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Modularity of 2-dimensional Galois
representations

Mark Kisin

Introduction

Our aim is to explain some recent results on modularity of 2-dim-
ensional potentially Barsotti-Tate Galois representations. That such
representations should arise from modular forms is a special case of a
remarkable conjecture of Fontaine and Mazur [FM]. One of its concrete
consequences is that if A/Q is an abelian variety of GLo-type, then A
is a subquotient of a product of Jacobians of modular curves.

The first breakthrough in the direction of this conjecture was the
work of Wiles and Taylor-Wiles [Wi], [TW], which established that
(under mild hypothesis) the conjecture holds for 2-dimensional p-adic
representations p which are Barsotti-Tate at p provided that the associ-
ated mod p representation p is modular and irreducible. These results
were extended by a number of authors [Di 1], [CDT], [BCDT], and a
lifting theorem of this type for fairly general potentially Barsotti-Tate
representations was proved in [Ki 1]. For ordinary representations with
p reducible, the conjecture was proved by Skinner-Wiles [SW].

The condition that p was modular could be verified in certain spe-
cial cases. The results mentioned in the previous paragraph were then
sufficient to deduce the conjecture of Shimura-Taniyama-Weil that any
elliptic curve over QQ is modular. The case of semi-stable elliptic curves
was established by Wiles [Wi] and the general case by Breuil-Conrad-
Diamond-Taylor [BCDT].

However, Serre [Se 1] had conjectured that any two-dimensional
mod p representation with odd determinant was modular. A few years
ago Taylor established a weaker form of this conjecture [Ta 1], [Ta 2],
which asserts that for some totally real field F' in which p is unramified,
plr arises from a Hilbert modular form. Combining this with the kind
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of modularity lifting theorem mentioned above, he was able to show
that certain Barsotti-Tate representations - or more generally crystalline
representation of small weight - could be put into compatible systems
of A-adic representations (cf. also [Die]).

In a spectacular development, Khare-Wintenberger [KW 1] and
Khare [Kh 1] were able to build on these results and prove Serre’s con-
jecture for representations of level 1. More recently [KW 2], [KW 3]
they have extended their methods to prove the conjecture for odd level,
and to reduce the case of even level to a 2-adic modularity lifting the-
orem which was finally proved in [Ki 5]. One of the consequences of
Serre’s conjecture - observed by Serre [Se 1, 4.7] and Ribet [Ri 2] - is
the modularity of abelian varieties of GLa-type.

To state the results we are going to explain, fix an algebraic closure
Q of Q and an algebraic closure @p of Q, for each finite prime p. If
E is a number field, we will refer to an embedding A\ : E — @p as a
finite prime A|p. We write E) for the closure of A(E). This is an abuse
of terminology, since a prime of E (in the usual sense) may correspond
to several different embeddings, however this convention will prove to
be very useful. For a finite set of primes S of Q we denote by Gg s the
Galois group of the maximal subfield of Q unramified outside S.

The following theorem was proved by Eichler and Shimura for k = 2,
Deligne [De| for k£ > 2, and Deligne-Serre when k£ =1 [DS].

THEOREM. Let k > 1, N > 1, and f € Si(T'1(N),C) a cuspidal
eigenform on T'1(N), normalized so that f has Fourier expansion f =
Yooy ang™, with ay = 1. Then

(1) The field E¢ == Q(an)n>1 C C is a number field.
(2) For any finite prime Ap of Ey, there exists a continuous rep-
resentation

prx: Go.s — GLa(Ef )

such that tr(ps \(Froby,)) = a, for any rational prime v { pN.
Here S is the set of primes dividing pN together with oo, and
Frob, € Gg,s denotes an arithmetic Frobenius.

If £/Q, is a finite extension (always assumed contained in Q,) with
ring of integers O and residue field F, and p : Gg,s — GLa(F) is a
continuous representation, then p is called modular if there exists a
modular eigenform f, and a prime A|p of Ey, such that p ~ pr . (That
is, p and pys  become isomorphic after an extension of scalars.)

Given such a p, we will denote by p : Gg,g — GL2(F) the repre-
sentation obtained by choosing a Galois stable O-lattice and reducing
modulo the radical of O. Although p depends on the choice of lattice,
its semi-simplification does not. We will say p is modular if there exists
f and X such that the semi-simplifications of p and py ) are equivalent.
If det p sends complex conjugation to —1, we say that p is odd.
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THEOREM 0.1. Suppose that

(1) p is modular and ploc,) s absolutely irreducible and has insol-
uble image if p = 2.

(2) p is potentially Barsotti-Tate at p, and det p = 1y, where x
denotes the p-adic cyclotomic character, and v has finite order.

Then p is modular.

This result was proved in [Ki 1] and [Ki 5] when p = 2.. Recall that
the second condition means that there exists a finite extension K/Q,
such that p|g,. arises from the Tate module of a p-divisible group, where
Gr = Gal(Q,/K).

As already remarked, thanks to the work of Khare-Wintenberger,
completed in [Ki 5], we have the following result conjectured by Serre:

THEOREM 0.2. Suppose that p : Gg,s — GL2(F) is odd and abso-
lutely irreducible. Then p is modular.

COROLLARY 0.3. Let A/Q be an abelian variety of dimension g,
and suppose that there exists a number field F with [F : Q] = g, and
an embedding F' — EndgA ®z Q. (i.e A is of GLa-type). Then A
is a quotient of Jac(X1(N))™ for some N,m > 1. Moreover the L-
function L(A, s) is entire and satisfies a functional equation with respect
to s+— 2 —s.

That the theorem implies the corollary was established by Ribet
[Ri 2, Thm. 4.4] following an argument of Serre [Se 1, Thm. 5], who
considered the case when F' is totally real. Khare [Kh 1] observed that
one can adapt Serre’s argument to show that Theorem (0.2) implies the
odd two dimensional Artin conjecture:

COROLLARY 0.4. Let p : Ggs — GL2(C) be a continuous, irre-
ducible, odd representation. Then p arises from a weight 1 cusp form
on T'1(N) for some N > 1. In particular, the Artin L-function L(p, s)
s entire.

We remark that Artin’s conjecture for odd, two dimensional rep-
resentations was previously known in many cases, thanks to the work
of Langlands [La], Tunnel [Tu], Buzzard-Dickinson—Shepherd-Barron—
Taylor [BDST], and Taylor [Ta 4].

Finally, one may re-inject Theorem (0.2) into Theorem (0.1) (which
is of course used in the proof of Serre’s conjecture) to obtain

COROLLARY 0.5. Let p : Gg,s — GL2(O) be an continuous, repre-
sentation such that

(1) p is potentially Barsotti-Tate at p, and detp is equal to the
cyclotomic character times an even character of finite order.
(2) plo(,) is absolutely irreducible and has insoluble image if p = 2.

Then p arises from a holomorphic modular eigenform of weight 2.
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In the first section of this article we explain the refined form of
Serre’s conjecture, and why it implies (0.3) and (0.4) above. In fact we
extend this result to motives over QQ of rank 2. This extension is already
suggested by Serre’s article, where the case of a smooth projective vari-
ety with 2-dimensional cohomology is considered. In the second section
we explain some of the ideas behind the proof of Theorem (0.1). In
the third we sketch the argument for Taylor’s result that p|r is mod-
ular for some totally real field F. Finally we explain some of the ideas
which go into the work of Khare-Wintenberger on Serre’s conjecture. In
particular, we explain Khare’s argument in the level one case.

Acknowledgment. I would like to thank A. Beilinson, G. Bockle,
K. Buzzard, M. Emerton, C. Khare and the referee for useful remarks.

1. Serre’s conjecture and its consequences

1.1. The strong Serre conjecture. For a subfield F' C Q (resp.
F C Qp) we will denote by Gp the Galois group Gal(Q/F) (resp.
Gal(Qp/F)). If S is a finite set of places of F, we denote by G the
Galois group of the maximal extension of F' in ) unramified outside S.

In this section we recall the precise form of Serre’s conjecture which
predicts not only that an odd representation p : Gg g — GLo(F) arises
from a modular form, but also the minimal weight and level of the
form which gives rise to it. We then recall Serre’s argument deducing
the modularity GLa-type abelian varieties (or more generally of two
dimensional odd motives), as well as Khare’s modification of this ar-
gument, which allows one to deduce the Artin conjecture for odd, two
dimensional representations. These applications use the refined form of
Serre’s conjecture, which will also be needed at various points later in
this article.

1.1.1. Let Ip, C Gg, denote the inertia subgroup. We denote by
witlg, = F: o o(P/p)/ " Yp (mod p)

the fundamental character of level i. We will write w for wy, which is
the mod p reduction of the p-adic cyclotomic character, and we again
denote by w : Gg,s — F* the mod p cyclotomic character.

Suppose we are given a representation p, : Gg, — GL2(F). Then
ﬁph@p is either of the form (“6’ *1‘) ® w! with 7,5 € Z or (u:)% ng) ® w
for some integers i,j € Z, and p + 1 1 1. ’

When p Iy, 18 semi-simple (i.e., tamely ramified) we may choose i, j >
0 and such that j € [0,p — 2] and i +j € [I,p — 1]. When py, s
wildly ramified, 7, j € [0, p — 2] are uniquely determined. We set k(p) =
1+i+4 (p+1)j unless pplr, ~ (§71)® w’ with * trés ramifiée, which
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means that the cocycle * has the form ¢ + o(/u)/{/u for some u € Q;
such that p { v,(u). In this exceptional case we set k(p) = (p+1)(j +1).

For a continuous representation p : Gg,¢ — GL2(F), we set k(p) =
k(plag,) and we set

N(p) =[] cond(pley,)
I#p

where [ runs over the finite primes of S not equal to p, and cond(ﬁ]GQZ)
denotes the Artin conductor of ﬁ|G@z' If V denotes the underlying F-
vector space of p, then this is an integral power of [ with

e}

1
vi(cond(p|a = ——dimV/V%,
l( (p| Ql)) ;(GOGz) /
where the G; C G, are the ramification subgroups.
Serre made the following:

CONJECTURE 1.1.2. Let p : Gg,s — GL2(F) be odd and absolutely
irreducible. Then p ~ prx where f is an eigenform of weight k(p) and
level N(p).

1.1.3. Remarks.

(1) We have stated the conjecture in a way which differs slightly
from the formulation in [Se 1]. First, Serre specified a character for the
form f in terms of p. As observed by Serre [Se 2, p. 197], this form
of the conjecture is correct when p > 5 (in which case it is easily seen
to be equivalent to the form we have given here using Carayol’s lemma
[Ca 2, Prop. 5]), but wrong for p = 2,3. In the latter case this can be
rectified by using Katz modular forms (cf. [Ed]). Secondly, when p = 2
and pplr,, ~ (§71)® w’ with x trés ramifiée, Serre set k(p) = 4 rather
than 3. The reason for this is that Serre’s choice of character is even, so
k(p) = 3 is impossible if one insists on it. Without this choice, k(p) = 3
seems to be a more natural convention.

(2) When plc,, is a sum of two unramified characters - so that
k(p) = p - Serre predicted that p also arises from a weight 1 Katz
modular form. Here one is really forced to use Katz modular forms, since
in general there is an obstruction to lifting a form from characteristic
p to characteristic 0. However, if we fix IV, then this obstruction is
contained in the p-torsion of a finite Z[1/N]-module (more precisely of
the cohomology of a line bundle on a modular curve over Z[1/N]-cf.
[Ka, 1.6, 1.7]), and hence vanishes for almost all p.

Serre’s conjecture on weight 1 forms was proved by Gross [Gr] as-
suming that ﬁ\g@p has non scalar semi-simplification, and by Coleman-
Voloch [CV] assuming p > 2. The remaining case with plg, having
scalar semi-simplification and p = 2 still seems to be open.
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(3) One can ask for the weights of all the modular forms giving
rise to p. By using the mod p representation theory of GLy(F),), and
considering p together with all its twists, one can reduce this to the
question of whether there is a modular form of weight k£ € [1,p+1] (and
prime to p level) giving rise to p.

For example, if plj, ~ <“())2 w(;i> for some i € [1,p — 1], then k(p) =

2
1+ i. However, given that p is modular, a twist of it also arises from a
Wbttt 0
0 wg(l’+1_i)
i =1 this is not formally implied by (1.1.2), but is still true). ‘

. Similarly, if p|ry, ~ (v (1))‘, so k(p) = i+1, then plry ~ («"5 9@
w", which suggests that p®@w ™" is modular of weight p—i. More precisely,
if i # p — 1 then this is predicted by (1.1.2) and was proved in above
papers of Gross and Coleman-Voloch. If i = p then this is the situation
already mentioned in (2). Serre called the weight i 4 1 form giving rise
to p and the weight p + 1 — ¢ form giving rise to p ® w™*, companion
forms.

form of weight p+2— i, because p|r, ~ ®@w'™t. (For

THEOREM 1.1.4. Suppose that p : Gg s — GLo(FF) arises from some
modular eigenform. Then it arises from a form of weight k(p) and level

N(p).

Proor. This is the consequence of the work of several people, chiefly
Ribet [Ri 1], [Ri 3] for results regarding the level N(p) and Gross,
Coleman-Voloch and Edixhoven [Ed] for the weight k(p). For p > 2,
the general statement was completed by Diamond [Di 3].

When p = 2 this was proved by Buzzard [Bu, Prop. 2.4, Thm. 3.2]
provided that p|c, is not scalar, and by Wiese [Wie] when p is dihedral
(cf. also [Se 1, Prop. 10]). The general non-dihedral case when k(p) = 2
is contained in the work of Khare-Wintenberger [KW 2, Thm. 1.2].
However, this uses the techniques introduced by Khare-Wintenberger
in a serious way. O

1.2. Modularity of Abelian varieties of GLy-type. Recall
[Ri 2] that an abelian variety over Q of GLo-type is an abelian variety
A/Q with an embedding E — End gA ®z Q, where E is a number field
of degree g = dimA. (Here and below, by such an embedding we will
always mean a map of rings with unit, although we do not repeat this
condition explicitly below).

If Alp is a prime of E, let V4 x = T(A) ®@pgq0, Ex, where T),(A)
denotes the p-adic Tate module of A. For v 1 p a prime where A has good
reduction the characteristic polynomial P,(A,T") := det(1 — T'Frob,|V))
has coeflicients in the ring of integers O of E, and is independent of .

The following result was proved by Serre [Se 1, 4.7] for E totally
real and by Ribet [Ri 1, §4] in general.
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THEOREM 1.2.1. Assume that (1.1.2) holds. Let A/Q be of GLq
type, and E a number field of degree dimA, which admits an embedding
E — End A ®z Q. Then for any prime Np of E, Vy is modular. That
is Va ~ pyn for some cusp eigenform f of weight 2, and a prime XN'|p
of Ef.

PrOOF. Let S be the set of primes of bad reduction of A together
with the infinite prime and p. Let ¢ € Gg g be a complex conjugation.
Since ¢ is a continuous involution of A(C), it induces an involution of
the rational Betti cohomology H}(A,Q), and the induced involution of
]'1T]13(A7 C) exchanges the H'? and H%! pieces of the Hodge decompo-
sition. Hence ¢ cannot act as a scalar on the 2-dimensional E-vector
space H1(A,Q), so that it has eigenvalues —1 and +1, and det(c) = —1.
It follows that Vy, which is dual to the étale cohomology H'(4,Q,), is
an odd representation.

Now let Alp be any prime of E. Write p4 ) for the representation of
Gg,s on V). Suppose that A has good reduction at p. Then V4  arises
from a p-divisible group over Z,, and hence p4 ) arises from a finite flat
group scheme. A result of Raynaud [Ra, Thm. 3.4.3] therefore implies

that pa|rg, has the form (“(’]2 fg) or (g 1) with * peu ramifiée. Hence

kE(pax) = 2. Moreover, if N denotes the conductor of A, then N(pa )
divides N. Hence, if p4 ) is absolutely irreducible, then ps x ~ py, x for
some eigenform fy € S2(I'1(V),C), and some prime N'|p of Ey,.

Now suppose that py4 y is absolutely irreducible for infinitely many
A. Since the space S3(I'1(IV),C) is finite dimensional, there are only
finitely many possibilities for the form f\. Hence there is an infinite
set I of primes of I/ such that p, ) is absolutely irreducible, and f =
f is independent of A € I. Let E’f C C be a finite extension of Ky
which contains all embeddings £ — C, and for each A € I, fix an
extension E; — @, of \'. We again denote this extension by \'. Then
A=XNoiy: E < Q, for some embedding iy : £ — Ef. After replacing
I by an infinite subset, we may assume that all the i) are equal to a
fixed embedding i.

Then for any A € I, and any v { Np, we have

i(trg, (Froby|Vay)) = trg, ,, (Froby|ps) = au(f) (mod ).

Note that the left hand side depends only on v and not on A.
Since this holds for infinitely many primes X of E t, we conclude
that i(trgx(Froby|Va))) = ay(f) for all v { Np, and that Ef C i(E).
(More precisely, we see that a,(f) € E for v N. One can show that
this implies that also a,(f) € E for v|N.) Hence, for any prime Al|p,
pax~ psx where X' = Xoi~!: Ef — Q,. Note that p4 , is absolutely
irreducible, since we have assumed this for infinitely many pa .
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Finally we have to check our assumption that infinitely many of the
pa, are absolutely irreducible. If this were not true then the semi-
simplification of p4  would be the mod p reduction of €; + e2x, where
x:Ggs — Z}f is the p-adic cyclotomic character, and €1, €2 are Dirichlet
characters of conductor dividing N. Then a finiteness argument as above
would show that the character of p4 ) itself was of this form. This
is impossible, because for v { Np, psa(Frob,) has eigenvalues whose
complex absolute values are |v]'/2. O

1.2.2. We could also have proved (1.2.1) by using a modularity lift-
ing theorem. As in the argument above, all but finitely many of the
pa,x are absolutely irreducible, and a similar argument shows that if all
but finitely many of these representations are dihedral, then the pa \
are themselves dihedral and arise from a CM form. Since the p ) are
modular by assumption, p4 x is modular by (0.1).

COROLLARY 1.2.3. Let A/Q be an abelian variety of GLa-type. Then
A is a quotient of Jac(X1(N))™ for some N,m > 1.

PRrOOF. This follows immediately from (1.2.1) by Faltings’ isogeny
theorem [Fa]. O

1.2.4. Recall that for a finite prime v, and any abelian variety A/Q,
the local L-factor L,(A,T) is defined by

Ly(A, T) = det g, (1 — Froby ' T|H'(A,Q,)")™",

where I, denotes the inertia subgroup at v. This is the inverse of a
polynomial with rational coefficients, which depends only on v and not
on p{wv. The complex L-function is defined by the Euler product

L(A,s) =[] Le(A )
l

where £ runs over the finite primes. This converges in the half plane
Re s > 3/2.
If A\|p is a prime of F, and At v, we may also define

Lyp(A,T) = det g, (1 — Frob, 'T|H' (4, Q)" ®pgqe0, Er)

This is the reciprocal of a polynomial with coefficients in F, and depends
only on v and not on A. We have L,(A,T) =[],.pc 0(Lv,e(A,T)).

COROLLARY 1.2.5. Assuming (1.1.2), let A be an abelian variety
of GLo-type. Then L(A,s) has an analytic continuation to the whole
complex plane, and satisfies a functional equation with respect to the
symmetry s — 2 — s.

More precisely, if N(A) denotes the conductor, g = dimA, and we
set

A(4,5) = N(4)"2((2r) "L (s))°L(A, 5),
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then we have
A(A,s) = £A(A,2 — s).

Proor. Let E C EndgA ®z Q be a field of degree g, and for a
prime Alp of E, let

f=Y ang" € S(T'1(N),C)

n=1

be the normalised eigenform given by (1.2.1), so that V4 x ~ py\ for a
prime \|p of Ef. More precisely, we fix inclusion Ey C E C C so that
NEe ;= N. We may also assume that f is a newform, so that there is no
1€ So(T1(N'),C) with N’ < N and a,(f’) = ay(f) for vt N.

If 0 : Ey — C is an embedding, then f7 := %" _, o(a,)q" is again
a normalized eigenform in S3(I'; (), C). This follows from the fact that
the space S2(I'1 (N), C) is spanned by the Hecke stable Q-subspace con-
sisting of cusp forms with rational Fourier coefficients.

If ¢ : (Z/NZ)* — C denotes the character of f, (extended to a
function on Z by setting e(m) = 0 if (m, N) > 1) then

s)=> ann * =[] —an™* +e(0)f )"
n=1 l

has analytic continuation and satisfies a functional equation with respect
to the symmetry s — 2 — s. More precisely, if

A(f,5) = N*2(27)*T(s)L(f, ),
then
A(f,s) = W(fIA(fS,2 = s),

where W(f) € Ey is a root of unity, and ¢ denotes complex conjugation.
Since Va x ~ pyn we have

L(f, S) = Hdet E}\(l — Frobyl™?* |(VA /\)[é HL(E A I )
4

where we view E C C via the embedding chosen earlier. More precisely,
we see that the Euler factors corresponding to primes ¢4 N on the two
sides agree. It follows from a result of Carayol [Ca 1], building on work
of Deligne and Langlands, that the factors at £ { N also agree. Finally
we compute

s) =LA ) =11 I o@esa =)= 1] L(47.C)
¢ { o:E—C 0:E—C

This shows that L(A, s) is entire, and that A(A,s) = [[, A(f?,C). That
N(A) = NY follows from the work of Carayol loc. cit. O
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1.3. Artin’s conjecture. Khare [Kh 2] observed that one could
modify the above arguments to show that (1.1.2) implies Artin’s con-
jecture for odd, two dimensional representations.

THEOREM 1.3.1. Assume (1.1.2), and let p : Gg,s — GL2(C) be an
odd, irreducible Artin representation. Then the Artin L-function

L(p,s) = Hdet c(l— Fr0b£€_5|p14)—1
L

is entire. More precisely, there exists an eigenform f of weight 1 such

that L(p,s) = L(f,s).

PrOOF. This was observed by Khare [Kh 2]. Since p has finite im-
age, after conjugation we may assume that p factors through GLy(FE) for
some number field E. For A|p a prime of F, denote by g, the reduction
of p modulo A. It is not hard to see that py is absolutely irreducible,
except for finitely many .

Suppose that p is unramified at p, and A|p. Then k(py) = p, and
so px = pyn for some eigenform f € S,(I'1(N),C) and X|p a prime
of Ey. Here N denotes the conductor of p. The result of Coleman-
Voloch mentioned in (1.1.3)(2) shows that there exists an eigenform
g € Si(T'1(N),C) such that pgr» = prr = pr for \’|p a prime of
E,. More precisely, there exists a weight 1 Katz modular eigenform
whose g-expansion is equal to that of f modulo p. If we exclude finitely
many primes, we may assume that this form lifts to an eigenform g €
S1(T1(V),C).

Since we can make this argument for infinitely many p, an argument,
as in (1.2.1) shows that p ~ pg y» for some g € S1(I'1(V), C). O

1.4. Modularity of motives of GLy-type. To finish this section,
we explain how to extend the above results for Abelian varieties of GLo-
type to Grothendieck motives of GLa-type.

Let X be a smooth projective variety over Q of dimension d. We
denote by Z(X) the group of cycles on X of codimension i, and by
C'(X) the quotient of Z!(X) ®z Q by the subspace spanned by cycles
whose classes in cohomology are trivial. This condition is independent
of the cohomology theory used, since any of the standard theories (I-
adic, de Rham, crystalline) may be compared with the Betti cohomology
H%(X(C),Q). If X,Y, Z are smooth projective varieties over Q we have
a map

CHMXTUX X Y) x CE™YH(Y x Z) — CI XTI (X % Z)

given by (U, W) +— p13.(Ux ZNX xW), where p13 denotes the projection

from X x Y x Z to X x Z. In particular, C%X (X x X) is a ring.
Recall [Ja] that a Grothendieck motive M over Q is a tuple (X, m, m)

where X is a smooth projective variety over Q of dimension n, m €
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C™(X x X) satisfies 72 = 7, and m € Z. One defines
Hom((X', 7', m'), (X, 7, m)) = wCImX=m+m"(x » X\n!,

Given any cohomology theory H* on smooth projective varieties over
Q, and M = (X, m,m) we set H' (M) = w(H™?™(X))(m). With our
conventions this is contravariant in M. We refer to this as the realization
of M (in degree i) corresponding to the theory H*.

Let E be a number field, and consider an embedding F — End M.
If A|p is a prime of E, we set H\(M) = H'(M,Q,) ®geq, Er. Here
H'(M,Q,) denotes the p-adic étale realization of M.

LEMMA 1.4.1. Suppose that M = (X, 7, m), and E — End M. If v is
a prime of Q where X has good reduction then det g, (1-TFroby '|HE(M))
has coefficients in E, and is independent of A\t v.

ProOOF. Let @ € E[X]. It suffices to show that for any @,

to = trg, (Q(Frob, )| H (M),

a priori an element of @p, is in F and independent of A. Now

> toa = trg, (Q(Frob, )| H (M, Qy))
Alp
= trg, (TQ(Frob, 1) [HIF2™(X)(m)).

The right hand side has coefficients in @Q, and is independent of p by
[KM, Thm 2]. It follows that for any a € E, 3, A(a)tgx € Q, since we
may apply the above observations to a@ instead of Q). Hence ), tg aA
is a Q-linear map, £ — Q C @p. Since the embeddings A : F — @p,
are Q-linearly independent, this implies that there is some ¢ € E such
that tg x = A(t) for all A. So tg € E, and depends only on p.

If A\, M t v are two primes of E, then the above shows that for a € E,
we have

trg glatg.a) = trg glatg.n) € Q.
Hence trg /g (a(tgx—tg,n)) = 0 for all @, which implies tg \ = tgx. O

1.4.2. Given M and FE, as above, we will say that M is of GLs-
type, if the Betti cohomology H% (M, Q) is two dimensional over E. The
de Rham realization HQR(M ) is then also a two dimensional E-vector
space. We call the two degrees in which gr®H'y (M) are non-zero the
Hodge weights of h'(M). According to standard (perhaps unfortunate)
conventions, these are the negatives of the Hodge-Tate weights of the
Gq,-representation H'(M, Q).

If A|p is a prime of E, then H} (M) is a two dimensional E)-represent-
ation of Gg ¢ where S the union of {p, oo} and the set of primes at which
X has bad reduction.
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THEOREM 1.4.3. Let M be of GLo-type with Hodge weights r <
s. Suppose that H;(M) is an absolutely irreducible representation of
Go,s, and if r = s assume that detg, H{(M) is odd. Then for some
N > 1, there exists an eigenform f in Ss_p11(T'1(N),C), such that
prx ~ H{(M)(s) for some prime N|p of Ej.

PrOOF. If r = s, then the main theorem of citeKiW implies that the
action of G, on Hi(M)(s) factors through a finite quotient, and hence
the theorem follows from (1.3.1). Alternatively, the same argument as
in (1.3.1) can be applied directly to show that Hj(M) comes from a
weight 1 form.

Thus we may assume that » < s. Then an argument with the Hodge
decomposition, as in the proof of (1.2.1), shows that det H} (M) is odd.
Write ppry for H (M)(s). Note that the Hodge-Tate weights of pas, as a
G,-representation are 0 and j = s—7. By a result of Fontaine-Messing,
[FMe, 2.3], if s —r < p — 1, then pys \ arises from a weakly admissible
module, and using Fontaine-Laffaille theory [FL, §8, Thm. 5.3] one sees

J .
that pasa| I, is either of the form <°‘82 2j or (u())f 9{) Moreover, if
W

Jj =1, then pyy, A\G@p arises from a finite flat group scheme [FL, §9], so
in the second case * is peu ramifiée. It follows that k(parn) = s —1r+1.

To bound N(pa,»), let Nog be the product of the primes of bad
reduction of X. If g = [E : Q], the image of pys\ has order dividing
(p?9 — 1)(p* — pY). There exists a positive integer a, and a class y €
Z/NSZ such that (y?9 —1)(y? —y9) # 0 (mod (%) for any | Ny. Hence, if
p =y (mod N§), then the order of the image of pys  has l-adic valuation
at most a — 1, and [Se 1, 4.9.4] implies

(N (para)) < 2la+ =),

It follows that for Alp with p = y (mod N§), there exists f\ €
Ss—r+1(T'1(N),C) such that ps, »» ~ pu,a for some prime N|p of Ey,,
where N is an integer which does not depend on A. The rest of the
proof is identical to that of (1.2.1), using the fact that for v ¢ S, the
characteristic polynomial of pys \(Frob,) does not depend on A { v.

We could also have used an argument involving a modularity lifting
theorem as in (1.2.2). O

COROLLARY 1.4.4. Keep the above notation and assumptions. Then
Ly(h'(M),T) := det g, (1 — TFrob, | Hi(M))~1

is the reciprocal of a polynomial with coefficients in E, which does not
depend on A tv. Moreover, for any embedding o : E— C, the product

Lo(h'(M),s) = [ [ o(Le(h' (M), £7%))
L

which converges for Re s sufficiently large, extends to an entire function.
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PRrOOF. This follows immediately from (1.4.3) and the correspond-
ing properties of the L-function L(f,s). Note that the claim regarding
L-factors at primes ¢|N follows from the results of Carayol already sited
above [Ca 1]. O

2. Modularity lifting theorems

2.1. Statement of results. In this section we explain some of the
ideas which go into the proof of Theorem (0.1). For simplicity, we will
restrict ourselves to the case p > 2. While the case p = 2 presents some
technical difficulties, the main ideas are similar.

When proving results of the type p modular = p modular, it is
more convenient to work with Barsotti-Tate representations rather than
potentially Barsotti-Tate representations. This is because in the former
case, the p-adic Hodge theory, which is used to control the deformation
rings appearing in the argument, is better behaved. For the purposes of
proving Theorem (0.1), we can reduce ourselves to the case of Barsotti-
Tate representations if we replace Q by a suitable finite, solvable totally
real extension F. If one can show that p|q, arises from a Hilbert modular
form, then Theorem (0.1) follows by Langlands base change (cf. the end
of the proof of [Ta 4, Thm. 2.4]).

The modularity of p|g, can be deduced from the following result
over totally real fields. (As for modular forms, if 7 is a Hilbert modular
eigenform over F, and A the prime of its coefficient field, we denote by
pr.x (resp. pr ) the corresponding A-adic (resp. mod \) representation.
In the following A will usually be a prime dividing p, and we will write
pr.x without further comment.)

THEOREM 2.1.1. Let F/Q be totally real, p > 2, S a finite set of
primes of F, and p : Gps — GLa(E) a continuous representation.
Suppose that

(1) p is Barsotti-Tate at each prime plp of F, and has cyclotomic
determinant.

(2) p ~ pr for some Hilbert modular form m over F of parallel
weight 2 and prime to p level, such that py \ is ordinary at a
prime ulp of F if and only if p is.

(3) Plr(c,) is absolutely irreducible, and [F((p) : F] > 2 if p=5.

Then p ~ ppr  for some Hilbert modular form ©' over F.

2.1.2. Here and below, when we say that p is ordinary at y we mean
that P‘GFM has a rank 1 quotient on which the action of inertia at u is
trivial. We will say that p is potentially ordinary at p if this condition
holds on the restriction of p to an open subgroup of Gp, .

Note that the hypothesis (2) is stronger than just asking that p ~
Pr - Since p may be ramified in F, it may happen that p arises as the
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reduction of both ordinary and non-ordinary Barsotti-Tate representa-
tions. Hence (0.1) does not follow immediately from (2.1); one needs
to show that if p arises from a representation of Gg, one can find a 7
satisfying the stronger condition in (2). Sometimes one can improve this
result. The following corollary can be deduced from the theorem using
exactly the same methods as in [Ki 2, §2].

COROLLARY 2.1.3. Let p > 2, F/Q a totally real field, S a finite set
of primes of F, and p : Grs — GL2(E) a continuous representation.
Suppose that

(1) p is potentially Barsotti-Tate at each prime p|p of F, and that
if p is potentially ordinary at ju then F), = Q.

(2) p ~ pr for some Hilbert modular form m over F of parallel
weight 2.

(3) Plr(c,) is absolutely irreducible, and [F((p) : F] > 2 if p =5.

Then p ~ pyp  for some Hilbert modular form ©' over F.

In the remainder of this section we will try to outline the proof
of (2.1). Further details may be found in [Ki 1] and [Ki 2]. More
precisely, the theorem is proved there assuming that if u|p is a place of
F then the residue field at p is equal to IF,. This assumption has been
removed by Gee [Ge].

2.2. Barsotti-Tate deformation rings. Suppose that K/Q, is
a finite extension, F a finite extension of F),, and p : Gx — GLo(F)
a continuous representation. We will suppose that Endpig,p = F,
although there is a variant of the theory without this assumption.

Let R(p) denote the universal deformation ring of p. If E/W (F)[1/p]
is a finite extension, and = : R(p) — E a map of W ([F)-algebras, then
we denote by V, the two dimensional E-representation of G obtained
by specializing the universal representation via x.

PROPOSITION 2.2.1. There erists a p-torsion free quotient R%!(p)
of R(p) with the following properties:

(1) If z - R(p) — E is a map of W(F)-algebras then x factors
through R%Y(p) if and only if V, is Barsotti-Tate with Hodge-
Tate weights equal to 0,1, and det V. is equal to the cyclotomic
character.

(2) RY(p)[1/p] is formally smooth over W (F)[1/p] of dimension
[K = Q).

(3) Suppose that K has residue field Fp. If x1,722 : R%Y(p) — E
are two W (F)[1/p|-algebra maps, then the images of associated
maps of spectra lie on the same component of Spec R (p)[1/p]
if and only if Vy, and Vy, are either both ordinary or both non-
ordinary. Moreover if E/Q, is a finite extension, then the
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connected components of R (p) Qww) £ are in bijection with
those of R%'(p)[1/p).

2.2.2. The proof of (2.2) uses p-adic Hodge theory. To construct the
ring R%!(p) consider first the quotient R(p) of R(p) which corresponds
to deformations of p which are the generic fiber of a finite flat group
scheme [Ram)]. Let R%X(p) denote the quotient of R"(p) corresponding
to deformations with cyclotomic determinant. Then we take R%!(p) to
be R%X(p) modulo its ideal of p-power torsion elements.

It is not hard to see that R%!(p) satisfies (1). The most delicate
point is to show that it satisfies (3). The proof uses a classification
of finite flat group schemes initiated by Breuil [Br 2]. Rather than
studying deformations of p directly, one studies the finite flat group
schemes over Ok which give rise to them (finite flat models).

We will give some of the ideas below. First we explain how this
result implies (2.1.1). We remark that although we use (2.2.1) in the
proof of (2.1.1) below, we have stated (2.1.1) without any assumption
on the residue fields of F' at primes v|p. This is because Gee [Ge] has
proved (a variant of) (2.2.1) without any assumption on the residue
field in the case when p is trivial. The case of trivial image is enough
for applications to modularity, since one can always reduce to this case
by base change. Of course even to formulate (2.2.1) in this situation
requires the use of framed deformation rings, which we have avoided
here.

2.3. The modified Taylor-Wiles method.

Sketch of (2.2.1) = (2.1.1) : We will explain the proof in the so
called “minimal case”; namely when the conductor of p at any prime
w1 pis equal to that of p, and the action of the inertia at u is unipotent.

Recall the original method of Taylor-Wiles [TW] for proving mod-
ularity. One wants to check that § : R — T where R is a global defor-
mation ring with certain local conditions imposed, and T is a localized
Hecke algebra. The representation p corresponds to a map R — FE,
and we would like to show that this factors through T. By considering
deformation rings and Hecke rings with auxiliary primes in the level
and applying a patching argument, one finds that the map @ sits in the
following diagram

W ()1, .. 2] —> Roo —2 Toy

o,

R T

Here r is some non-negative integer. One knows the following informa-
tion:

(1) 0 is obtained from 6, by factoring out by (z1,...,z,)
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(2) Tw is finite flat over W (F)[x1, ...z, ].
(3) There is a surjective map W (F)[z1,... 2] — Rs.

The condition (2) is deduced using the geometry of modular curves,
while (3) follows from a calculation with Galois cohomology and Poitou-
Tate duality.

From (2) it follows that T is pure of dimension r + 1, and hence
the composite of the surjective maps

WE)[z1,. .. 2] & Roo — To

is an isomorphism. It follows that 6., is an isomorphism, and so is 8 by
(1).

In the situation of Theorem (2.1.1), (3) no longer holds, and one
does not know how to prove (2) (it may well be false). Instead one
replaces them with the following weaker conditions

(2)" There exists a faithful, finite, rank 1, Too-module My, which is
finite flat over W (F)[z1, ..., z,].

(3)" Let Rgi; :—|> @RO’I(ﬁ!GFU), where the tensor product is taken
olp

over W(F). We can assume that r > d = [F' : Q], and there
exists a surjection

0,1
R7

v|p[[zl, ooy Zr—d] = Reo-

The module M, is built by patching spaces of modular forms at
auxiliary level. (The idea of replacing (2), which is a condition involv-
ing Hecke algebras, with a condition on modular forms goes back to
Diamond [Di 2| and Fujiwara.)

We can now finish the argument as follows: From (2)’ it still follows
that Ty, is pure of dimension r + 1. Consider the map on spectra

(2.3.1) Spec Too — Spec Ry — Spec RS";[[zl, ey Zr—d]

induced by composing (3)’ and 0. We have already observed that the
left hand side is pure of dimension r + 1, and the right hand side has
dimension
14+ [Fp:Q+r—d=r+1
plp

by (2.2.1)(2). The formal smoothness of (2.2.1)(2) implies that
the image of (2.3.1) is a union of irreducible components of
Spec RSE; [z1, ..., 2r—a]- The description of these components in (2.2.1)(3),
together with the condition (2.1.1)(2) guarantees that the point corre-
sponding to p is in the image of (2.3.1). Hence p factors through T,
and hence through T.

Finally let us remark that the argument in the non-minimal case
is very similar, but one needs to patch over a tensor product of local
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rings at the non-minimal primes of p as well as primes dividing p. (cf. §3
below).

2.4. Moduli of finite flat group schemes. We now explain some
of the ideas which go into the proof of (2.2.1). We begin by recalling a
construction of finite flat group schemes introduced by Breuil [Br 2].

2.4.1. Let k denote the residue field of K, and let W = W (k). Let
S = Wu], and equip the ring & with an endomorphism ¢ which acts as
the usual Frobenius on W, and sends u to v?. Fix a uniformiser m € O,
and let F(u) be the Eisenstein polynomial of 7.

Denote by '(Mod/&) the category of G-modules 9, equipped with
a -semi-linear map ¢ : 9 — 9 such that the cokernel of * (M) — M,
the G-linear map induced by ¢, is killed by E(u). We give ’(Mod/&) the
structure of an exact category induced by that on the abelian category
of &-modules.

Let (Mod FI/&) be the full subcategory of '(Mod/&) consisting of
those 90t such that as an G-module 9 is isomorphic to G;c;&/p™ &,
where [ is a finite set and n; is a non-negative integer. We denote
by (Mod/&) the full subcategory of /(Mod/&) consisting of objects 9t
which are successive extensions of objects whose underlying &-modules
are finite free & /pS-modules. This is equivalent to asking that the G-
module 9 is killed by a power of p, and has projective dimension 1
[Ki 3, 2.3.2]. Finally, we denote by (Mod/&)z, the full subcategory of
'(Mod/&) consisting of objects whose underlying G-modules are finite
free.

We will write (p-Gr/Of ) for the category of finite flat group schemes
over O of p-power order, and (p-div/Of) for the category of p-divisible
groups over O.

THEOREM 2.4.2. For p > 2, there is an exact equivalence
(2.4.3) (Mod/&) = (p-Gr/Ok).

This induces an equivalence between (Mod F1/&) and the category of
finite flat groups schemes G such that G[p"] is finite flat for n > 1 as
well as an equivalence

(Mod/&)z, — (p-div/Ok).

2.4.4. To explain some of the ideas behind the proof of (2.4.2), we
need to introduce another category of modules. Let S denote the p-
adic completion of Wu, E(u)!/i!];>1. We equip S with a Frobenius ¢,
which is the usual Frobenius on W and sends u to v”, and we denote by
Fil'S c S, the kernel of the map of W-algebras S — O which sends u
to .

Let /(Mod/S) be the category of triples (M, Fil'l M, 1), where M
is an S-module, Fil'! M C M is a submodule containing Fil'!SM, and
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@1 : Fil' M — M is a Frobenius semi-linear map which satisfies

p1(sz) = (o(B(w))/p) " p1(s)p1(E(u)z)

for s € Fil'S and 2 € M. Note that o(E(u))/p is a unit in S, so the
formula makes sense. We denote by (Mod FI/S) the full subcategory of
'(Mod/S) such that

(1) M =5 @;crS/p™S as an S-module, for I a finite set, and n;
non-negative integers.
(2) @1 (Fil' M) generates M as an S-module.

We denote by (Mod/S) the full subcategory of '(Mod/S) consisting of
objects which are successive extensions of objects in (Mod FI/S) which
are killed by p. Finally, we denote by (Mod FI/S)z, the full subcategory
of /(Mod/S) consisting of those objects whose underlying S-modules are
finite free, and which satisfy (2) above.

There is a functor

(Mod/&) — (Mod/S); 9 — S @, M,
where Fil (S ®Ryp,& M) is the preimage of Fil'S ®g 9 under

S @peM 2 S @M,

and the map ¢, is the composite

S Do M FilLS 0 M 7 S0, 6 M.

2.4.5. Remarks on the proof of (2.4.2). The functor in the theo-
rem was constructed by Breuil [Br 2|, who showed that that it was
fully faithful and an equivalence on objects killed by p. This uses an-
other result of Breuil [Br 1], which asserts that for p > 2 there is an
anti-equivalence between (Mod/S) and the category of finite flat group
schemes over O . This equivalence can then be composed with Cartier
duality and the functor (Mod/&) — (Mod/S) defined above to give the
functor of (2.4.2).

The connection between finite flat group schemes and S-modules is
via the theory of crystals attached to finite flat group schemes initiated
by Grothendieck [BBM]. If G is a finite flat group scheme over Ok,
there is crystal D(G) on the crystalline site of O /W attached to G.
The values of this crystal on a thickening 7" in this site are coherent (but
not in general free) Op-modules. Since S is a divided power thickening
of Ok, one can evaluate D(G) on S, and this gives the underlying S-
module of the object of (Mod/S) corresponding to G.

Breuil’s results can be combined with a deformation theoretic argu-
ment to obtain the classification of p-divisible groups in (2.4.2) [Ki 1,
2.2.22]. From this, one can deduce that (2.4.3) is an equivalence by writ-
ing a finite flat group scheme as a kernel of p-divisible groups [BBM,
3.3.1].
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There is another way of obtaining the classification of p-divisible
groups directly, without first constructing the functor (2.4.3) for finite
flat group schemes [Ki 3, 2.3]: The crystalline theory allows one to
describe deformations of p-divisible groups [Me]. Using this one can
show directly that for p > 2 there is an equivalence

G—D(G*)(S
(p-div/Ox) “"2ES) (Mod FI/8)y,,
where G* denotes the Cartier dual of G.

Then, using a classification of crystalline representations in terms of

G-modules, one shows that the composite

(Mod/®&)z, — (Mod FI/S)z, — (p-div/Ok)

is an equivalence.

For p = 2 the above functor is an equivalence up to isogeny, and is
an equivalence if one considers only connected objects [Ki 5]. However
Breuil conjectured that (2.4.2) should be true for all p. The difficulties
at p = 2 seem to occur because the crystalline theory no longer works
as well, one reason for this being that the divided powers of 2, are
not topologically nilpotent (2/i! does not tend 2-adically to 0). This
suggests that there should be an approach to (2.4.2) which does not go
through the crystalline theory. There are some intriguing calculations
of Breuil which point in this direction [Br 2].

2.4.6. Before applying the above theory to prove (2.2.1), we need
to relate the above classification to Galois representations. Fortunately,
there is a very simple way of doing so.

Let Og¢ denote the p-adic completion of &[1/u]. The Frobenius ¢
extends to Og by continuity. The ring O¢ is a complete discrete valua-
tion ring, with residue field k((u)). We denote by ®Mp, the category
of finite Og-modules M equipped with an isomorphism ¢*(M) — M.
Then one has the following [Ki 1, 1.1.13], [Br 3, 3.4.3].

PROPOSITION 2.4.7. There is a commutative diagram of functors
(p-Gr/Ok) —— (Mod /&)
lG'_’G(OK) J{fm—ﬁ’?[l/U]
(ffl Gg-reps) —— ®Mo,

where (f.61 Gg-reps) denotes the category of G -representations on fi-
nite length Z,-modules, which arise from a finite flat group scheme.
Moreover both horizontal functors are fully faithful.

2.4.8. To describe the ring R%!(p) one studies the finite flat group
schemes which give rise to deformations of p. It turns out that, in gen-
eral, these have moduli of positive dimension, so that Artin rings are
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insufficient to describe them. For this reason we replace finite flat group
schemes by the G-modules with Frobenius introduced above.

Let A be a W(IF)-algebra, set 64 = 6®z, A, and extend ¢ to & 4 by
A-linearity. We denote by (Mod FI/&) 4 the category of finite projective
S g4-modules M 4, equipped with a map ¢*(9M4) — M4, whose cokernel
is killed by E(u).

Let V& denote the underlying F-vector space of p. According to
(2.4.7), attached to Vg there is an object Mp of ®Mop,. It is equipped
with an action of F by functoriality, and one can check that it is finite
free over k((u)) ®F, F.

Let 2Augyy ) denote the category of pairs (A, I) consisting of a W (F)-
algebra A and a nilpotent ideal I C A such that (p) C I. We define a
functor De as, on Augyy ) by declaring De as, (A, I) to be the set of iso-
morphism classes of pairs consisting of an object M4 in (Mod FI/8) 4,
together with an isomorphism

My @ O — My @p A/I
which is Og ®r, A/I-linear, and compatible with Frobenius.

THEOREM 2.4.9. The functor De . 15 represented by a projective
RY(p)-scheme
Ov, : YRy, — Spec R(p).
Moreover, Oy, becomes an isomorphism after inverting p.

Proor. [Ki 1, 2.1.11, 2.4.8]. In fact this holds for any (not neces-
sarily two dimensional) p. The statement that ¢ %y, represents Dg pr,
is an abuse of terminology, since 4%y, is not actually an object of
Augyy (r). It means that there is a functorial isomorphism

De i (A, I) — Homyy () 1 (Spec A, 9 Zv;)

where the right hand side means maps of W (F)-schemes such that under
the composite
Spec A — YRy, — Spec R1(p)
the radical of Spec R(p) pulls back into 1.
The fact that Oy, becomes an isomorphism after inverting p can
be thought of as an incarnation of Tate’s theorem that the functor

which associates to a p-divisible group over Ok its generic fibre is fully
faithful. O

2.4.10. To prove (2.4.2), we need to consider a subfunctor of Dg p, .
We define D%}MF(A,I) to be the set of M4 in Dg pr. (A, I) such that
the image of the composite

@ (Ma) = My — Ma/E(u)Ma

is a maximal isotropic submodule in 9M4/E(u)M4 (that is, locally
on Spec G4, it is its own annihilator under a symplectic pairing on
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M4/ E(u)DM 4, which is locally free of rank 2 over Ok ®z, A), and the
rank 1 W(k) ®z, A-module det9/uMy is spanned by sections on
which ¢ acts by p.

THEOREM 2.4.11. The subfunctor D%IM 1s represented by a closed
yIVIF
subscheme %%% C Y Rv,. The morphism Oy, induces a projective map

0,1 0,1 0,1/~
Oy, 1 9%y, — Spec R L(p)
which becomes an isomorphism after inverting p.

Moreover, the complete local rings on g%’% are tsomorphic to those

on integral models of Hilbert modular varieties. In particular, %%?&; X7z
Z/pZ is reduced.

Proor. [Ki 1, 2.4.6, 2.4.8]. The integral models in the proposition
are those studied by Deligne-Pappas [DP]. In more general situations
where dimVg > 2, the local geometry of the analogous schemes is con-
trolled by local models of Shimura varieties. The reason for the rela-
tionship is that both moduli problems are controlled by the same linear
algebra. We do not know if this has some deeper meaning. 0

2.4.12. Sketch of (2.4.11) = (2.2.1). That R%!(p)[1/p] satisfies
(2) follows from (2.4.11), because the description of the local structure
of %%’(‘)/’Fl implies, in particular, that %@%[1 /p] is formally smooth over

W(F)[1/p].
For a topological space X, write Hy(X) for the set of its connected
components. Let %%%0 denote the fibre of %@% over the closed

— 0,1
point of Spec R%!(p), and denote by 4%y the completion of g%(‘)};

0,1
along %%VF’O. ‘ ‘
Then one has isomorphisms

Ho(Spee R*' (p)[1/p]) = Ho(9 %y, ©z, Qy)
~ ~ — 0,1
— Hy(4y,) — Ho(9 Ry, ).
The first isomorphism follows directly from (2.4.11), while the second
follows easily from the fact that g%’?/’; ®z Z/pZ is reduced. The third
isomorphism is a consequence of formal GAGA [GD, III, 5.5.1].
— 0,1,

Finally, the underlying topological space of %y, is the same as that
of g‘%)(\)/%lo- In the situation of (3) one can check by a direct computation
that two closed points on %%%0 are connected by a chain of rational
curves, provided they give rise via (2.4.2) to group schemes which are

either both ordinary or both non-ordinary. Not surprisingly, the latter
case is much more delicate.
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It is this final step which was carried out in [Ki 1] in the non-
ordinary case only when K has residue field IF,,. This was the condition
removed by Gee in the case when p has trivial image.

3. The work of Taylor

3.1. The results of this section are contained in [Ta 1], [Ta 2] and
[KW 3, §5]. The starting point is a “potential” version of Serre’s con-
jecture:

THEOREM 3.1.1. Let p > 2, and p : Gg,s — GLo(F) be odd and
irreducible. Then there exists a Galois totally real number field F in
which p is unramified, and a Hilbert modular form w over F of parallel
weight 2, such that pr ) ~ plGy-

SKETCH OF PROOF. The idea is to find an abelian variety A/F,
equipped with an embedding O — End g A, where Oy, is the ring of
integers of a totally real field L such that [L : Q] = dim.4, and primes
Alp and Xt p of L such that

(1) AP ~ Bl
(2) A[X] is dihedral and not induced from a subfield of F((p).

Given such an A, we find that A[X] is evidently modular, since it
arises from a CM form, and hence A is modular by a modularity lifting
theorem of the type in §1. Hence A[)\] is modular and so is p|g,.

Collections of data of the above type are classified by a twisted
Hilbert modular variety M (once we fix L, A and )\, and the dihedral
extension appearing in (2)). These have points over large enough num-
ber fields F, and we want to check that F' can be chosen so that F' is
totally real and p is unramified in F. A general result of Moret-Bailly
[MB] asserts that I’ can be so chosen, provided that there are no local
obstructions. That is, provided that M has a point over R and over
some unramified extension of ,. This can be proved by giving an ex-
plicit construction of the required Hilbert-Blumenthal abelian varieties
by using CM abelian varieties. O

3.1.2. In fact, Taylor proves a more precise result: F' can be cho-
sen so that p splits in F' if ﬁ|GQp is absolutely irreducible, and such
that the residue field extensions at primes over p have degree at most
2 if not. This refinement is especially important in the absolutely ir-
reducible case, since it allows one to show that p arises from a Hilbert
modular form over F' of parallel weight k(p) - the Serre weight of p (see
§3). This is used in [Ta 2] to establish potential modularity theorems
for 2-dimensional crystalline representations with distinct Hodge-Tate
weights in [0, p — 2]. That is, Taylor shows that such a representation is
modular when restricted to some totally real field.

COROLLARY 3.2. Suppose that p : Gg g — GLao(E) is potentially
Barsotti-Tate at p, and that f‘_’|Q(Cp) is absolutely irreducible. Then there
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exists a Galois totally real extension F/Q such that p is unramified in F
and p|g, arises from a Hilbert modular form m over F of parallel weight
2.

Proor. If p has dihedral image then it is modular, and the theo-
rem follows from (2.1.3). Otherwise we can apply (3.1.1) and choose
F totally real, Galois such that p|g, is modular, and p is unramified
in F. Since p(Gr) C p(Gg,s) is a normal subgroup, Gg g normalizes
p(F[GF]) € Ma(F). Since p(Gr) contains a non-scalar semi-simple ele-
ment - the image of any complex conjugation - p(F[G p]) is either a Borel
subalgebra, a Cartan subalgebra, or M>(IF). In the first case p(Go,s)
would be contained in a Borel subgroup, while in the second it would be
dihedral. Hence p(F[GF]) = My(F), and p|q, is absolutely irreducible.
Thus the condition (3) of (2.1.3) holds.

If p is not potentially ordinary at p, then the theorem follows from
(2.1.3). If p\(;@p is potentially ordinary at p, then the abelian variety
A in the proof of (3.1.1) can be chosen to have either potentially good
ordinary reduction or potentially multiplicative reduction at each prime
vlp of F' (cf. [Ta 1, Lem. 1.2] and [KW 1, Prop. 2.5]). If 7 is the
Hilbert modular form corresponding to A, then by Hida theory there
is a form 7’ of parallel weight 2 such that 7’ principal series at all v|p,
the representation p,/ ) is potentially Barsotti-Tate and ordinary, and
P A ~ Pra ~ play- Thus, there is a totally real solvable extension F'/F
such that the base change of 7’ to F” is ordinary and Barsotti-Tate at
all v|p. Hence pg,, is modular by (2.1.1), and p|g,. is modular by base
change. O

3.3. Let F' be a number field, and S a finite set of primes. Suppose
that L is a number field, and for each finite place A of L write N(\) =
Npg(A). Let Sy denote the union of S and the primes v of I such that
v[N(N).

A compatible system with coefficients in L, is a collection {py} where
A runs over the finite places of L, and for each such A, p\ : Gpg, —
GL,,(L,) is a continuous representation such that

(1) py is unramified outside Sy.

(2) For v ¢ Sy, tr(pa(Froby,)) € L.

(3) If A, X are two finite primes of L and v ¢ Sy U Sy is a finite
prime of F, then tr(py(Frob,)) = tr(py (Frob,)).

We can strengthen these conditions as follows. Recall that for each
A, and any v { N () one can attach a semi-simple representation of the
Weil-Deligne group at v to pilg, - If v|N()) one can also attach such
a representation if py is potentially semi-stable at v. The construction
uses the theory of weakly admissible modules and is given in [Fo|. More
precisely, we take the semi-simplification of the representation produced
in loc. cit.
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We call {pyr} strongly compatible if in addition to the above condi-
tions we have

(4) For each A and any finite prime v of F with v|N(\), py is
potentially semi-stable at v.

(5) For each A and v the semi-simple Weil-Deligne representation
at v attached to p) is defined over L.

(6) If A and X are two finite primes of L and v is any finite prime
of F, then the Weil-Deligne representations at v attached to
px and py are isomorphic (when viewed as L-representations
using (5)).

In fact (5) and (6) imply (2) and (3) respectively.

Fix an embedding o : L < C. Then as in (1.4.4) the Weil-Deligne
representation at v given by (5) gives rise to a local L-factor, which the
reciprocal of a polynomial with coefficients in L. For any A\, we denote
by L,(py, s) the formal product of these L-factors.

COROLLARY 3.3.1. Keep the assumptions of (3.2). Then

(1) p occurs as part of a strongly compatible system {px} of A\-adic
representations with coefficients in a number field L.

(2) Foranyo : L — C, The L-function Ly (p, s) converges for Re s
sufficiently large and has a meromorphic continuation to C.

(3) If there exists a prime £ # p such that pla,, ~ (7). where
€ is a character of finite order, then p ~ T\ A for some abelian
variety A of dimension [L : Q], equipped with an embedding
L — End oA ®z Q, where Ap is a prime of L.

PROOF. Suppose that a prime ¢ as in (3) exists. If p has dihedral
image then it arises from a CM-form, and the corollary is clear, so we
will assume that this is not the case. We know that there exists a
Galois totally real number field F' such that p|g, is modular. That is
play ~ px for some Hilbert modular form 7 over F. This implies that
plap ~ T\ A for an abelian variety A over F with multiplication by some
field L, since by construction [Ca 1] p, » is the A-adic Tate module of
a factor of a Jacobian of a Shimura curve. We may assume that the
endomorphism ring of A contains the ring of integers Oy, of L.

Let A’ denote the Weil restriction of A to Q. Note that Oy, still acts
on A" and we denote by Th.A’ its A-adic Tate module. Since p is not
dihedral, we have Ind gg (play) ~ p @ p' where p does not occur as a
subquotient of p’. By Faltings’ isogeny theorem there exists a factor A
of A’ which is stable under the action of Op, and such that Th\A ~ p.

To prove (1) and (2) it will be useful to fix an embedding A of the
algebraic numbers in C into @p. Then for any Hilbert modular form 7/

we will consider the representation p,s ) corresponding to this choice of
A
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Note that (1) follows from (3) when the latter is applicable. In
general, we may still choose F' and 7 as above such that p|g, ~ pxx.
Using Brauer’s theorem write the trivial representation of Gal(F'/Q) as
a virtual sum

G
1= Z ndIld ng X
J
where n; € Z and ; is a complex abelian character of a subfield F; C F
such that F/Fj is solvable. By solvable base change 7 descends to a
Hilbert modular form 7; over Fj such that pr; \ ~ P‘GFj (cf. the final

part of the proof of [Ta 4, Thm. 2.4]). We now take L to be the subfield
of C generated by the coefficient fields of 7 and the 7;, as well as the
values of the characters x;. For X\ a prime of L we form the family

of virtual representations py = }_;n;Ind ggj (N o Xj ® pr;n). Then

px ~ p, as virtual representations, so py is a true representation and (1)
is proved by showing that the multiplicity of the trivial representation
in the virtual representation py ® p3, is 1 (cf. [Ta 3, §5.3.3]).

To prove (2), note that L C C by definition, and extend o to an
automorphism of C. Then we have

G n; o o \N
LO‘(ﬂ? 8) = HLU(IndGSjP‘GFj ®Xjas) = HL(WJ ®X]78) 7.
J J

The L-functions L(7] @ x7,s) have analytic continuation [BL], which
proves (2). O

4. The work of Khare-Wintenberger

4.1. Presentations of global deformation rings. We begin
with a general result about presentations of global deformation rings
over local ones. This is a refinement of a result of Bockle [B6]. We
go into a little more detail in this section in order to state the results
in a natural level of generality. However, for the level 1 case of Serre’s
conjecture only the original results of Bockle are needed.

In this subsection only we allow p = 2. Let F' be a number field,
S a finite set of primes of F' containing the primes dividing p, and the
infinite primes, and let ¥ C S. Let p : Gpg — GL(V') be a continuous
representation on a finite dimensional F-vector space V and fix a finite
extension E of Q, with ring of integers O and residue field F, and
a continuous character ¢ : Gpg — O, whose composite with the
projection O* — F* is equal to det V.

We denote by ad’V ¢ Endy(V) the subspace of endomorphisms
having trace 0. When p|dimpV, ad’V is not a direct summand in adV
as a G g-module, and moreover, in this case, the scalars [ C ad’V. If
G is Gpg or G, for v € ¥, we denote by H'(G,ad’V)’ the image of
HY(G,adV) — H'(G,adV) and we set H*(G,ad’V) = H?(G,ad"V).
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To begin with we will assume that for any v € 3, the commutator
of p(Gr,) is equal to F, and (in case ¥ = ()) that the commutator
of p(GF,s) is equal to F. This condition implies that V|g, admits a
universal deformation to a complete local O-algebra R,,.

Denote by Rf the quotient of R, corresponding to deformations
with determinant . Set R% = @Ueng . Similarly, we denote by Rpg
the universal deformation O-algebra of V, and by R% ¢ the quotient
corresponding to deformations of determinant . 7

LEMMA 4.1.1. Fori=1,2, denote by hiE/ and ciE, the dimensions of
the kernel and cokernel of

0': H(Gps,ad’V) — [[ H'(Gp,,ad"VY.
vEX
Then R%’S is a quotient of a power series ring over R% n hlz,—vam'ables
by at most CIE, + h22, relations.

PROOF. Write HY, (Gs,ad’V)’ for the kernel of 6%. Let my. denote
the maximal ideal of Rg. The tangent space of R? g/my is naturally
dual to HY (Grs, ad’V)’, and this proves the claim about the number
of generators.

The proof for the bound on the number of relations is also similar
to the standard result for deformation rings [Ma, 1.6]. Write mp g for
the maximal ideal of R%s. Let I be the kernel of the map of reduced
tangent spaces

my/(m$, 7p) — mps/(MEg, 7).

Then there exists a surjection R := Rg[[xl,...whlzl]] — R%S which
induces a surjection on reduced tangent spaces with kernel isomorphic
to I. Let J denote the kernel of this surjection, and write m for the
maximal ideal of R. Let

Prp ., Grs = GLa(Rg)

denote the universal deformation ~(here n = dimgV'), and consider a set
theoretic lifting p : Grs — GLp(R/m-J) of pLu , such that det p(y) =
F,S

() for v € Gp,5. The existence of such a lifting follows from the fact
that fibres of the map det : GL,, — GL; are torsors under the smooth
group SL,. Define a 2-cocycle

c:Grg— J/m-Jerad’V; (g1, 92) = plg192)p(g2) Algr) "
Here we identify J/m - J @p adV with the kernel of GL,(R/m - J) —
GL,(R/J).

The class [¢] of ¢ in H*(Gpg,ad’V) ®p J/mJ depends only on
pre and not on p, and it vanishes if and only if p can be chosen

F,S
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», obviously lifts to GL,(R)

for v € %, the image of ¢ in H*(GF,,ad’V) @ J/m.J is 0, so that
[c] € H2,(GFs,ad’V) @p J/mJ. Thus if (J/m.J)* denotes the F-dual of
J/mJ, then we obtain a map

to be a homomorphism. Since pov |
F,S

(4.1.2) (J/mJ)* — H&(Grs,ad’V);  u— ([d],u).

Now note that (J/m.J) surjects onto I C m/(m?, 7g), and hence we
get an inclusion I* C (J/mJ)*. We claim that I* contains the kernel
of (4.1.2). Suppose that 0 # u € (J/mJ)* maps to 0 under (4.1.2).
Let R, denote the push-out of R/tﬁ -J by wu, so that R}@’S = ﬁfu/Iu,
where I, C R, is an ideal of square 0, which is isomorphic to F as
an R,-module. Since ([¢],u) = 0, PRY. lifts to a representation p,, :

Grs — GLn(Ru) with determinant ¢, so the map R, — R?S has a
section by the universal property of Rlﬁ g- Hence R, — Rﬁ g @ 1y, and
Ru/ﬂ'ERu = R?S/wER%S @ I,,. In particular, the map R, — R%S
does not induce an isomorphism on reduced tangent spaces, so that the
composite

ker (J/mJ — 1) — J/mJ — I,

is not surjective, and hence must be the zero map. In other words, u
factors through I.
Hence we find that

dimp(J/mJ)* < dimgpl + h¥/ = c + hiy.
O

4.1.3. In applications, the assumption that for v € 3 the commuta-
tor of p(Gp,) is F, is too strong. For example if d > 1, it implies that
3. does not contain any infinite primes. We now drop this assumption,
but we assume that Y is non-empty.

For each v € ¥ fix a basis (3, of V. The functor which assigns to
a local Artinian O-algebra A with residue field FF, the set of isomor-
phism classes of pairs (Vy, 5, 4) where Vy is a deformation of the G, -
representation V' to A with determinant v, and (3, 4 is a basis of V4
lifting (,, is representable by a complete local O-algebra RUD Y We set
Rg’w = @UEQORUD’Q/’ and we denote by mg the radical of Rg’w.

Similarly, we obtain an O-algebra R%’g representing the func-
tor which assigns to A the set of isomorphism classes of tuples
(Va,{Bv,a}ves), where Vy is a deformation of the G g-representation
V having determinant ¢, and (3, 4 is as before. We denote by m% g the
radical of RE”g’.

Then we have the following variant of (4.1.1).
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PROPOSITION 4.1.4. Let
O 2 O 02
n:mg/(mg”,7E) — mF,s/(mF,SaTFE)

be the map on reduced tangent spaces induces by the natural map Rg’d’ —
RE’;{}. Then Rg’g s a quotient of a power series in dimpcoker 1 variables

by at most dimgker n + h%, relations, where h%, is defined as in (4.1.1).
Proor. This is proved just as in (4.1.1). O

ProproSITION 4.1.5. Keeping the above notation, suppose that X
contains the primes dividing p, and that the map

() H°(Grs, (ad"V)*(1)) = [[ H*(Gr,, (ad’V)*(1))
v]oo
« [ HAGr (2dV) (1))
vE(S\E)f

is injective, where (S\X); denotes the finite primes, and H(Gp,,
(ad®V)*(1)) denotes HO(Gr,,(ad’V)*(1)) modulo the subgroup of norms.
In particular, this condition holds if (S\X); is non-empty, or H*(Grs,
(ad®V)*(1)) is trivial.

Let s =3, 00 0gs dimp H(GF,,ad’V). Then for some non-negative
integer r, there is an isomorphism

0, ~ O,
RF,g — Ry ¢[[$1= ce $r+\2|—1]]/(f17 oo Jrts),

where f1,..., fris € R%[[xl, o Togz|—1ls
ProOOF. Note that (cf. [Ki 1, 3.2.2])

(4.1.6)
dimpm g/ (mF%, 75) — d*|3| = K1 (Grs,ad’V) — (G rs, adV)
=hY(Grs,ad"V) — % (Grg,ad’V) — 1,
where a lower case h denotes the F-dimension of the space obtained

by replacing “h” by “H”, and the final equality follows from the exact
sequence

0 — (ad'V)Crs — (adV)9Fs - F — HY(Gpg,ad’V)
— HY(GFpg,ad’V) — 0.

Similarly, we have
(4.1.7)

dimpmg/(m5?, 7p) — d*|S| = Y "[h}(Gp,,ad"V) — B%(GF,,ad"V) — 1.
vED

Using Local Tate duality [Mi, Cor. 2.3], together with the final three
terms of the Poitou-Tate sequence [Mi, Thm. 4.10], one sees that ()
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implies that the map 62 is surjective so that

(4.1.8) h3y = h*(Grg,ad’V) = Y " h*(Gp,,adV).
veEX
Combining (4.1.6), (4.1.7) and (4.1.8) with (4.1.4) we find that the
proposition holds with s satisfying
%] — 1 — s = (dimpcoker np — dimpkern) — h%,

= —x(Grs,ad’V) + ZX (Gp,,ad’V) + 2| — 1,
vEX
where x denotes the Euler characteristic as F-vector spaces. So
s =Y xX(Gr,,ad’V) — x(Gps,ad’V).
vEX
Since

X(Grs,ad’V) = (h(Gp,,ad’V) — [F, : R]dimgadV)
v]oo

=> h(Gp,,ad’V) - [F : Q|dimpad’V
v]oo

by [Mi, Thm. 5.1], while

> X(Gr,,adV) = > BYGr,,ad"V) = Y [F, : Q))dimpad’V

vET v|oo,veR v|p
> h(Gr,,ad’V) - [F : Q]dimpad’V
v]oo,vER
by [Mi, Thm. 2.8], the proposition follows. O

4.1.7. Remarks.

(1) There is a version of the proposition even when (}) is not in-
jective; one simply needs to add the dimension of the kernel of (}) to
S.

(2) Assuming that (t) is a surjection, the proof of (4.1.5) shows that

S = h2/ +C§/ — h%/
which makes (4.1.1) more explicit when the hypotheses of the proposi-
tion apply.

(3) The proofs of (4.1.1) and (4.1.5) show that when (f) is surjective,
(J/mJ)* is an extension of HZ,(Grg,ad"V)’ by coker§!. When ¥ = S,
the Poitou-Tate sequence shows that H'(Gr g, ad’V (1)) is also such an

extension. It would be interesting to construct an isomorphism between
these two spaces. !

IThis is in fact done in [KW 2, §4.1]; see the remark following the proof of
Prop. 4.4.
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(4) If we assume only that End (g, V =TF, then R}@’E is formally

smooth over R% g of relative dimension d?|3| — 1. Hence we have
~ EL
Ris == B lon, o wpsiama 1/ (o frs)

4.2. Existence of liftings with given type. Suppose that p :
Go,s — GL2(F) is a continuous, odd representation, and fix a two
dimensional representation 7 : Iy, — GL2(Qp) with open kernel. Here
Ig, C Wy, denotes the inertia subgroup of the Weil group of Q. As
before, E will denote a finite extension of Q, with ring of integers O,
and residue field F.

We are interested in liftings of p to characteristic 0 which are po-
tentially Barsotti-Tate at p of “Galois type” 7. Recall that if V is a two
dimensional, potentially Barsotti-Tate FE-representation of Gg,, then
its Galois type is defined as follows: Let K/Q, be a finite Galois ex-
tension such that p|g, is Barsotti-Tate. Set W = (Beis ® V)Gal(QP/K).
If Ko C K denotes the maximal unramified subfield of K, then W is a
finite free £/ ®q, Ko-module of rank 2, equipped with a linear action of
Ig,, where g € Ig, acts by g(b®v) = g(b) ® g(v). We say that W is of
type 7 if the resulting representation of Ig, is equivalent to 7. This is
only possible if 7 extends to a representation of Wg,, so we will assume
this from now on.

We will suppose for simplicity that End FlGg,]P = F. Then the Ggq,-
representation p admits a universal deformation ring R,. Finally we fix
a character € : Gg, — O™ of finite order such that ¢ extends det 7, and
det p is equal to the composite of 9 := ye with the projection O* — F*.

Using the classification of finite flat group schemes given in [Ki 3,
§3], one can prove the following result [Ki 4]:

LEMMA 4.2.1. There exists a (possibly trivial) quotient R}’f(T) of
Ry, @w ) O such that

(1) R}f(T) is p-torsion free. If R;f(T)[l/p] is mon-zero, then it is
formally smooth over W (F)[1/p] of dimension 1.

(2) For any finite extension E' of E a map of W (F)-algebras x :
R, — E', factors through RZ)(T) if and only if the two dimen-
sional E'-representation Vy, obtained by specializing the uni-

versal representation by x is potentially Barsotti-Tate of type
7, and det V, = 1.

4.2.2. In fact we will use (4.2.1) only in a very simple case, namely
when ﬁh@p ~ (wk&l T) , T~ 231, and e = O* 2. Here k € [2,p— 1],
and w : Gg, — Z, denotes the Teichmiiller lifting of w.

The ring R}f(T) can then be described as the quotient of R @y ) O

corresponding to deformations of determinant v, which have the form
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<@k62X *{) on Ig,, where * is peu ramifiée if k£ = 2. In this situation the
ring R;f (1) is formally smooth [Ta 4, E4].

Suppose now that ¥ C S is a finite set of primes containing p, and
satisfying the conditions of (4.1). We use the notation of (4.1) in our
situation. For v € X\{p}, fix a representation 7, : Iy, — GL2(Q))
with open kernel. Then, there there is a (possibly zero) O-flat quotient
RY (1y) of RY such that for any finite F-algebra A, a map of O-algebras
r: RY — A factors through RY (1y) if and only if the corresponding
rank 2 A-representation V, satisfies V|, ~ 7. (That is the two rep-
resentation are isomorphic over A Qg @p.)

For each v € ¥\{p}, we fix some finite collection C,, of such 7,
and we write RY for the image of RY — Il cc, RY(7,). Set Rg(r) =

Ry (1)@ pesy oy RY, and RY (1) = RY @ py RA(T).

LEMMA 4.2.3. If v € X, and v # p, then R}f[l/p] is a product of
finite extensions of E.

PRrROOF. It suffices to consider the case where C, = {7, }.

Let E' be a finite extension of E, and z : RY (7,) — E' a map of O-

algebras corresponding to a closed point of Rf (7y) with residue field E’.
Then z corresponds to an E’-representation V;, of Gg,, and the tangent

space of Spec RY ()[1/p] at & can be identified with
H(Gg,/Ig,, (ad’V;)"e) = ker (H'(Gq,,ad"V;) — H'(Ig,,ad"V3)).
Since we are assuming (ad’V,)%e = 0, a topological generator Frob,, €
Gg, /I, has no eigenvalues on (adV, )% equal to 1. It follows that
H'(Gg,/Ig,, (ad’V;) @) = (ad’V;)"e /(Frob, — 1) = 0.
O

PROPOSITION 4.2.4. Assume that the map (T) of (4.1.5) is injective

for V' the underlying F-vector space of p. If R%(T) is mon-zero then for
some r > 0 there is an isomorphism

Ry 5(1) = Ry (D, -2,/ (fr, -, frr)-

In particular, we have dimRéS(T) > 1.

ProOOF. Note that the integer s in (4.1.7)(2) is equal to 1, since
p is odd. By (4.2.1) and (4.2.3) dimRyx(7) = 2, so the proposition
follows. O

4.2.5. Similarly, if we drop the assumption that ﬁ]GQU has trivial
endomorphisms, then we have an analogue of (4.2.1) for framed defor-

mations and we define analogous rings RE"’Z), R;I;:W)(T), Rg’w(T), and
RS’?(T) using framed deformations (cf. (4.1.3)). Moreover, if we still
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assume that the commutator of p(Gg,g) is trivial, then we set Rf& 5(7)
equal to the image of Rfé g in Rgg (7). One can prove the following.

PROPOSITION 4.2.6. Assume that the map (T) of (4.1.5) is injective

for V' the underlying F-vector space of p. If Rg’w(T) is non-zero then
for some r > 0 there is an isomorphism

0 ~ a
Ry(r) == BV ()er, - arsial /(- frn).
In particular, we have dimRS:z(T) > 41X, and if the commutator of
p(Gq,s) consists of scalars then dimeS g(m) > 1.
PROOF. The proof of the first claim is analogous to that of (4.2.4),
using (4.1.5). In this case the ring Rg’w has dimension 3|%| + 2, and so
one finds that RS’? (1) has dimension at least 4|3].

If p has only scalar endomorphisms, then the morphism R(é’ (1) —

RS?(T) is smooth of relative dimension 4|X| — 1, and the second claim
follows. O

4.2.7. Proposition (4.2.6) gives a general lower bound on the size of
R}& 5(7). One of the key insights of Khare-Wintenberger is that using the
results of Taylor on the potential version of Serre’s conjecture, explained
in the previous section, one can get an upper bound, and hence show
that RZ& ¢(7) is finite over O, of rank > 1. This implies the existence of
minimal liftings, and then of strongly compatible systems using Taylor’s
results once again. More precisely, we have

THEOREM 4.2.8. If p > 2, plo(c,) s absolutely irreducible and R%(T)

is mon-zero, then Ré 5(7) is a finite O-module of rank at least 1.

Proor. It suffices to show that Ré 5(7) is a finite O-algebra. In-

deed, once we know this, if R& 5(7) has rank 0, then it is an Artin ring,
which contradicts (4.2.6).

By (3.2) we can find a totally real, finite, Galois extension F' of
@, in which p is unramified, and such that any characteristic 0 lift of
p corresponding to a point of Ré’S(T) becomes modular over F. After
replacing F' by a larger field, we may assume that any such lift also
has cyclotomic determinant and is Barsotti-Tate at any prime v|p of F.
Moreover, we may choose this final extension so that the conditions of
(2.1.1)(3) continue to hold.

We now put ourselves in the situation of (2.3), with the conditions
(1), (2) and (3), and we use the notation of that section. In particular,
we will assume that p|q,, is absolutely irreducible for v[p a prime of F.
As usual, this assumption can be lifted using framed deformations. Let
us remark that since we are following the notation of (2.3), the argument
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below is again valid only in the minimal case. The argument for the
non-minimal case is identical, if one replaces R;f (1) by the ring R%(T)
introduced in (4.2.2), for a suitably chosen collection of quotients RY of
RY with v € \{p}.

For v|p we denote by R, the universal deformation O-algebra of
plcy, and we set R, = @)v‘pRv. As above, we write R, for the universal
deformation ring of ﬁ\g@p. We denote by S the primes of F which lie
over a prime in S.

We saw in (2.3) that there exists a quotient RS’;/ of Rg’; (itself a

quotient of R,,) corresponding to a union of components, such that
the map 6, induces an isomorphism Rgi;/[[zl, i 2r—q] — Ts. The

olp RY — RY(r) factors through Rgi;. The explicit de-

scription of the components of Spec R,,[1/p] given in (2.2.1) implies

that the image of the induced map Spec R;f(T)[l/p] — Spec Rg";[l/p} is
1

contained in at most two components of Spec R2|p[1 /p], namely those

composite R

which correspond to deformations which are ordinary at all v|p or non-
ordinary at all v|p. After possibly increasing F, we may assume that
both these components are contained in Spec Rgi;/[l /p]. This follows

from the argument in the final paragraph of the proof of (3.2).

On the other hand, Rg s is a finite R F, g-algebra. To see this let m P
denote the maximal ideal of R 5. Let pg,r denote the Rg s/mp sRq,s-
representation of Gg s obtained by specializing the universal represen-
tation of Gg g over Rg s. Then pg r|q, is equivalent to p. In particular,
if F’ denotes the composite of F' and the fixed field of ker p, then pg
factors through Gal(F’/Q). The finiteness now follows from the absolute
irreducibility of p and the argument in the second paragraph of [deJ,
3.14] (cf. [KW 1, Lemma 2.4]).

Hence it suffices to show that R, s ®r Rg’ll is finite over O. How-

lp

v|p
ever this ring is isomorphic to

Rgi;'ﬂzh“‘72'7"%]]/(‘1;1’”'7937") o Too/ (21, - . 2),

and the right hand side is a finite O-module because T, which acts
faithfully on My, is a finite Oy, ... z,]-module. O

4.3. The proof of Serre’s conjecture. Given p: Gg,s — GL2(F)
as above, we have the invariants N(p) and k(p) introduced in §1. Using
(4.2.8) we find.

COROLLARY 4.3.1. With the assumptions of (4.2.8) there exists a
lifting p of p which is potentially Barsotti-Tate of type T with deter-
minant ¥, and such that the prime to p part of the conductor of p is

N(p).
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More precisely, given a choice of component of Spec Rf[l/p], for
each v € Y\{p} we can choose p so that the corresponding point of
Spec RY[1/p] lies on the given component for each v € $\{p}, and such
that p is potentially Barsotti-Tate of type T at p, with determinant 1.

Moreover, there exists a strongly compatible system {px} with p ~

Pp-

PROOF. The claims in the first two paragraphs follow from (4.2.8).
For the first part one takes S to be the set of primes of ramification of
P, together with p and oo and X the set of primes ¢ such that not every
lift of 'E‘G@e has conductor N(p). At these primes one takes the quotient

RY (4.2.2) to be the one corresponding to lifts with conductor N(p).
The final claim follows from (3.3.1). O

4.3.2. Suppose now that p has Serre weight k(p). After twisting we
may assume that k(p) € [2,p + 1]. We have the following variant of
(4.3.1) [KW 1, Thm 2.1].

THEOREM 4.3.3. Suppose that k(p) € [2,p + 1] and k(p) # p.
Then there exists a lifting of p of p which is crystalline with Hodge-
Tate weights 0, k(p) — 1, at p, and such that the prime to p part of the
conductor of p is N(p). If k(p) = p + 1 there exists a lifting p which
is semi-stable non-crystalline, with Hodge-Tate weights 0,1 at p, and
prime to p conductor N(p).

Moreover there exists a strongly compatible system {px} with p, ~ p.

PROOF (SKETCH). The proof is analogous to that of (4.3.1) above,
but in fact somewhat easier since we are dealing with liftings which
are already semi-stable over ,. First one shows an analogue of (3.2),
but where one requires m to have parallel weight k(p) — 1. This uses
the refinement mentioned in (3.1.2) (see also [KW 1, Prop. 2.5]). One
also has an analogue of the rings R;f (1) for crystalline representation
with Hodge-Tate weights in [0,p — 2], as well as an analogue of the
modularity lifting theorem (2.1.1). When k(p) = p + 1 one considers
potentially semi-stable, ordinary liftings with Hodge-Tate weights 0, 1.

The argument is then similar to that given in (4.2); one uses the
general result (4.1.1) and (4.1.5) to bound the global deformation ring
from below, and its relationship with Hecke algebras to bound it from
above. O

THEOREM 4.3.4 (Khare). Let p: Gg oot — GL2(F) be odd. Then
p is modular.

PROOF (SKETCH). When p = 2, this is due to Tate, so we may
assume that p is odd [Tat].

We may assume that 2 < k(p) < p+ 1, and we use induction on the
pair (k(p),p) ordered lexicographically. In the following we will apply
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various modularity lifting theorems such as those of Skinner-Wiles [SW
1], [SW 2], which applies to ordinary liftings, or (2.1.1). Although these
theorems require some mild hypotheses on p, we will ignore these. In
practice one of course has to check that they are satisfied. We also
remark that det 7 is equal to x*?~1 on inertia at p, and is unramified
outside p. Hence detp = *P=1 " and since this is an odd character,
k(p) is even.

It will be convenient to fix embeddings ); : Q — Q; for each finite
prime [ of Q. Given a strongly compatible system {py} we will write

PL=Px;-

Consider first the case k(p) = 2. We lift p to a Barsotti-Tate repre-
sentation with cyclotomic determinant, and put it in a strongly compat-
ible family {px}, using (4.3.1) or (4.3.3). Each p) is unramified outside
{\, ¢} and Barsotti-Tate at \. We denote by py the reduction of each
of these. Then p§’ ~ p3 @ 1 by a result of Serre. Hence the theorem of
Skinner-Wiles implies that p3 is modular and hence that p, and p = p,
are modular (and hence reducible, since the modular form is of level 1
and weight 2.).

More generally if (p, p) is the smallest counterexample, then we may
assume that the largest odd prime [ < p satisfies [+1 < k(p), since other-
wise we could use (4.3.3) and an argument as in the previous paragraph,
and reduce the modularity of p to a mod [ representation p; of Serre
weight k(p) (and conductor 1). The corresponding modularity lifting
theorems are due to Skinner-Wiles loc. cit, and Fujiwara (see [Ta 2]).

Now we consider two cases. Suppose first that p Iy, is absolutely

irreducible or decomposable (i.e., is semi-simple). After twisting, we

may assume that k(p) < 222, and hence the prime [ above (if it exists)

2
is at most 51. This is impossible, and so p = 3, in which case one may
invoke Serre’s result above.

Suppose then that p| Iy, is reducible and indecomposable. After

twisting, we may assume that ﬁh@p ~ (“61 %), where i € [1,p —2].
Suppose that there exists an odd prime ¢|p — 1. We use (4.3.1) to lift p
to a characteristic 0 representation p which is potentially Barsotti-Tate
at p of type @~ @ 1, where & denotes the Teichmiiller lift of w. This is
possible because R;f (7) is non-zero by results of Savitt [Sa]. Place p in

a strongly compatible system {p)} using (4.3.1). Then py is unramified

outside {p, ¢, 00}, is Barsotti-Tate at ¢, and pg|[Qp ~ <‘:’%_1 2) as Q-

representations, where @, denotes @ viewed as a Qu-valued character
via our chosen embeddings Q C @p and Q C Q. We denote by wy its
mod £ reduction.

Note that wy has order pe_rl where r = vp(p — 1) > 0. Using (4.3.1)
we may lift p; to an (-adic representation pj, which is unramified outside
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{p, ¢, 00}, is Barsotti-Tate at ¢, and such that p/£|[Qp ~ (5‘6% ?) where

j = ¢ modulo peil and j € (57 (p—1), 5L (p— 1)]. We also put p) into
a strongly compatible family {p) }. Then pf, is unramified outside p, and
potentially Barsotti-Tate of tame type 7/ = @7 @ 1 at p. The results of
Savitt and Breuil-Mézard [BM] now imply that k(p) € {j+2,p+1—j}.

If ﬁ; were modular then using suitable modularity lifting theorems
we would find that

ﬁ;, modular = py modular = p, modular.

Since (k(p),p) is our smallest putative counterexample to modularity,
we must have k(p) < 52 (p—1)+2 < 2/3(p—1) +2. Hence the smallest
odd prime [ < p, satisfies [ < 2/3(p — 1). This implies that p < 5.

If p = 3 we are done as before. If p = 5, then we still have
3+ 1 < k(p) < 6, and 2|k(p), so k(p) = 6. In this case, one consid-
ers a semi-stable weight 2 (that is with Hodge-Tate weights 0 and 1)
lifting of p (see [KW 1, 4.3]). If p is absolutely irreducible, a vari-
ant of (3.3.1) for semi-stable non-crystalline weight 2 representations
shows that ps occurs in the torsion of a semi-stable abelian variety, hav-
ing good reduction outside 5. A result of Brumer-Kramer [BK] (see also
[Sc]) says that such a variety cannot exist. It follows that p is reducible,
and hence modular.

We have used the assumption that p — 1 is not a power of 2. If this
is the case then one can pass to a slightly larger prime p’ > p, and use
the above arguments. Khare checks in [Kh 1] that the Fermat primes
are sufficiently sparse that this succeeds. O

4.3.5. To end this article let us say a word about the argument
of Khare-Wintenberger in the case when N(p) > 1. The idea is the
following: Given a p lift it to a p-adic representation, and place it in a
strongly compatible family {py}. If £|N(p) then N(pg) will be prime to
¢. Using this one can try to reduce the number of primes dividing N(p).

Of course one has to proceed so as to be able to use known modular-
ity lifting theorems to deduce the modularity of p from that of p;. The
argument is therefore a little more involved: First if N(p) is odd, then by
a technique similar to that in the case of N(p) = 1, using weight 2 lift-
ings and induction on (k(p), p), one reduces to the case p = 2, k(p) = 2.
In the argument for N(p) = 1, we effectively started the induction at
p = 3,5 by using the results of Serre and Brummer-Kramer. When
N(p) > 1, one reduces the cases p = 3,5 to p = 2 by using congruences
between 2-adic representations of Gg, and Gg,. These congruences are
not of exactly the kind used in the proof of (4.3.4), but the idea is
similar.

When p = 2 and k(p) = 2, one can implement the above strategy by
lifting p in weight 2 to a strongly compatible system {py}. For an odd
prime ¢|N(p), p; is potentially Barsotti-Tate at ¢, and N(p;) < N(p).
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Hence p; is modular by induction on N(p) and Theorem (0.1) implies
that py is modular.

If N(p) is even one reduces to the odd case by lifting p in weight
2 to a strongly compatible system {p)}. By using 3-adic congruences
one can reduce to the case where p,(I2) is not unipotent, so that ps is
potentially Barsotti-Tate. By definition N(p2) is odd and hence po is
modular. Then Theorem (0.1) implies p2 is modular.

In this argument (0.1) gets used in its full strength, since the ¢-part
of N(p) may be arbitrarily large, and this corresponds to p; becoming
Barsotti-Tate only over an extension with arbitrarily large conductor.

A final difficulty which we have ignored above (but which of course
has to be dealt with) is that to apply (0.1) one needs to assume that
ﬁ’Q(Cp) is absolutely irreducible and has non-solvable image of p = 2.
To do this Khare-Wintenberger first reduce to a situation where p is
ramified at some suitably chosen large auxiliary prime ¢. This prime
is chosen so that throughout the argument the image of inertia at ¢
guarantees that p has non-solvable image. Finally ¢ is “removed” at the
end of the argument by the method explained above.
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