End QA⊗Z Q, where λ|p is a prime of L.

Proof. Suppose that a prime ℓ as in (3) exists. If ρ has dihedral
image then it arises from a CM-form, and the corollary is clear, so we
will assume that this is not the case. We know that there exists a
Galois totally real number field F such that ρ|GF is modular. That is
ρ|GF ∼ ρπ,λ for some Hilbert modular form π over F. This implies that

ρ|GF ∼ TλÃ for an abelian variety Ã over F with multiplication by some
field L, since by construction [Ca 1] ρπ,λ is the λ-adic Tate module of
a factor of a Jacobian of a Shimura curve. We may assume that the
endomorphism ring of Ã contains the ring of integers OL of L.

Let A′ denote the Weil restriction of Ã to Q. Note that OL still acts
on A′ and we denote by TλA′ its λ-adic Tate module. Since ρ is not

dihedral, we have Ind
GQ

GF
(ρ|GF ) ∼ ρ ⊕ ρ′ where ρ does not occur as a

subquotient of ρ′. By Faltings’ isogeny theorem there exists a factor A
of A′ which is stable under the action of OL, and such that TλA ∼ ρ.

To prove (1) and (2) it will be useful to fix an embedding λ of the
algebraic numbers in C into Q̄p. Then for any Hilbert modular form π′

we will consider the representation ρπ′,λ corresponding to this choice of
λ.
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Note that (1) follows from (3) when the latter is applicable. In
general, we may still choose F and π as above such that ρ|GF ∼ ρπ,λ.
Using Brauer’s theorem write the trivial representation of Gal(F/Q) as
a virtual sum

1 =
∑

j

njInd
GQ

GFj
χj

where nj ∈ Z and χj is a complex abelian character of a subfield Fj ⊂ F
such that F/Fj is solvable. By solvable base change π descends to a
Hilbert modular form πj over Fj such that ρπj ,λ ∼ ρ|GFj (cf. the final

part of the proof of [Ta 4, Thm. 2.4]). We now take L to be the subfield
of C generated by the coefficient fields of π and the πj , as well as the
values of the characters χj . For λ′ a prime of L we form the family

of virtual representations ρλ′ =
∑

j njInd
GQ

GFj
(λ′ ◦ χj ⊗ ρπj ,λ′). Then

ρλ ∼ ρ, as virtual representations, so ρλ is a true representation and (1)
is proved by showing that the multiplicity of the trivial representation
in the virtual representation ρλ′ ⊗ ρ∗λ′ is 1 (cf. [Ta 3, §5.3.3]).

To prove (2), note that L ⊂ C by definition, and extend σ to an
automorphism of C. Then we have

Lσ(ρ, s) =
∏

j

Lσ(Ind
GQ

GFj
ρ|GFj ⊗ χj , s)

nj =
∏

j

L(πσj ⊗ χσj , s)
nj .

The L-functions L(πσj ⊗ χσj , s) have analytic continuation [BL], which

proves (2). �

4. The work of Khare-Wintenberger

4.1. Presentations of global deformation rings. We begin
with a general result about presentations of global deformation rings
over local ones. This is a refinement of a result of Böckle [Bö]. We
go into a little more detail in this section in order to state the results
in a natural level of generality. However, for the level 1 case of Serre’s
conjecture only the original results of Böckle are needed.

In this subsection only we allow p = 2. Let F be a number field,
S a finite set of primes of F containing the primes dividing p, and the
infinite primes, and let Σ ⊂ S. Let ρ̄ : GF,S → GL(V ) be a continuous
representation on a finite dimensional F-vector space V and fix a finite
extension E of Qp with ring of integers O and residue field F, and
a continuous character ψ : GF,S → O×, whose composite with the
projection O× → F× is equal to detV.

We denote by ad0V ⊂ End F(V ) the subspace of endomorphisms
having trace 0. When p|dimFV, ad0V is not a direct summand in adV
as a GF,S-module, and moreover, in this case, the scalars F ⊂ ad0V. If

G is GF,S or GFv for v ∈ Σ, we denote by H1(G, ad0V )′ the image of

H1(G, ad0V ) → H1(G, adV ) and we set H2(G, ad0V )′ = H2(G, ad0V ).
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To begin with we will assume that for any v ∈ Σ, the commutator
of ρ̄(GFv ) is equal to F, and (in case Σ = ∅) that the commutator
of ρ̄(GF,S) is equal to F. This condition implies that V |GFv admits a
universal deformation to a complete local O-algebra Rv.

Denote by Rψv the quotient of Rv corresponding to deformations

with determinant ψ. Set RψΣ = ⊗̂v∈ΣR
ψ
v . Similarly, we denote by RF,S

the universal deformation O-algebra of V, and by RψF,S the quotient
corresponding to deformations of determinant ψ.

Lemma 4.1.1. For i = 1, 2, denote by hiΣ′ and ciΣ′ the dimensions of
the kernel and cokernel of

θi : H i(GF,S , ad0V )′ →
∏

v∈Σ

H i(GFv , ad0V )′.

Then RψF,S is a quotient of a power series ring over RψΣ in h1
Σ′-variables

by at most c1Σ′ + h2
Σ′ relations.

Proof. Write H i
Σ′(GF,S , ad0V )′ for the kernel of θi. Let mΣ denote

the maximal ideal of RψΣ. The tangent space of RψF,S/mΣ is naturally

dual to H1
Σ′(GF,S , ad0V )′, and this proves the claim about the number

of generators.
The proof for the bound on the number of relations is also similar

to the standard result for deformation rings [Ma, 1.6]. Write mF,S for

the maximal ideal of RψF,S . Let I be the kernel of the map of reduced
tangent spaces

mΣ/(m
2
Σ, πE) → mF,S/(m

2
F,S , πE).

Then there exists a surjection R̃ := RψΣ[[x1, . . . xh1
Σ′

]] → RψF,S which

induces a surjection on reduced tangent spaces with kernel isomorphic
to I. Let J denote the kernel of this surjection, and write m̃ for the
maximal ideal of R̃. Let

ρ
Rψ
F,S

: GF,S → GLn(R
ψ
F,S)

denote the universal deformation (here n = dimFV ), and consider a set

theoretic lifting ρ̃ : GF,S → GLn(R̃/m̃ ·J) of ρ
Rψ
F,S

, such that det ρ̃(γ) =

ψ(γ) for γ ∈ GF,S . The existence of such a lifting follows from the fact
that fibres of the map det : GLn → GL1 are torsors under the smooth
group SLn. Define a 2-cocycle

c : G2
F,S → J/m̃ · J ⊗F ad0V ; c(g1, g2) = ρ̃(g1g2)ρ̃(g2)

−1ρ̃(g1)
−1.

Here we identify J/m̃ · J ⊗F adV with the kernel of GLn(R̃/m̃ · J) →
GLn(R̃/J).

The class [c] of c in H2(GF,S , ad0V ) ⊗F J/m̃J depends only on
ρ
Rψ
F,S

and not on ρ̃, and it vanishes if and only if ρ̃ can be chosen
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to be a homomorphism. Since ρ
Rψ
F,S

|GFv obviously lifts to GLn(R̃)

for v ∈ Σ, the image of c in H2(GFv , ad0V ) ⊗F J/m̃J is 0, so that
[c] ∈ H2

Σ′(GF,S , ad0V )′ ⊗F J/m̃J. Thus if (J/m̃J)∗ denotes the F-dual of
J/m̃J, then we obtain a map

(4.1.2) (J/m̃J)∗ → H2
Σ′(GF,S , ad0V )′; u 7→ 〈[c], u〉.

Now note that (J/m̃J) surjects onto I ⊂ m̃/(m̃2, πE), and hence we
get an inclusion I∗ ⊂ (J/m̃J)∗. We claim that I∗ contains the kernel
of (4.1.2). Suppose that 0 6= u ∈ (J/m̃J)∗ maps to 0 under (4.1.2).

Let R̃u denote the push-out of R̃/m̃ · J by u, so that RψF,S = R̃u/Iu,

where Iu ⊂ R̃u is an ideal of square 0, which is isomorphic to F as
an R̃u-module. Since 〈[c], u〉 = 0, ρ

Rψ
F,S

lifts to a representation ρu :

GF,S → GLn(R̃u) with determinant ψ, so the map R̃u → RψF,S has a

section by the universal property of RψF,S . Hence R̃u
∼−→ RψF,S ⊕ Iu, and

R̃u/πER̃u
∼−→ RψF,S/πER

ψ
F,S ⊕ Iu. In particular, the map R̃u → RψF,S

does not induce an isomorphism on reduced tangent spaces, so that the
composite

ker (J/m̃J → I) → J/m̃J → Iu

is not surjective, and hence must be the zero map. In other words, u
factors through I.

Hence we find that

dimF(J/mJ)∗ 6 dimFI + h2
Σ′ = c1Σ′ + h2

Σ′ .

�

4.1.3. In applications, the assumption that for v ∈ Σ the commuta-
tor of ρ̄(GFv) is F, is too strong. For example if d > 1, it implies that
Σ does not contain any infinite primes. We now drop this assumption,
but we assume that Σ is non-empty.

For each v ∈ Σ fix a basis βv of V. The functor which assigns to
a local Artinian O-algebra A with residue field F, the set of isomor-
phism classes of pairs (VA, βv,A) where VA is a deformation of the GFv -
representation V to A with determinant ψ, and βv,A is a basis of VA
lifting βv, is representable by a complete local O-algebra R�,ψ

v . We set

R�,ψ
Σ = ⊗̂v∈Σ,OR

�,ψ
v and we denote by m�

Σ the radical of R�,ψ
Σ .

Similarly, we obtain an O–algebra R�, ψ
F, S representing the func-

tor which assigns to A the set of isomorphism classes of tuples
(VA, {βv,A}v∈Σ), where VA is a deformation of the GF,S-representation

V having determinant ψ, and βv,A is as before. We denote by m�
F,S the

radical of R�,ψ
F,S .

Then we have the following variant of (4.1.1).
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Proposition 4.1.4. Let

η : m�
Σ/(m

�2
Σ , πE) → m�

F,S/(m
�2
F,S , πE)

be the map on reduced tangent spaces induces by the natural map R�,ψ
Σ →

R�,ψ
F,S . Then R�,ψ

F,S is a quotient of a power series in dimFcoker η variables

by at most dimFker η+ h2
Σ′ relations, where h2

Σ′ is defined as in (4.1.1).

Proof. This is proved just as in (4.1.1). �

Proposition 4.1.5. Keeping the above notation, suppose that Σ
contains the primes dividing p, and that the map

(†) H0(GF,S , (ad0V )∗(1)) →
∏

v|∞

Ĥ0(GFv , (ad0V )∗(1))

×
∏

v∈(S\Σ)f

H0(GFv , (ad0V )∗(1))

is injective, where (S\Σ)f denotes the finite primes, and Ĥ0(GFv ,

(ad0V )∗(1)) denotes H0(GFv ,(ad0V )∗(1)) modulo the subgroup of norms.
In particular, this condition holds if (S\Σ)f is non-empty, or H0(GF,S ,

(ad0V )∗(1)) is trivial.
Let s =

∑
v|∞,v /∈Σ dimFH

0(GFv , ad0V ). Then for some non-negative

integer r, there is an isomorphism

R�,ψ
F,S

∼−→ R�,ψ
Σ [[x1, . . . , xr+|Σ|−1]]/(f1, . . . , fr+s),

where f1, . . . , fr+s ∈ RψΣ[[x1, . . . , xr+|Σ|−1]],

Proof. Note that (cf. [Ki 1, 3.2.2])

(4.1.6)

dimFm�
F,S/(m

�2
F,S , πE) − d2|Σ| = h1(GF,S , ad0V )′ − h0(GF,S , adV )

= h1(GF,S , ad0V ) − h0(GF,S , ad0V ) − 1,

where a lower case h denotes the F-dimension of the space obtained
by replacing “h” by “H”, and the final equality follows from the exact
sequence

0 → (ad0V )GF,S → (adV )GF,S → F → H1(GF,S , ad0V )

→ H1(GF,S , ad0V )′ → 0.

Similarly, we have
(4.1.7)

dimFm�
Σ/(m

�2
Σ , πE) − d2|Σ| =

∑

v∈Σ

[h1(GFv , ad0V ) − h0(GFv , ad0V ) − 1].

Using Local Tate duality [Mi, Cor. 2.3], together with the final three
terms of the Poitou-Tate sequence [Mi, Thm. 4.10], one sees that (†)
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implies that the map θ2 is surjective so that

(4.1.8) h2
Σ′ = h2(GF,S , ad0V ) −

∑

v∈Σ

h2(GFv , ad0V ).

Combining (4.1.6), (4.1.7) and (4.1.8) with (4.1.4) we find that the
proposition holds with s satisfying

|Σ| − 1 − s = (dimFcoker η − dimFker η) − h2
Σ′

= −χ(GF,S , ad0V ) +
∑

v∈Σ

χ(GFv , ad0V ) + |Σ| − 1,

where χ denotes the Euler characteristic as F-vector spaces. So

s =
∑

v∈Σ

χ(GFv , ad0V ) − χ(GF,S , ad0V ).

Since

χ(GF,S , ad0V ) =
∑

v|∞

(h0(GFv , ad0V ) − [Fv : R]dimFad0V )

=
∑

v|∞

h0(GFv , ad0V ) − [F : Q]dimFad0V

by [Mi, Thm. 5.1], while
∑

v∈σ

χ(GFv , ad0V ) =
∑

v|∞,v∈Σ

h0(GFv , ad0V ) −
∑

v|p

[Fv : Qp]dimFad0V

=
∑

v|∞,v∈Σ

h0(GFv , ad0V ) − [F : Q]dimFad0V

by [Mi, Thm. 2.8], the proposition follows. �

4.1.7. Remarks.
(1) There is a version of the proposition even when (†) is not in-

jective; one simply needs to add the dimension of the kernel of (†) to
s.

(2) Assuming that (†) is a surjection, the proof of (4.1.5) shows that

s = h2
Σ′ + c1Σ′ − h1

Σ′

which makes (4.1.1) more explicit when the hypotheses of the proposi-
tion apply.

(3) The proofs of (4.1.1) and (4.1.5) show that when (†) is surjective,
(J/m̃J)∗ is an extension of H2

Σ′(GF,S , ad0V )′ by coker θ1. When Σ = S,

the Poitou-Tate sequence shows that H1(GF,S , ad0V (1)) is also such an
extension. It would be interesting to construct an isomorphism between
these two spaces. 1

1This is in fact done in [KW 2, §4.1]; see the remark following the proof of
Prop. 4.4.
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(4) If we assume only that End F[GF,S ]V = F, then Rψ,�F,S is formally

smooth over RψF,S of relative dimension d2|Σ| − 1. Hence we have

RψF,S
∼−→ R�,ψ

Σ [[x1, . . . , xr+|Σ|(1−d2)]]/(f1, . . . , fr+s).

4.2. Existence of liftings with given type. Suppose that ρ̄ :
GQ,S → GL2(F) is a continuous, odd representation, and fix a two
dimensional representation τ : IQp → GL2(Q̄p) with open kernel. Here
IQp ⊂ WQp denotes the inertia subgroup of the Weil group of Qp. As
before, E will denote a finite extension of Qp with ring of integers O,
and residue field F.

We are interested in liftings of ρ̄ to characteristic 0 which are po-
tentially Barsotti-Tate at p of “Galois type” τ. Recall that if V is a two
dimensional, potentially Barsotti-Tate E-representation of GQp , then
its Galois type is defined as follows: Let K/Qp be a finite Galois ex-

tension such that ρ|GK is Barsotti-Tate. Set W = (Bcris ⊗ V )Gal(Q̄p/K).
If K0 ⊂ K denotes the maximal unramified subfield of K, then W is a
finite free E ⊗Qp K0-module of rank 2, equipped with a linear action of
IQp , where g ∈ IQp acts by g(b⊗ v) = g(b) ⊗ g(v). We say that W is of
type τ if the resulting representation of IQp is equivalent to τ. This is
only possible if τ extends to a representation of WQp , so we will assume
this from now on.

We will suppose for simplicity that End F[GQp ]ρ̄ = F. Then the GQp-

representation ρ̄ admits a universal deformation ring Rp. Finally we fix
a character ε : GQp → O× of finite order such that ε extends det τ, and

det ρ̄ is equal to the composite of ψ := χε with the projection O× → F×.
Using the classification of finite flat group schemes given in [Ki 3,

§3], one can prove the following result [Ki 4]:

Lemma 4.2.1. There exists a (possibly trivial ) quotient Rψp (τ) of
Rp ⊗W (F) O such that

(1) Rψp (τ) is p-torsion free. If Rψp (τ)[1/p] is non-zero, then it is
formally smooth over W (F)[1/p] of dimension 1.

(2) For any finite extension E′ of E a map of W (F)-algebras x :

Rp → E′, factors through Rψp (τ) if and only if the two dimen-
sional E′-representation Vx, obtained by specializing the uni-
versal representation by x is potentially Barsotti-Tate of type
τ, and detVx = ψ.

4.2.2. In fact we will use (4.2.1) only in a very simple case, namely
when ρ̄|IQp

∼
(
ωk−1 ∗

0 1

)
, τ ∼ ω̃k−2 ⊕ 1, and ε = ω̃k−2. Here k ∈ [2, p− 1],

and ω̃ : GQp → Z×
p denotes the Teichmüller lifting of ω.

The ring Rψp (τ) can then be described as the quotient of Rp⊗W (F)O
corresponding to deformations of determinant ψ, which have the form
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(
ω̃k−2χ ∗

0 1

)
on IQp , where ∗ is peu ramifiée if k = 2. In this situation the

ring Rψp (τ) is formally smooth [Ta 4, E4].
Suppose now that Σ ⊂ S is a finite set of primes containing p, and

satisfying the conditions of (4.1). We use the notation of (4.1) in our
situation. For v ∈ Σ\{p}, fix a representation τv : IQv → GL2(Q̄p)
with open kernel. Then, there there is a (possibly zero) O-flat quotient

Rψv (τv) of Rψv such that for any finite E-algebra A, a map of O-algebras

x : Rψv → A factors through Rψv (τv) if and only if the corresponding
rank 2 A-representation Vx satisfies Vx|IQv

∼ τv. (That is the two rep-

resentation are isomorphic over A⊗E Q̄p.)
For each v ∈ Σ\{p}, we fix some finite collection Cv, of such τv

and we write R̄ψv for the image of Rψv → ∏
τv∈Cv

Rψv (τv). Set RψΣ(τ) =

Rψp (τp)⊗̂v∈Σ\{p}R̄
ψ
v , and RψQ,S(τ) = RψQ,S⊗̂RΣ

RψΣ(τ).

Lemma 4.2.3. If v ∈ Σ, and v 6= p, then R̄ψv [1/p] is a product of
finite extensions of E.

Proof. It suffices to consider the case where Cv = {τv}.
Let E′ be a finite extension of E, and x : Rψv (τv) → E′ a map of O-

algebras corresponding to a closed point of Rψv (τv) with residue field E′.
Then x corresponds to an E′-representation Vx of GQv , and the tangent

space of SpecRψv (τ)[1/p] at x can be identified with

H1(GQv/IQv , (ad0Vx)
IQv ) = ker (H1(GQv , ad0Vx) → H1(IQv , ad0Vx)).

Since we are assuming (ad0Vx)
GQv = 0, a topological generator Frobv ∈

GQv/IQv has no eigenvalues on (ad0Vx)
IQv equal to 1. It follows that

H1(GQv/IQv , (ad0Vx)
IQv ) = (ad0Vx)

IQv /(Frobv − 1) = 0.

�

Proposition 4.2.4. Assume that the map (†) of (4.1.5) is injective

for V the underlying F-vector space of ρ̄. If RψΣ(τ) is non-zero then for
some r ≥ 0 there is an isomorphism

RψQ,S(τ)
∼−→ RψΣ(τ)[[x1, . . . xr]]/(f1, . . . , fr+1).

In particular, we have dimRψQ,S(τ) ≥ 1.

Proof. Note that the integer s in (4.1.7)(2) is equal to 1, since
ρ̄ is odd. By (4.2.1) and (4.2.3) dimRΣ(τ) = 2, so the proposition
follows. �

4.2.5. Similarly, if we drop the assumption that ρ̄|GQv
has trivial

endomorphisms, then we have an analogue of (4.2.1) for framed defor-

mations and we define analogous rings R̄�,ψ
v , R�,ψ

p (τ), R�,ψ
Σ (τ), and

R�,ψ
Q,S (τ) using framed deformations (cf. (4.1.3)). Moreover, if we still
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assume that the commutator of ρ̄(GQ,S) is trivial, then we set RψQ,S(τ)

equal to the image of RψQ,S in R�,ψ
Q,S (τ). One can prove the following.

Proposition 4.2.6. Assume that the map (†) of (4.1.5) is injective

for V the underlying F-vector space of ρ̄. If R�,ψ
Σ (τ) is non-zero then

for some r ≥ 0 there is an isomorphism

R�,ψ
Q,S (τ)

∼−→ R�,ψ
Σ (τ)[[x1, . . . xr+|Σ|−1]]/(f1, . . . , fr+1).

In particular, we have dimR�,ψ
Q,S (τ) ≥ 4|Σ|, and if the commutator of

ρ̄(GQ,S) consists of scalars then dimRψQ,S(τ) ≥ 1.

Proof. The proof of the first claim is analogous to that of (4.2.4),

using (4.1.5). In this case the ring R�,ψ
Σ has dimension 3|Σ|+ 2, and so

one finds that R�,ψ
Q,S (τ) has dimension at least 4|Σ|.

If ρ̄ has only scalar endomorphisms, then the morphism RψQ,S(τ) →
R�,ψ

Q,S (τ) is smooth of relative dimension 4|Σ| − 1, and the second claim
follows. �

4.2.7. Proposition (4.2.6) gives a general lower bound on the size of

RψQ,S(τ). One of the key insights of Khare-Wintenberger is that using the
results of Taylor on the potential version of Serre’s conjecture, explained
in the previous section, one can get an upper bound, and hence show

that RψQ,S(τ) is finite over O, of rank ≥ 1. This implies the existence of
minimal liftings, and then of strongly compatible systems using Taylor’s
results once again. More precisely, we have

Theorem 4.2.8. If p > 2, ρ̄|Q(ζp) is absolutely irreducible and RψΣ(τ)

is non-zero, then RψQ,S(τ) is a finite O-module of rank at least 1.

Proof. It suffices to show that RψQ,S(τ) is a finite O-algebra. In-

deed, once we know this, if RψQ,S(τ) has rank 0, then it is an Artin ring,

which contradicts (4.2.6).
By (3.2) we can find a totally real, finite, Galois extension F of

Q, in which p is unramified, and such that any characteristic 0 lift of

ρ̄ corresponding to a point of RψQ,S(τ) becomes modular over F. After
replacing F by a larger field, we may assume that any such lift also
has cyclotomic determinant and is Barsotti-Tate at any prime v|p of F.
Moreover, we may choose this final extension so that the conditions of
(2.1.1)(3) continue to hold.

We now put ourselves in the situation of (2.3), with the conditions
(1), (2)′ and (3)′, and we use the notation of that section. In particular,
we will assume that ρ̄|GFv is absolutely irreducible for v|p a prime of F.
As usual, this assumption can be lifted using framed deformations. Let
us remark that since we are following the notation of (2.3), the argument
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below is again valid only in the minimal case. The argument for the

non-minimal case is identical, if one replaces Rψp (τ) by the ring RψΣ(τ)

introduced in (4.2.2), for a suitably chosen collection of quotients R̄ψv of

Rψv with v ∈ Σ\{p}.
For v|p we denote by Rv the universal deformation O-algebra of

ρ̄|GFv and we set Rv|p = ⊗̂v|pRv. As above, we write Rp for the universal

deformation ring of ρ̄|GQp
. We denote by S̃ the primes of F which lie

over a prime in S.
We saw in (2.3) that there exists a quotient R0,1′

v|p of R0,1
v|p (itself a

quotient of Rv|p) corresponding to a union of components, such that

the map θ∞ induces an isomorphism R0,1′
v|p [[z1, . . . zr−d]]

∼−→ T∞. The

composite Rv|p → Rψp → Rψp (τ) factors through R0,1
v|p. The explicit de-

scription of the components of SpecRv|p[1/p] given in (2.2.1) implies

that the image of the induced map SpecRψp (τ)[1/p] → SpecR0,1
v|p[1/p] is

contained in at most two components of SpecR0,1
v|p[1/p], namely those

which correspond to deformations which are ordinary at all v|p or non-
ordinary at all v|p. After possibly increasing F, we may assume that

both these components are contained in SpecR0,1′
v|p [1/p]. This follows

from the argument in the final paragraph of the proof of (3.2).
On the other hand, RQ,S is a finite RF,S̃-algebra. To see this let mF,S̃

denote the maximal ideal of RF,S̃ . Let ρQ,F denote the RQ,S/m̃F,SRQ,S-

representation of GQ,S obtained by specializing the universal represen-
tation of GQ,S over RQ,S . Then ρQ,F |GF is equivalent to ρ̄. In particular,
if F ′ denotes the composite of F and the fixed field of ker ρ̄, then ρQ,F

factors through Gal(F ′/Q). The finiteness now follows from the absolute
irreducibility of ρ̄ and the argument in the second paragraph of [deJ,
3.14] (cf. [KW 1, Lemma 2.4]).

Hence it suffices to show that RF,S̃ ⊗Rv|p R
0,1′
v|p is finite over O. How-

ever this ring is isomorphic to

R0,1′
v|p [[z1, . . . , zr−d]]/(x1, . . . , xr)

∼−→ T∞/(x1, . . . xr),

and the right hand side is a finite O-module because T∞, which acts
faithfully on M∞, is a finite O[[x1, . . . xr]]-module. �

4.3. The proof of Serre’s conjecture. Given ρ̄ : GQ,S → GL2(F)
as above, we have the invariants N(ρ̄) and k(ρ̄) introduced in §1. Using
(4.2.8) we find.

Corollary 4.3.1. With the assumptions of (4.2.8) there exists a
lifting ρ of ρ̄ which is potentially Barsotti-Tate of type τ with deter-
minant ψ, and such that the prime to p part of the conductor of ρ is
N(ρ̄).
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More precisely, given a choice of component of Spec R̄ψv [1/p], for
each v ∈ Σ\{p} we can choose ρ so that the corresponding point of

Spec R̄ψv [1/p] lies on the given component for each v ∈ Σ\{p}, and such
that ρ is potentially Barsotti-Tate of type τ at p, with determinant ψ.

Moreover, there exists a strongly compatible system {ρλ} with ρ ∼
ρp.

Proof. The claims in the first two paragraphs follow from (4.2.8).
For the first part one takes S to be the set of primes of ramification of
ρ̄, together with p and ∞ and Σ the set of primes ℓ such that not every
lift of ρ̄|GQℓ

has conductor N(ρ̄). At these primes one takes the quotient

R̄ψv (4.2.2) to be the one corresponding to lifts with conductor N(ρ̄).
The final claim follows from (3.3.1). �

4.3.2. Suppose now that ρ̄ has Serre weight k(ρ̄). After twisting we
may assume that k(ρ̄) ∈ [2, p + 1]. We have the following variant of
(4.3.1) [KW 1, Thm 2.1].

Theorem 4.3.3. Suppose that k(ρ̄) ∈ [2, p + 1] and k(ρ̄) 6= p.
Then there exists a lifting of ρ of ρ̄ which is crystalline with Hodge-
Tate weights 0, k(ρ̄) − 1, at p, and such that the prime to p part of the
conductor of ρ is N(ρ̄). If k(ρ̄) = p + 1 there exists a lifting ρ which
is semi-stable non-crystalline, with Hodge-Tate weights 0, 1 at p, and
prime to p conductor N(ρ̄).

Moreover there exists a strongly compatible system {ρλ} with ρp ∼ ρ.

Proof (Sketch). The proof is analogous to that of (4.3.1) above,
but in fact somewhat easier since we are dealing with liftings which
are already semi-stable over Qp. First one shows an analogue of (3.2),
but where one requires π to have parallel weight k(ρ̄) − 1. This uses
the refinement mentioned in (3.1.2) (see also [KW 1, Prop. 2.5]). One

also has an analogue of the rings Rψp (τ) for crystalline representation
with Hodge-Tate weights in [0, p − 2], as well as an analogue of the
modularity lifting theorem (2.1.1). When k(ρ̄) = p + 1 one considers
potentially semi-stable, ordinary liftings with Hodge-Tate weights 0, 1.
. The argument is then similar to that given in (4.2); one uses the
general result (4.1.1) and (4.1.5) to bound the global deformation ring
from below, and its relationship with Hecke algebras to bound it from
above. �

Theorem 4.3.4 (Khare). Let ρ̄ : GQ,{p,∞} → GL2(F) be odd. Then
ρ̄ is modular.

Proof (Sketch). When p = 2, this is due to Tate, so we may
assume that p is odd [Tat].

We may assume that 2 6 k(ρ̄) 6 p+ 1, and we use induction on the
pair (k(ρ̄), p) ordered lexicographically. In the following we will apply
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various modularity lifting theorems such as those of Skinner-Wiles [SW
1], [SW 2], which applies to ordinary liftings, or (2.1.1). Although these
theorems require some mild hypotheses on ρ̄, we will ignore these. In
practice one of course has to check that they are satisfied. We also
remark that det ρ̄ is equal to χk(ρ̄)−1 on inertia at p, and is unramified
outside p. Hence det ρ̄ = χk(ρ̄)−1, and since this is an odd character,
k(ρ̄) is even.

It will be convenient to fix embeddings λl : Q̄ →֒ Q̄l for each finite
prime l of Q. Given a strongly compatible system {ρλ} we will write
ρl = ρλl .

Consider first the case k(ρ̄) = 2. We lift ρ̄ to a Barsotti-Tate repre-
sentation with cyclotomic determinant, and put it in a strongly compat-
ible family {ρλ}, using (4.3.1) or (4.3.3). Each ρλ is unramified outside
{λ,∞} and Barsotti-Tate at λ. We denote by ρ̄λ the reduction of each
of these. Then ρ̄ss

3 ∼ µ3 ⊕ 1 by a result of Serre. Hence the theorem of
Skinner-Wiles implies that ρ3 is modular and hence that ρp and ρ̄ = ρ̄p
are modular (and hence reducible, since the modular form is of level 1
and weight 2.).

More generally if (ρ̄, p) is the smallest counterexample, then we may
assume that the largest odd prime l < p satisfies l+1 < k(ρ̄), since other-
wise we could use (4.3.3) and an argument as in the previous paragraph,
and reduce the modularity of ρ̄ to a mod l representation ρ̄l of Serre
weight k(ρ̄) (and conductor 1). The corresponding modularity lifting
theorems are due to Skinner-Wiles loc. cit, and Fujiwara (see [Ta 2]).

Now we consider two cases. Suppose first that ρ̄|IQp
is absolutely

irreducible or decomposable (i.e., is semi-simple). After twisting, we

may assume that k(ρ̄) 6
p+1
2 , and hence the prime l above (if it exists)

is at most p−1
2 . This is impossible, and so p = 3, in which case one may

invoke Serre’s result above.
Suppose then that ρ̄|IQp

is reducible and indecomposable. After

twisting, we may assume that ρ̄|IQp
∼

(
ωi ∗
0 1

)
, where i ∈ [1, p − 2].

Suppose that there exists an odd prime ℓ|p− 1. We use (4.3.1) to lift ρ̄
to a characteristic 0 representation ρ which is potentially Barsotti-Tate
at p of type ω̃i−1 ⊕ 1, where ω̃ denotes the Teichmüller lift of ω. This is

possible because Rψp (τ) is non-zero by results of Savitt [Sa]. Place ρ in
a strongly compatible system {ρλ} using (4.3.1). Then ρℓ is unramified

outside {p, ℓ,∞}, is Barsotti-Tate at ℓ, and ρℓ|IQp
∼

(
ω̃i−1
ℓ

0
0 1

)
as Q̄ℓ-

representations, where ω̃ℓ denotes ω̃ viewed as a Q̄ℓ-valued character
via our chosen embeddings Q̄ ⊂ Q̄p and Q̄ ⊂ Q̄ℓ. We denote by ωℓ its
mod ℓ reduction.

Note that ωℓ has order p−1
ℓr where r = vℓ(p − 1) > 0. Using (4.3.1)

we may lift ρ̄ℓ to an ℓ-adic representation ρ′ℓ which is unramified outside
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{p, ℓ,∞}, is Barsotti-Tate at ℓ, and such that ρ′ℓ|IQp
∼

(
ω̃j
ℓ

0
0 1

)
where

j = i modulo p−1
ℓr and j ∈ [ ℓ

r−1
2ℓr (p− 1), ℓ

r+1
2ℓr (p− 1)]. We also put ρ′ℓ into

a strongly compatible family {ρ′λ}. Then ρ′p is unramified outside p, and

potentially Barsotti-Tate of tame type τ ′ = ω̃j ⊕ 1 at p. The results of
Savitt and Breuil-Mézard [BM] now imply that k(ρ̄) ∈ {j+2, p+1−j}.

If ρ̄′p were modular then using suitable modularity lifting theorems
we would find that

ρ̄′p modular =⇒ ρ̄ℓ modular =⇒ ρ̄p modular.

Since (k(ρ̄), p) is our smallest putative counterexample to modularity,
we must have k(ρ̄) 6 ℓr+1

2ℓr (p−1)+2 6 2/3(p−1)+2. Hence the smallest
odd prime l < p, satisfies l 6 2/3(p− 1). This implies that p 6 5.

If p = 3 we are done as before. If p = 5, then we still have
3 + 1 < k(ρ̄) 6 6, and 2|k(ρ̄), so k(ρ̄) = 6. In this case, one consid-
ers a semi-stable weight 2 (that is with Hodge-Tate weights 0 and 1)
lifting of ρ̄ (see [KW 1, 4.3]). If ρ̄ is absolutely irreducible, a vari-
ant of (3.3.1) for semi-stable non-crystalline weight 2 representations
shows that ρ̄5 occurs in the torsion of a semi-stable abelian variety, hav-
ing good reduction outside 5. A result of Brumer-Kramer [BK] (see also
[Sc]) says that such a variety cannot exist. It follows that ρ̄ is reducible,
and hence modular.

We have used the assumption that p− 1 is not a power of 2. If this
is the case then one can pass to a slightly larger prime p′ > p, and use
the above arguments. Khare checks in [Kh 1] that the Fermat primes
are sufficiently sparse that this succeeds. �

4.3.5. To end this article let us say a word about the argument
of Khare-Wintenberger in the case when N(ρ̄) > 1. The idea is the
following: Given a ρ̄ lift it to a p-adic representation, and place it in a
strongly compatible family {ρλ}. If ℓ|N(ρ̄) then N(ρ̄ℓ) will be prime to
ℓ. Using this one can try to reduce the number of primes dividing N(ρ̄).

Of course one has to proceed so as to be able to use known modular-
ity lifting theorems to deduce the modularity of ρ̄ from that of ρ̄ℓ. The
argument is therefore a little more involved: First ifN(ρ̄) is odd, then by
a technique similar to that in the case of N(ρ̄) = 1, using weight 2 lift-
ings and induction on (k(ρ̄), p), one reduces to the case p = 2, k(ρ̄) = 2.
In the argument for N(ρ̄) = 1, we effectively started the induction at
p = 3, 5 by using the results of Serre and Brummer-Kramer. When
N(ρ̄) > 1, one reduces the cases p = 3, 5 to p = 2 by using congruences
between 2-adic representations of GQ3 and GQ5 . These congruences are
not of exactly the kind used in the proof of (4.3.4), but the idea is
similar.

When p = 2 and k(ρ̄) = 2, one can implement the above strategy by
lifting ρ̄ in weight 2 to a strongly compatible system {ρλ}. For an odd
prime ℓ|N(ρ̄), ρℓ is potentially Barsotti-Tate at ℓ, and N(ρ̄ℓ) < N(ρ̄).
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Hence ρ̄ℓ is modular by induction on N(ρ̄) and Theorem (0.1) implies
that ρℓ is modular.

If N(ρ̄) is even one reduces to the odd case by lifting ρ̄ in weight
2 to a strongly compatible system {ρλ}. By using 3-adic congruences
one can reduce to the case where ρp(I2) is not unipotent, so that ρ2 is
potentially Barsotti-Tate. By definition N(ρ̄2) is odd and hence ρ̄2 is
modular. Then Theorem (0.1) implies ρ2 is modular.

In this argument (0.1) gets used in its full strength, since the ℓ-part
of N(ρ̄) may be arbitrarily large, and this corresponds to ρℓ becoming
Barsotti-Tate only over an extension with arbitrarily large conductor.

A final difficulty which we have ignored above (but which of course
has to be dealt with) is that to apply (0.1) one needs to assume that
ρ̄|Q(ζp) is absolutely irreducible and has non-solvable image of p = 2.
To do this Khare-Wintenberger first reduce to a situation where ρ̄ is
ramified at some suitably chosen large auxiliary prime q. This prime
is chosen so that throughout the argument the image of inertia at q
guarantees that ρ̄ has non-solvable image. Finally q is “removed” at the
end of the argument by the method explained above.
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[Ki 4] M. Kisin, Potentially semi-stable deformation rings, J. AMS, to appear.
[Ki 5] M. Kisin, Modularity of 2-adic Barsotti-Tate representations, preprint, 2007.
[KiW] M. Kisin, S. Wortmann, A note on Artin motives, Math. Res. Lett. 10

(2003) 375–389.
[KM] N. Katz, W. Messing, Some consequences of the Riemann hypothesis for

varieties over finite fields, Invent. Math. 23 (1974) 73–77.
[KW 1] C. Khare, J-P. Wintenberger, On Serre’s reciprocity conjecture for 2-

dimensional mod p representations of Gal(Q̄/Q), preprint, 2004.
[KW 2] C. Khare, J-P. Wintenberger, Serre’s modularity conjecture: The case of

odd conductor I, preprint, 2006.
[KW 3] C. Khare, J-P. Wintenberger, Serre’s modularity conjecture: The case of

odd conductor II, preprint, 2006.
[La] R. Langlands, Base change for GL(2), Annals of Mathematics Studies, 96,

Princeton University Press, Princeton, NJ, 1980.
[Ma] B. Mazur, Deforming Galois representations, in ‘Galois groups over Q’

(Berkeley, CA, 1987) Math. Sci. Res. Inst. Publ., 16 Springer, New York-
Berlin, 1989, 395–437.

[MB] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem II, Ann. Sci. ENS
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