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1. Introduction

Quite apart from its possible biological relevance, the non-Darwinian theory
of evolution currently under discussion is of considerable interest to statisticians.
This is so, of course, because any mathematical formulation of the proposition
that a considerable proportion of observed allelic substitutions have no selective
significance and have occurred purely by chance, and, hence, any quantitative
testing of this theory, must be conducted by statistical methods. The ramifica-
tioIns of the statistical testing which will be required to discuss the half dozen or
so major supporting arguments for the theory can hardly be supposed yet to
have been analyzed, even superficially; in particular, this is is true for those
arguments relying on protein sequence data, amino acid frequencies, and the
genetic code. It may be that novel forms of statistical tests will be required for
these analyses. The main aim of this paper, while going in this direction, though
rather restricted, is to devise a statistical test of the non-Darwinian theory
based on a form of data currently being obtained in large volume by biologists,
namely, the number and frequencies of different alleles at a locus provided by a
sample of individuals from one generation of a population. A subsidiary aim is to
show that quite simple statistical arguments can cast some doubt on the useful-
ness of one support for the non-Darwinian theory, namely, the support arising
from the principle of substitutional loads. It will be convenient to consider this
subsidiary aim first.

2. The substitutional load

Our aim is not to question the validity of the concept of substitutional load
itself, but rather its usefulness as a support for non-Darwinian evolution. To do
this we trace the main outline of the way the substitutional load is calculated.

Consider a diploid population of fixed size N and suppose that at a certain
locus two alleles, A1 and A2, are possible. The three genotypes are supposed
subject to differential selection and it is assumed that this selection acts entirely
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through differential preadult mortality; specifically, that the probabilities that
newborn individuals survive to reach the age of sexual reproduction are 1 for
A1AI, 1 - sh for A1A2 and 1 - s for A2A2. Here 8 is assumed small and positive,
O . h . 1. Suppose in any generation that the frequency of A1 is x. Then a
proportion 1 -s(1 - x) (1 + x(2h - 1)} of all offspring survive and, hence,
each parent generation is required to produce N[1- s(l - x) {1 + x(2h - 1)} ]-I
offspring so that, after the preadult selection has occurred, exactly N offspring
survive to reach sexual maturity. The number of "selective deaths" is thus

(1) N[1- s(l - x){1 + x(2h - 1)}]-- N
Ns(l - x){1 + x(2h - 1)} = Nt,

say. The substitutional load L is conventionally defined as the sum of the values
of C, whereby x increases from xo(-0) to xi(_1), and is

(2) L= tdt = t dx

= J [s( - x){1 + x(l - 2h)}][sx(1- x){1 - h + x(2h - 1)}]-1 dx.

For h = Y2, xo = 10-4, we have L = 18.4, while for other values of h, L is some-
times greater than, sometimes less than, this value. A "representative" value for
L is conventionally taken as L = 30.
We now turn to the biological interpretation of L. If the replacement process

of A1 for A2 requires T generations, then clearly from (1) and (2) NT + NL
total offspring are required during this process; in other words, on average each
individual must produce 1 + L/T offspring to face the possible forces of preadult
selection. Alternatively, we may say that the optimal genotype leaves an
average of 1 + LIT offspring who reach sexual maturity and that all genotypes
must produce this number of offspring.
The crux of the argument arises when many loci are considered simultaneously.

If we assume the same fitnesses at all loci as those given above, and if the sub-
stitutions at the different loci start, on average, n generations apart, there will
be T/n substitutions in progress at any one time. The mean number of offspring
of the optimal genotype (that is, the genotype having the configuration "A,A1"
at each locus) is

() ( t?~~~T'){nL}
and using the value L = 30 and the estimate n = Y2 quoted as deriving from
protein sequence data, this gives e60 _ 1026 offspring. In other words, the argu-
ment suggests that in order for the substitutions at all the loci to proceed at
the required rate, each individual must leave 1026 offspring and that these
survive differentially in such a way that N offspring eventually reach sexual
maturity. The substitutional load argument centers on the impossibility that
each individual can leave such a large number of offspring.
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It is at this point that elementary statistical arguments suggest that this
reasoning be reviewed. We first consider the probability that an individual
chosen at random is of the optimal genotype. If h = Y/2, xo = 10-i, X1 = 1 -10-4,
s = 0.01, n = Y2, there are 7,360 substitutions in progress at any one time and
the probability that any randomly chosen individual has the optimal genotype
A1A1 at all 7,360 substituting loci is about 10-'5 °°°. It seems of dubious value
to base our considerations on such individuals. Rather, statistical considerations
suggest that in any real population, no individual will have a genetic configura-
tion which is too "extreme" (note that this in no way slows down the substitution
rates), and, in particular, the mean number of surviving offspring required of the
optimal genotype we can expect to appear in the population will not differ much
from unity. This requirement can be calculated using the statistics of extreme
values (of a sample of N individuals) and effectively assuming "independence"
of loci. (This assumption, which, for example, ignores linkage between loci,
will provide an upper bound to the offspring requirement, which should in fact
be rather lower if linkage were taken into account.) For N = 105, s = 0.01,
h = /2, we find that this offspring requirement is about 1.5. In other words,
substitutions at the required rate can occur if all individuals leave 1.5 offspring
and these survive differentially according to their genotype (with the optimal
existing genotype all surviving) in such a way that N offspring altogether survive
to sexual maturity. When the effects of linkage, extensive linkage disequilibrium,
and the possibility that considerable selection actually occurs through fertility
difference, are all taken into account, the value 1.5 is probably reduced to
about 1.2. There appears little difficulty for a population actually to achieve
this value: that is to say, the statistical form of reasoning we have adopted
suggests that there is little difficulty in ascribing the observed substitutions to
selective forces with selective differentials of order one per cent. (Of course, this
does not mean selection must be the responsible agency; there appears to be no
reason, however, for us to say selection cannot be responsible.)
A further statistical point relating to the above argument is as follows. In a

typical size population of, say, 106, no individual can leave more than 106
offspring who survive to maturity. The calculation that 1026 offspring of certain
genotype do so survive must then result from inexact modelling; in this case,
from the implicit assumption that mean numbers are "multiplicative over loci."
In other words, not only have the load arguments supporting the non-Darwinian
theory been carried out entirely with reference to individuals whose probability
of occurrence is of order 10-'5 010, they have also ascribed mean numbers of
viable offspring to such (essentially nonexistent) individuals about 1020 times
in excess of the maximum possible value.

3. The sampling theory of neutral alleles

A considerable amount of data is being obtained currently of the following
form: a sample of n individuals (2n genes) is taken from a population of un-
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known size N. In the sample it is observed that k different 'alleles occur, with
numbers n1, n2, - n*, nk ( ni = 2n). We now ask, can such data bet used to
test the'hypothesis that the alleles are selectively neutral with respect to each
other?
To do this, is it assumed that new alleles are formed in the following fashion:

each gene will mutate with fixed (but unknown) probability u, to an allelic type
not currently existing, nor previously existing, in the population. (Note that this
assumption is' inspired by proteiin sequence data, where our detailed knowledge
of the sequence of amino acids determined by any gene makes this assumption
reasonable. The assumption is perhaps less valid if our mode of differentiating
alleles is by electrophoresis, since the theoretical effects of the nonidentification
seemingly unavoidable'in this procedure are not yet known. It is, therefore,
possible that application of the following techniques to electrophoretically ob-
tained data should be viewed with extreme caution.) More explicitly, we assume
a multinomnial mode of sampling the genes of a daughter generation from the
genes of the parent generation. This implies that if we fix attention on some
allele Ak, and suppose that i genes of this allele exist in any generation, then the
probability pi,j that there exist j genes of this allele in the next generation is

(4) Pj=(J)2N) (1 -U)} {1-2 (1 -U)}
Note' that we are assuming that no selective differences exist between alleles;
thus, our aim is to develop distribution theory under the neutral hypothesis,
with'a view to subsequent testing of it using real data.

If it is supposed that sufficient time has elapsed for a stationary situation to
be reached, then passing to the diffusion approximation to (4), standard theory
(Ewens [2], Chapters 5 and 6) shows that the probability that, in any randomly
chosen generation, there exists an allele in the population with frequency in the
range (p, p + 5p) is

(5) f(p) 'p op`1(l -p)-' p,

where 0 = 4Nu. It will turn out that all of our subsequent theory can be carried
out by using this "frequency spectrum" f(p). In particular, we note that if
Pi, P2, ... are the (unknown) frequencies of the various alleles present in any
generation, and if +(p) is any function of p that is 0(p) near p = 0, then

(6) E E o(p,) =0 Jfo ()P`(l- p)1-1 dp,

'to a sufficiently close approximation. For example, if +(p) = p, use of (6) yields
the trivial identity E E pi = 1, while if +(p) = p2, we find

(7) ~~~~~~~~~21(7) E E p = 1 +.

Note that the left side in (7) is the probability that two genes drawn at random
are of the same allelic type. It is, thus, a measure of genetic variability in the
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population and the quantity 1/(1 + 0) is, consequently, of some interest to
geneticists. We shall return later to the question of estimating this quantity
from experimental data.-
Now suppose a sample of 2n genes is drawn one by one from the population.

We suppose N >> n so that binomial approximations are adequate. Then if we
know the frequencies pi, P2, -.. of the various alleles in the population in the
generation from which the sample was drawn, the probability that a previously
unseen allele appears for the first time on the (j + 1)th draw is

(8) E (1 - p)ipi.

Also the probability that the first j draws all yield the same allele is

(9) piE.

Equation (6) shows that the unconditional probabilities to be attached to these
events are

P ~~~~~~~~~0(10) 0 (1 - p)ip[p-l(l - p)e1'] dp = 0 + j'

and

( 11) of pi[p-l(p - 1)1-'] dp = 6(j - 1) ! r(oj)_
respectively. It follows from (11) that the probability that the first (j + 1)
draws all yield one allelic type, given that this is true of the first j draws, is
(12) 0eoj!r(0)r(o+j) j

o(j - 1)!r(0)r(o +j + 1) j + 0

From this it follows that the probability that a new allele appears on the
(j + 1)th draw, given that the first j draws yield only one allelic type, is
0/(0 + j). Note that this is identical to (10). We now argue more generally that
the probability that a new allele appears on the (j + 1)th draw is 0/(0 + j)
whatever the allelic composition was of the first j draws. A formal proof of this
proposition has been given by Karlin and McGregor [6]. Intuitively, this (un-
usual) result can be seen as follows. If we label the new allele seen on the
(j + 1)th draw as Ak, then this gene is descended from some original mutant Ak
allele. The stochastic behavior of the line of descendants of this mutant is in-
dependent of the allelic composition of the rest of the population, and so far as
Ak is concerned the allelic forms of the non-Ak genes are just irrelevant labels.
In particular, the probability that Ak appears for the first time at the (j + 1)th
draw is independent of this irrelevant labelling, that is, of the numbers and fre-
quencies of the alleles which appeared on the first j draws.

It follows from this that if we write 7rj,i for the probability that the first j
draws yield exactly i different alleles, we have

(13) ria = (j - 1)![(0 + 1)(0 + 2) .. (O + j -1)]-',
1rjj = Oi-'[(O + 1)(0 + 2) .. (0 +j -1)]-
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and the recurrence relation

(14) i = W, i + 7rj i a + i

We are particularly interested in the values 7rk = r2n,k. Solution of (14) shows
that

40ko
(15) L(@)
where
(16) L(@) = 0(0+ 1)...(0+ 2n-1)

= Cl0+ 0202 + . . _ + 42n2l2n
and the 4 are moduli of Stirling numbers of the first kind. Equation (15) gives
the probability distribution of the number k of different alleles in the sample.
We have in particular

E(k) = -+ + +0+2+ 10 0+ 1 n-

0 0(17) Var(k) = -+ __+ 1 + 0++ 2n-1

0[82 + (o + 1)2 (o + 2n-1)2

and, further, that for 2n large, k had an approximate normal distribution with
this mean and this variance. Note also that the distribution (15) is complete.
We turn now to a more complex problem, namely, the distribution of the

vector {k; ni, . .. , nk}, where n1... nk are the numbers of genes of the k alleles
in the sample. We find (Ewens [3]) that this distribution is of the form
(18) g(n1, * * nk)0k

L(0)
where g(n1, * * *,nk) does not depend on 0. Comparison of (15) and (18) shows
that k is sufficient for 0. Hence, any estimable function of 0 is best estimated
(in the sense of minimum variance unbiased) by some (unique) function of k.
In particular, this is true of the (estimable) function 1/(1 + 0), whose optimal
estimator is

(19) c(k) = coeff Okin (0+ 2)(0+ 3) ...( + 2n-1)
-.19) C(k) coeff 0kin 0(0+ 1).(+ 2) ...(0+ 2n-1)

Curiously, because of the genetical interpretation of 1/(1 + 0), (see the discus-
sion following equation (7)), this function has traditionally been estimated by

21

(20) (l +l(2n)2
This estimator has been found in M\onte Carlo simulations to have very large
variance (see, for example, Bodmer and Cavalli-Sforza [1]) and the present
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theory indicates why this is the case, namely, that (20) uses precisely the in-
appropriate part of the vector {k; ni, ... , nk}. Further, Monte Carlo runs
(Guess and Ewens [4]) suggest that the variance of c(k) is only about 35 per
cent that of (20). It is clear that some standard statistical theory is of some aid
here in estimating an important genetical parameter.
Our main use, however, of the sufficiency of k for 0 will be to provide a test

for the hypothesis of selective neutrality, for under this theory the distribution
of n1, *- -, nk, given k, must be independent of 0 and, hence, the same for all
models of the form (4) (whatever the values of N and u are). It is found that
this conditional distribution is [3]

(21) f(n.. nklk, 2n, neutrality) =

More precisely, we assume the k alleles in the sample have been labelled in some
conventional fashion Al-...A: equation (21) gives the probability that there
are n1 genes of the allele labelled A1,l , and nk genes of the allele labelled Ak.
Note that the fact that (21) sums to unity is established by an identity for
Stirling numbers going back at least to Cauchy (see, for example, Jordan [5],
p. 146, equation (5)).
The distribution (under the hypothesis of selective neutrality) of any test

statistic can be found from (21). The actual choice of test statistic is not easy
since the alternative hypothesis (that selection exists) does not seem sufficiently
precise to yield an unambiguous statistic. Here we shall be content with using
(more or less arbitrarily) the (information) statistic
(22) B =-Lxi log xi,
where xi = ni/2n. The mean and variance of B can readily be calculated from
(21) and by noting that marginal distributions from (21) are calculated almost
immediately. Hence, if we write E(B) and a(B) for the mean and standard
deviation of B under the hypothesis of selective neutrality, given the appropriate
value of k, it is possible for any set of data to evaluate

B -E(B)(23) L a(B)
which under selective neutrality is a random variable having mean zero and
variance one. Evaluation of L seems particularly useful when sets- of interrelated
data (that is, from each of a number of species in each of a number of locations)
are available, since the patterns of the values for L for such data are often
revealing.

If, on the other hand, it is desired to carry out a test of hypothesis, an ap-
proximate but reasonable procedure is to suppose B/log k has a beta distribution
(whose parameters are known from E(B) and a(B)). A standard transformation
yields a variable having an F distribution under the neutrality hypothesis.
A FORTRAN program carrying out all the required computations is provided
in [3].
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TABLE I

EXAMPLE USING n = 350 AND k = 4

Sample Allele frequencies L F (d.f.)

1 .35 .30 .20 .15 2.42 34.44 (3.5, 4.7)
2 .83 .11 .04 .02 0.02 1.02 (3.5, 4.7)
3 .99 .005 .0025 .0025 -1.74 0.07 (3.5, 4.7)

In Table I we indicate the sort of result obtained by an example. Suppose
n = 350, k = 4, and consider three different sets of values of xl, *--, X4. The
first sample yields significant evidence of selection (of some form) holding all
alleles at high frequency, while the third sample yields evidence of selection
favoring one allele. The second sample has almost a "perfect" set of "neutral"
frequencies.

It is proper to conclude on a note of caution. The present lack of theoretical
knowledge on the effect of nonidentification may be sufficiently strong to vitiate
application of the above to electrophoretically derived data. (The above theory
assumes total ability to differentiate different alleles.) Our model also ignores
the effects of linkage, possible fluctuation in population size, and so forth. (On
the other hand, it is conjectured that the distribution (21) applies for a wide
range of "neutral" models, not just the model (4).) Finally, the test does not
appear to be particularly powerful (in a statistical sense) and using it one may
often maintain the hypothesis of neutrality when, in fact, mild selection does
occur. Altogether, it appears that the test of hypothesis, and use of the index
function L, may best serve as a cautiously used adjunct to other and inde-
pendent methods of testing the non-Darwinian theory.
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