
NONTHRESHOLD MODELS OF THE
SURVIVAL OF BACTERIA
AFTER IRRADIATION

PETER CLIFFORD
BRISTOL UNIVERSITY

and
UNIVERSITY OF TEL-AVIV

1. Introduction

The purpose of this paper is to investigate a certain class of nonthreshold
models for the survival of the bacteria E. coli following exposure to X-ray and
ultraviolet radiation. The threshold or multihit model contains two assumptions
-that the effect of radiation is a process of accumulation of hits or irreversible
structural defects in the cell and that death occurs when exactly n hits have
accumulated. Woodbury [17] suggested a general method of modifying the
model to include the possibility of repair during the irradiation period. Although
the purport of the method is clear, some of the generality has to be abandoned
to resolve the conffict between the first two sets of equations on p. 77 of [17].
The second assumption in the threshold model is retained, changing its form
slightly so that the cell will die if more than n unrepaired hits have been accumu-
lated at the end of the dose.
A fruitful approach to threshold problems in general has been suggested by

L. LeCam and developed by Puri [13] in connection with a situation in which a
host is infected with a parasite which multiplies and eventually kills the host.
If we call the underlying process, be it the accumulation of hits in a cell or
parasites in a host, {X(s): 0 _ s 5 t}, where t is the time interval considered,
then the LeCam-Puri approach is that the probability of dying in a time period
(s, s + r) is proportional to Tg(X(s)) + o(r), where g may be, for example, the
identity function. It follows that the probability S(t) of surviving a time t is of
the form f(X(s): 0 _< s t), for example, exp {- Jo X(s) ds}- In a seminar
given at the University of California in 1967, the author applied this approach
to radiation problems and showed that repair could be incorporated quite
naturally in this context.
For the present purposes this approach is too general. In most cases the
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radiation damage is accumulated almost immediately and repair, if any, takes
place after irradiation. For these cases, it appears natural to consider only the
class of survival models for which f(X(s): 0 _ s _ t) depends only on X(t), the
total amount of damage after the dose. This is equivalent to a suggestion of
Haynes [8] that a cell with k hits following irradiation has some probability
0 . Q(k) . 1 of survival. If hits are accumulated in a Poisson process, it follows
that both the multihit and multitarget models, which have been used extensively
in the past [1], [11], [16] are special cases of the preceding. Properties of the
theoretical model are discussed, in particular the property that the rate param-
eter of the Poisson process and the function Q(k) are not jointly identifiable.

In the second half of the paper, the idea is developed that the bacteria survive
because of enzyme systems which are capable of repairing structural defects [8].
The general model is interpreted in terms of repair and a more specific model is
proposed based on Harm's ideas [6]. In a series of experiments, Harm has shown
that E. coli can survive large doses of ultraviolet radiation if the exposure is at
a low dose rate. The implication is that repair takes place during the irradiation
period. Harm has suggested also that certain configurations of lesions on the
chromosome may be more difficult to repair, particularly defects at approxi-
mately the same location on opposing strands. The enhanced survival for low
dose rate exposure is then the result of the continual repair of the DNA molecule
during the radiation period which minimizes the chances of overlapping struc-
tural defects. The mathematical model based on these ideas is shown to agree
well with the empirical data for high dose rate survival and to predict "liquid-
holding recovery". For low dose rate exposure with the largest total dose, there
is some indication of an interaction between the radiation and the repair
mechanism.
In a further application of this model, the interaction between X-ray and

ultraviolet radiation is considered as in the experiments of Haynes [7]. It was
shown that the previous application of X-ray altered the shape of the ultraviolet
survival curve. A similar effect was observed by reversing the order of radiation.
In general, there appears to be a synergism between the two types of radiation.
By postulating that the presence of X-ray structural defects may block the repair
of ultraviolet damage, a mathematical model is constructed. The predictions of
this model compare favorably with the empirical data.

2. Mathematical description of the model

A cell is exposed to a dose d (ergs/mm2) of radiation. During the radiation
period a number of events occur in the cell. An event may be the absorption of
a photon in the case of ultraviolet radiation or the initiation of a chain of ioni-
zations in the case of X-ray or hard radiation. The number of these primary
events is assumed to be Poisson distributed with a mean nd, where X is some
unknown constant. At the site of each primary event a certain amount of damage
is formed. In the case of ultraviolet radiation, it may be reasonable to say that
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one lesion or abnormal photoproduct is formed randomly and independently
with probability ir at each primary event, so that the number of lesions formed
in a cell would have a Poisson distribution with mean Xd where, X = q7r. The
probability Q(n) that a cell will survive n lesions is assumed to be independent
of the dose which caused the lesions. In general, it will depend on many factors
including the experimental conditions, the presence of a repair mechanism in
the cell and any delay in replication which the n lesions may produce. The
probability that a cell will survive a dose d of ultraviolet light is evidently
(1) S(d) = ed(k!)k

From biological considerations, it appears natural that the class should be
restricted by

Q(k) _ Q(k + 1), k = 0,1, 2 --,
(2) Q(O) = 1,

lim Q(k) = 0.
Ic-ko

That is, the chance that a cell will survive cannot increase as the number of
lesions increases; the cell will survive if no lesions are present and the cell is
certain to die if the number of lesions exceeds all bounds. The class of survival
curves satisfying both (1) and (2) will be called the class A.
The first observation is that the class contains the multihit survivor curve in

the case

Q() O otherwise.

It also contains the multitarget model. The multitarget model with m targets
each with a mean number Xd/m lesions has a survivor function

(4) S(d) = 1-1 - exp {_d}) -

By expanding the terms of (4), it follows that S(d) is in the class A with param-
eters X and

(5) Q(i) = k= (-1)k+ )(m

We recognize Q(k) to be the occupancy probability that out of m boxes in which
k balls are distributed at random, at least one box will be empty. In general,
any occupancy model where the lethal configuration becomes increasingly likely
as the number of lesions increases will have a survivor function in the class A.
The second observation is that the class is equivalent to the class of multihit

mixtures. Fowler [5] gives an example of fitting a multihit mixture to radiation
survival data. A multihit mixture survivor function is of the form

(6) S(d) = pip 3E ed(Ad)k
j=1 k=O k
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where pj 2 0, j = 1, 2, 3, * , and F7=i pj = 1. Note that this class excludes
the possibility of surviving an infinite number of lesions. By changing the order
of summation, we have the result that S(d) satisfies condition (1) with param-
eters X and Q*(k), where Q*(k) = EJk+l pj. Since Q*(O) = 1, Q*(k) 2
Q*(k + 1) and limk bx Q*(k) = 0, the function (6) is a member of the class A.
Conversely, setting pk+1 = Q(k) - Q(k + 1), that is Q(k) = EJek+l pj, k =
0,1, 2, ... , and substituting in (1), it is evident, after changing the order of
summation, that any member of the class is a finite multihit mixture.

Instead of assuming that the primary event causes only a single lesion, it may
be assumed, more generally, that there will be a random and independent distri-
bution of damage X > 0, at each event. If the accumulation of damage is
additive and if Q(x), the probability that the cell will survive an amount x of
damage, is restricted to be nonincreasing such that Q(O) = 1 and lim,x Q(x) = 0,
then it can be shown that the class is not increased. This more general description
of the class is not used here since the emphasis will be placed on the interpretation
of ultraviolet survival data, where the simplifying assumptions leading to the
class A may be approximately valid.

3. Properties of the theoretical model

Before considering the problem of estimating Q(k) and X from an empirical
survivor function, it is important to know whether Q(k) and X are identifiable
from a theoretical survivor function in the class A and for an arbitrary theoretical
survivor function it is useful to have a criterion for deciding whether the function
is in the class A.

PROPOSITION 1. If S(d) is a member of the class A with the parameters X and
Q(k), then S(d) and X determine Q(k) uniquely.
PROOF. This result is contained in the work of Teicher [16] concerning

general problems of identifiability. More directly, consider the function S(d)e d.
This is an entire function with a unique power series expansion. The coefficient
Q(k)Xk/k! of dk is therefore determined by S(d)eXd, and hence S(d) and X deter-
mine Q(k) uniquely. This concludes the proof.

PROPOSITIoN 2. If S(d) is an arbitrary nonincreasing survivor function and
p > 0, then the transform

(7) f(u, ) = f exp Tj - l)} dF (x)

is analytic for u E C, where F(d) = 1 - S(d) and C is the interior of the circle
with radius Y2 and center Y2 in the complex plane.

PROOF. Since F(x/lp) = 1 - S(x/,u) is a distribution function, it has a La-
place transform g(O) which is analytic for (R(0) > 0. Sincef(u, A) = g((1 - u)/u)
and since the function 0 = (1 - u)/u is analytic in C and maps C - (R(0) > 0,
the result follows.
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PROPOSITION 3. If S(d) is an arbitrary nonincreasing survivor function and
,p > 0, then f(u, ,u), u E C, determines S(d) uniquely.

PROOF. For, > 0, arbitrary, S(x) is determined by S(x/,u) which in turn is
determined by its Laplace transform f((1 + O)-1, p.), cR(0) > 0. Since (1 - u)/u
is analytic in C and the mapping C -- Gt(0) > 0 is one to one, it follows that
f((1 + 0)-1, ,u), 6(R) > 0, is determined by f(u, ,u), u E C, which concludes the
proof.
THEOREM 1. Let S(d), d > 0 be an arbitrary nonincreasing survivor function

and let F(d) = 1 -S(d).
A necessary and sufficient condition for the function S(d) to be in the class A is

that for some p, > 0 function (7) has an analytic continuation which is a prob-
ability generating function (p.g.f.).

If the p.g.f. generates the quantities {71k, k = 1, 2, *}, then

(8) ~~~S(d) = E E 71i+1-#d(8) 8(d)= ~~~~k=Oj=k k
PROOF. Let S(d) be in the class A with parameters X and Q(k), then

ez-xk
(9) (X)F )

dx F k=1 k!
where qk = Q(k - 1) - Q(k), k = 1, 2, * . - . The integral

(10) f(u, X) = fexp { x( u)}( qk exk dx

converges foru E C;hencef(u, X) = _k-l Ukqk, U E C. Since qk > 0, k = 1, 2, -

and E ' = 1, f(u, X) has an analytic continuation which is a p.g.f. The
second part of the theorem follows with qk = rrk, k = 1, 2, .
Let S(d) be a nonincreasing survivor function and suppose that for some

p, > 0, f(u,,) = fo exp {-x(1 - u)/u} dF (x/,u) has an analytic continua-
tion which is a p.g.f. Let f(u, ,u) = k-l ukfk. Then the function
(11l) S*(X) = o ;k (j+kEOjEk27i+1 !
is in the class A. For this function f*(u, p.) = 1k-l Uk' for u e C. From Propo-
sition 3 it follows that S(x) = S*(x), x > 0 so that S(x) is in the class A.
COROLLARY 1. If S(d) is a member of the class A with parameters X and Q(k),

then for each p > X there exists a Q*(k) satisfying condition (2) such that

(12) S(d) = ,_ Q(k) -(d) = _ Q*(k) e-(d)
k=O kI! k=c!

PROOF. Let p > X. Since S(d) is in the class A it is nonincreasing so that

from Proposition 2, f(u, p.) = exp {-x(1 - u)/u}d[1 - S(x/,)] is analytic,
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u E C. After integration, we have f(u, ,u) = g(Xu/ ( - u( - ))), u c C, where
g(u) = f(u, X) is a p.g.f. It follows that f(u, p), ,u> X, is the p.g.f. of a negative
binomial mixture. Therefore, S(d) is also in the class A with parameters ,u and
Q*(k) = E k q,*+I, k = 0, 1, 2, ... , where

(13) k_u1k ( Jul ) 1.
kc=1 u )

This concludes the proof.
For some purposes, it may be useful to have a relationship between Q(k) and

Q*(k) directly. From the equation in Corollary 1 after multiplying both sides
by eud and equating coefficients of dk, it is easy to verify that

(14) Q*(k) = E - -)

EXAMPLE 1. In the case Q(k) = 1[k<n], S(d) = X*=oQ(k)eld(Xd)k/k! has
the form of the classical n hit survival function. From the corollary, it follows
that the function S(d) has an infinite number of alternative representations in
the class A with parameters ,u > X and Q*(k), whereX e ~~)

i=k+l (;s/X)i+n k _n,
(15) Q*(k) = -)l k

E~ ~~( (( )/A)k-j(X^/jA)i k > n,

1 k < n for all u. > X.

Provided ,u > X, Q*(k) is always positive and decreasing. This function may
be a more acceptable explanation of the survival curve than the function
Q(k) = 1 [k< n, which implies that the cell survives with n - 1 lesions but not with
n lesions. As an illustration, for the "5 hit" function S(d) = ko e-ddk/k!
the equivalent Q*(k) are drawn for A = 1, 2, 4, 10 in Figure 1. Thus, a cell
which appears to have a 5 hit survivor function may have a 50 per cent chance
of surviving 50 lesions if the equivalent representation with u = 10 is used.
In general if S(d) = E_o Q(k)e-d(pd)k/k!, then it is necessary to know p
before we can determine Q(k). An equivalent result in terms of multihit mixtures
has been obtained by Teicher [16] and Dittrich [3].

It also follows from Theorem 1 that if S(d) is in the class A with parameters
p and Q(k) and if qk = Q(k - 1) - Q(k) for k = 1, 2, * * *, then the factorial
moments of the distribution {qk: k = 1, 2, * } are given by

(16) pU] = E k(k + 1) ... (k + j)q,
k=1

=( + 1)fo xiS(x/1) dx, j = O, 1, 2,

If , is known and Q(k) has some theoretical form depending on unknown
parameters, it may be feasible to use a "method of moments" to estimate Q(k).
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ExAMPLE 2. Suppose
(17) Q(k);= E j! ' > O, k =0, 1, 2,***,

then pro] = 0 + 1, and since m[Ol = fg (x/p) dx is the sample analogue of

A[01,= f S(x/p) dx -1 is the "moment" estimate of 0.

Suppose that we have a survivor function which is known to be a member
of the class A. Then we can ask if there is a smallest ; for which a representation
in the class is possible.
PROPOSITION 4. The only survivor function S(d) which has a representation

in the class A for all ,u > 0 is the function S(d) = 1, d . 0.
PROOF. The proof is by contradiction. Let S(d) be a survivor function that

has a representation in the class A for all u > 0 and such that S(do) < 1 for
some do > 0. Let S(d) = _k'-o Q(k, p)ei&d(pd)k/k!, and consider S(do) in the
limit as P -> 0. Then 8(do) -* limp-o Q(0, A) = 1 by the conditions of (2) and
there is a contradiction. This concludes the proof.
PROPOSITION 5. If S(d) is in the class A for some p > 0, then there is a least

value Pa for which a representation in the class is possible.
PROOF. Let S(d) = _k'-o Q(k, p)e-Pd(pd)k/k!. By Proposition 4, we know

that there is number po > 0 such that S(d) has a representation for all p> Po.
It remains to be shown that S(d) can be represented in the class with A = po.
Let {Pn} be a sequence of real numbers such that Fu ,po as n -X co then from
equation (14) we have

(18) Q(k, /An) = E Q(m, - -)
m=O m /An /

Since Q(k, PR+i) is a nonincreasing function of k for PR+i > po, it follows from
equation (18) that Q(k, IA.) 2 Q(k, pu+,) for all n so that Q(k, pIA) iS a non-
increasing function of n for each k. In particular, since Q(k, p,.) . 0 for all n,
the limit as n -x o exists and this limit Q(k, po) is a nonnegative nonincreasing
function of k. Similarly, Q(O, A.) = 1, n = 1, 2, *---, implies Q(O, po) = 1 and
limk_. Q(k, Pn) = 0, n = 1, 2, 3, * * *, implies limk-, Q(k, IQ) = 0, so that
{Q(k, p,o), k = 0, 1, 2, * *} satisfies the conditions of (2).

It has to be shown that

(19) S*(d)= E Q(k, co) eXp -!od(od)k S(d)k=OkI
Let S(d) = -keo Q(k, Pn) exp {-pAd} (Ptnd)'/k!, Pn > Mo, then for each e > 0,
there exists a K such that Q(k, PR) < e for all k > K, and since Q(k, PR) is
nonincreasing in n for each k, it follows that Q(k, ,uo) < a for all k > K. Finally,
we have
(20) 1S*(d) - S(d)l

{I exp {-pod} ( _od)k e -1ndj('Ad)*k
/OO'I., c Q(k, Ic! ..xlJj+ 2s.
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Since there are a finite number of terms in the summation and each converges
to zero as n -a :, we have shown that S(d) -v S*(d) for each d 2 0. Since S(d)
is independent of n, it follows that S(d) = S*(d) for d 2 0. This concludes the
proof.
PROPOSITION 6. If S(d) is a function of the dlass A, then the parameter p is

restricted by the following inequalities:

(21) pA 2-S'(0),

(22) i2 - S(x)dx
2 fo>cx(x) dx - (f '

(x) dx)2
PROOF. For (21), let S(d) = k'-o Q(k)e-Pd(jd)k/k!. Then S'(O)=

-p(l - Q(1)). Since 0 5 Q(1) < 1, we have -S'(O)/,u . 1 or A 2 -S'(0).
For (22), since the variance of the qk distribution must be nonnegative, from

(16) we have

(23) 2A2 f0xS(x) dx-f S(x) dx - (o S(x) dx) 2 O0
that is,

(24) p {2 f xS(x) dx - (fo S(x) dx)2}2 Jo S(x) dx

or

(25)
L
{ff X2 dF(x) - (f0 x dF(x))2} 2 lo x dF(x),

where F(x) = 1-S(x) is a distribution function. It follows that fo X2 dF(x) -

(f x dF(x))2 is positive provided the distribution function F(x) is nondegen-
erate. The result then follows from equation (24).

If we consider T the lethal dose, a random variable for each cell, with dis-
tribution P(T > d) = S(d), then (25) says that the Poisson rate of arrival of
damage per unit dose cannot be less than E(T)/Var (T).
ExAmPLE 3. For the multihit class, S(d) = ,k--O e-Xd(Xd)k/k!, we have

f
. xe-z(Xx)n-1 n

(26f-|xdS(x) = J 1),aldx
(26) 0n

-| x2 dS(x) = f x2ex(n-ix) dx =n(n +1
so that from (21) and (22), p 2 nX2/nX = X.

If S(d) is identical to a multihit survivor function with parameter X, then the
only other possible representations of S(d) in the class A have ;u 2 X.
From (26), it follows that the value of the parameter X for which 8(d) has

the multihit representation is given by
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f| S(x) dx(27) X 2=0Sxd

f2f xS(x) dx - (f0' S(x) dx)
and the value of the parameter n, the threshold number of lesions, is given by

(28) n = X f S(x) dx.

By substituting the sample analogues of fo S(x) dx and f' xS(x) dx, equations
(27) and (28) can be used to provide estimates of n and X. This procedure has
been advocated by Kellerer [10].

DEFINITION 1. In radiation biology, it is customary to plot log S(d) versus
dose and consider the limiting slope of log S(d) as d increases. If there is such a
limiting slope and the asymptotic tangent is extrapolated back to intersect the
ordinate at log (N), then N is called the extrapolation number.
DEFINITION 2. If F(x) is a positive nonincreasing function of x > 0 and if

there exists 0 < p < 1 such that F(x)/pz converges to a finite nonzero limit, say N,
as x -4 00, then F(x) is asymptotic to Npz. This is written as F(x) Npz.
Let S(d) be a member of the class A with parameters Q(k) and X, then

OD

d ~ i; (Q(k) - Q(k + 1))e-d(Xd)k/k!
(29) dx-log S(X) = -Xi k1=0

9 lQ(k)eld(Xd)k/k!
k=O

If Q(ko) = 0 for some particular integer value ko, then

(30) lim -log 8(X) = -X.
z oX

Thus, the asymptotic slope of log S(d) is -X. The extrapolation number N is
given by

(31) lim eXZS(x) = lim E
Z" Z X ~k=0

if ko = 1, N = 1. If ko > 1, the limit diverges to +oo.
PROPOSITION 7. If Q(k) > O for all k> O and if Q(k) -Npkfor N > O and

0< p < 1, then S(x) - N exp {-X(1 - p)}.
PROOF. Let Q(k) Npk for N > 0, 0 < p < 1. Then N = limk-w Q(k)/pk.

Consider
e-)P(XOX)k(32) S(x) exp {X(1 - p)x} = E Q(k) (!

k=O k
X Q(k) e-lPz(Xpx)k
=27k
k=0 pk k!

This is E(Q(X)/pX), where X is a Poisson variable with mean ?px. Let e> 0;
then there exists a K such that IQ(k)/pk- NI < e for k > K. From (32) we
have
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(33) IS(x) exp {X(1- p)x} - NJ . E Ik -N e k
lc=O Ipkk

E Q(k) - N e|kPI(Xpx)A; + e
lc=O Plck

< max (N, Pr (X < K) + e.

For x sufficiently large Pr (X _ K) is arbitrarily small so that we have
S(x) exp {X(1 - p)x} -- N as x -> o. This concludes the proof.
EXAMPLE 4. In the case of the m target model where S(d) = 1 - (1 - exp

{-Xd/m})m it was shown in (4) that Q(j) = F_'=l (-1)k+1(k)((nm- k)/m)i,

j = 0, 1, 2, *-. It follows that

(34) ,im 1)/rn)
it" ((in - 17-j

that is, Q(j) m((m - 1)/m)i. From Proposition 7, we have S(d) - m exp
{-Xd/m}.

If S(d) is hypothesized to be a multitarget survivor function, the asymptotic
behavior of 8(d) can be exploited to provide quick estimates of m and X. In
practice, information on S(d) is only available for a finite range of d and esti-
mates of this type can be criticized for the assumption made that the asymptotic
behavior of S(d) can be deduced from the finite dose range.

4. The implications of repair for the general damage
dependent survivor function

From this point, it is assumed that X and Q(k) are known and the theoretical
survivor function is S(d) = Ek-o (e-d(p,d)h/k!)Q(k). If repair can take place,
a certain number of lesions formed will be removed. It is assumed that all lesions
have been removed if the cell survives [8]. Let M(d) be the mean number of
lesions repaired after a dose d. This will be called the repair function. It is
possible to observe experimentally the amount of new material incorporated
into a cell following irradiation [9]. It is assumed that the amount of new mate-
rial is proportional to M(d). The problem is to relate M(d) to S(d). Since d is
the mean number of lesions formed at dose d, Haynes [8] has suggested the rule

(35) M(d) = log S(d) + ,ud.

The exact relationship between M(d) and S(d) depends on the mechanism of
repair. To see this, first note that if the repair of all lesions is essential for
survival, then Q(k) is the probability that k lesions are removed from a cell
which has k lesions after irradiation. It does not say anything about the prob-
ability p(k, n) that n lesions are removed from a cell with k units of damage
where n < k. Three general repair mechanisms are described before introducing
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a specific model. These mechanisms are chosen so that M(d) and S(d) have a
simple relationship and are intended to be examples of the diverse types of
relationship possible.

4.1. The minimum repair mechanism. If the survivor function is S(d) =
_0-o (e-d(Ad)k/k!)Q(k) and the cell is repairing a minimum of its damage, then

given that it has k lesions it will repair all and survive with probability Q(k) or
repair none and die. Then the mean number of lesions repaired for a cell with
k lesions is kQ(k) and after a dose d the mean number of lesions repaired is

(36) min (d) = kQ(k) k(d)
k=O kc!

= Asd E Q(k 1) k
k=O kc!

= d(S'(d) + IS(d)).
4.2. Maximum repair mechanism. If the cell is repairing a maximum of its

damage, then given it has k lesions, it will repair all and survive with probability
Q(k) or repair k - 1 lesions and die with probability 1 - Q(k). The mean
number of lesions repaired is then kQ(k) + (k - 1)(1 - Q(k)) and after a dose d
the mean number of lesions repaired is

(37) max (d) = _ {kQ(k) + (k - 1)(1 - Q(k))}

-ud - 1 + S(d).

4.3. Mechanim with mixture of repair capacity. Define the repair capacity of
a cell at a particular time as the maximum number R of lesions it can remove
regardless of the number of lesions present. Suppose that R is a random variable.
For example, following irradiation the cell will have a certain number n of
lesions. As each lesion is removed by repair there is a probability that an event
may occur which will render the cell incapable of division. Let 1 - qk be the
probability that such an event occurs during the removal of the kth lesion, given
that it has not occurred previously. Then the probability that a cell will survive
n lesions is 11 ...q . If Q(n) is an arbitrary function in the class (2) then
{qk,k = 1, 2, *--} can be chosen so that Q(n) =r * n = 1, 2,*--. That
is, a survivor function in the class A can be inteipreted as having arisen frem this
mechanism.

If the cell has n lesions the probability that it will repair k lesions is then
II ...k(1- 7k+l) for 0 _ k _ n-1, and qI *--l.n for k = n. Further, since
.71.--.7k(l - Ok+l) = Q(k + 1) - Q(k) = qk, we have the mean number of le-
sions repaired in a cell with n lesions after irradiation is

(38) Oql + lq2+ + kqk+l + - * * (n - 1)qn + nQ(n).
This is evidently equivalent to considerirng a repair capacity distribution with
Pr (R = k) = qk+1, since if a cell has a repair capacity k it will repair a maximum
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of k lesions and the mean number of lesions repaired for all cells with n lesions
after irradiation is then given by (38).

It is also possible to consider that the probability of the successful removal
of a lesion depends on the number of lesions remaining in the cell, but in general
no simple relationship between M(d) and S(d) results from this mechanism.

Returning to (38), we have
k

(39) Oql + 1q2 + + (n- 1)q + nQ(n) = E Q(i),
I ~~~~~j=1

so that the mean number of lesions removed after dose d is then

(40) mix (d) = eE k! Q)
k=1 k -

= S(d) + ,i fd S(x) dx -1.

As a first example consider the 1 hit survivor function S(d) = ed. In the class
A, S(d) may have equivalent representations of the form

(41) S(d) = = Q(k) kA( I) > 1.
k=O k

For the case ,u = 1 the repair functions for d 2 0 are

Haynes rule = 0,
(42) min (d) = 0,

max (d) = e-d-1 + d,
mix (d) = 0.

For the case A > 1 the repair functions for d 2 0 are
Haynes rule = (A - 1)d,

(43) min (d) = de-d(s- 1),
max (d) = d-1 + e-d',
mix (d) = (-1)(1-e-d).

EXAMPLE 5. Harm [6] has shown that the function exp {-d2/a2} approxi-
mates the empirical survivor function of E. coli B/r, following ultraviolet irradia-
tion over the range 0 to 1500 ergs/mm2. Using Harm's value of a, and a value
for Au given by Setlow [14], the repair functions are computed in Figure 2.

5. A particular model of the effect of ultraviolet radiation on E. coli

In the preceding theory a function Q(k) was introduced. The value Q(k) was
defined to be the probability a cell would survive k lesions under some fixed
experimental condition. This general formulation does not permit any inference
to be made on the form of this function under different experimental conditions.
In order to proceed further than the fitting of an isolated survivor function it is
necessary to construct a more detailed model of the biological system. Such a
model is described below.
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5.1. General assumptions. Three general assumptions are made. The first is
that the irradiated cells are homogeneous in their response to radiation. The
second is that the principal effect of ultraviolet light for considerations of survival
is the formation of lesions on the chromosome of the cell. The chromosome of
E. coli consists of a long double strand of DNA. Each strand contains approxi-
mately 4.5 million nucleotides of four different types A, C, G, and T. The
information coded by the whole sequence of nucleotides is vital to the survival
of a cell. If only a section of the DNA is damaged there is some probability that
the cell will lose its reproductive ability. Fortunately, the two strands of DNA
are complementary to each other, so that damage to one strand may not result
in a loss of information. The third basic assumption is that the cell can repair
damaged sections of the DNA molecule by copying from the complementary
strand.

5.2. Specific assumptions. (i) It is assumed that an ultraviolet dose d pro-
duces a Poisson distribution of lesions with mean d. These lesions are assumed
to be formed randomly along the length of both strands of DNA. The term lesion
is used to describe any kind of abnormal product of radiation. There is evidence
[15] that these lesions may be the formation of dimers between adjacent T
nucleotides in the DNA molecule. If all lesions were of this type, we would be
led into an occupancy problem. Preliminary calculations show that in this case
the Poisson assumption and the assumption that lesions are formed at random
along the DNA would still be approximately valid.

(ii) The chromosome is assumed to consist of a large number N of repairable
sections. For a particular section, repair is accomplished by removing the
damaged strand within that section and copying from the complement. If only
one strand is damaged in a particular section, it is assumed that the section will
be successfully repaired. If both strands are damaged, then when one of the
damaged strips is removed there is a loss of information and it will only be by
chance that the correct information is recovered from the remaining damaged
strip. There is also the possibility that faulty repair may physically damage the
chromosome. It has been suggested by Harm [6] that breaks in the chromosome
may occur. We will assume that if a faulty repair occurs in any section of the
chromosome, then no matter what the subsequent history of the cell is, it will
not reproduce. The probability of such a faulty repair will in general depend on
the medium in which the bacteria are held. Let the probability of faulty repair
for a section with both strands damaged be 7r for plating medium and v' for non-
nutrient medium. It is assumed that this probability is independent of the success
of repair of any other section.

If the bacteria are irradiated at a high dose rate, repair will not be possible in
the irradiation period. The preceding assumptions enable the theoretical prob-
ability of survival S(d) to be obtained. Let s(d) be the probability that a par-
ticular section successfully repairs whatever lesions are formed after dose d, then

(44) S(d) = s(d)N.
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If the number of sections N is large, then for reasonable dose ranges 1 - s(d)
will be small. Taking logarithms in (44), we have
(45) log S(d) = N log 8(d) - -N(1 - s(d)).
If the bacteria are immediately transferred to a plating medium, we have

(46) 1 -s(d) = T -exp {-d})' d > 0,

where Xd/2N is the mean number of lesions formed on a single strand in each
section. Thus, provided N is large, from (45), we have

(47) log S(d) _. -NT - exp {-XdN})2 Xd2

Harm [6] was led to a function of this form by similar reasoning. This function
is fitted to empirical data for the survival of E. coli B/r exposed to ultraviolet
light. The value of 7rX2/N is estimated to be (2.44 d 0.10) X 10-6, where the
dose d is measured in ergs/mm2.

6. The repair function M(d)
For the mechanism described above, it is possible to obtain the repair function

or the expected number of nucleotides which are replaced as a function of dose.
For each section, we have the following events and probabilities

no damage: exp {- Xd/N},
1 strip repaired: 2(exp {- Xd/2N} -exp {- Xd/N}),
2 strips repaired: (1 -7r)(1 - exp {-X/2N})2.

If it is assumed that no nucleotides are replaced if repair is unsuccessful, then
for the cell

(48) M(d) = 2Nno[(exp{- } exp })

+ (1- 7r)(1 - exp {Xd}) ]'

where 2no is the number of nucleotides per section. Assuming the same number
of nucleotides are replaced even if repair is unsuccessful, then M(d) is given by
(48) with 2r = 0. In Figure 3, empirical data for the function M (d) are plotted
against dose. The bacteria E. coli X differs from the bacteria used to obtain the
estimate of 7rX2/N. It has been suggested that the apparent drop in M(d) as d
increases may be an experimental artifact. A theoretical curve with parameters
X/N = 0.0032 and 7r = 0.3 is drawn to illustrate that equation (48) can repre-
sent the observed type of function. However, using these parameters and the
estimate for 7rX2/N obtained previously, we have X = 0.011, N = 3.4, and
7r = 0.3. These values are not consistent with values available elsewhere and
this experiment will be ignored in what follows.
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FIGURE 4

Liquid-holding recovery. Upper scale on the abscissa is the time of liquid-
holding following irradiation. The fitted curve was obtained from equation (52).

At this point, it is necessary to consider how the mechanism of repair operates
as a function of time. Previously, it has been assumed that the dose was in-
stantaneous and that a sufficient time was available to enable repair, faulty or
otherwise, to take place. Two phenomena described by Harm [6] are relevant.
The first is the phenomenon of "liquid-holding" recovery. Bacteria are irradiated
at a high dose rate, but before plating are held in a nonnutrient solution for
various periods of time. It is observed that for a given dose the proportion of
surviving bacteria increases as a function of holding time (Figure 4).
The second phenomenon is observed when bacteria are irradiated at a low

dose rate for extensive periods in a nonnutrient medium. For the same total dose
the proportion of survivors is markedly higher for low dose rate exposure than
for high dose rate exposure (Figure 5).
The preceding model is readily modified to predict these observations. It is

assumed that lesions are formed on the chromosome at a Poisson rate Xp per
hour. The dose rate parameter p is in units of ergs/mm2/hr. For each section,
the waiting time before a damaged strand is detected is assumed to be an ex-
ponential random variable with mean 1/,u. It is assumed that repair is instanta-
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Comparison of survival for low dose rate and high dose rate exposure.
The fitted curves were obtained from equations (47), (51), and (52).

neous once the damage is detected. The probabilities of faulty repair of sections
in which both strands are damaged remain w in plating medium, v in nonnutrient
medium. At some time t in the low dose rate experiment each section will be in
one of four states:

(0) no damage,
(1) damage on one strand,
(2) damage on both strands,
(3) faulty repair has taken place.

Let Pn(t) be the probability of being in state n at time t. Since irradiation takes
place in a nonnutrient medium, we have

Po(t) = -Po(t)Xp/N + Pi(t)y,
(49) PPl(t) = +Po(t)Xp/N - Pi(t)(IA + (Xp/2N)) + P2(t)2pA(1-r),

P2(t) = + PI(t)Xp/2N -P2(t)2,
P3(t) = + P2(t)2/Ar.

Suppose that the cells are irradiated for a time to and then plated. It is assumed
that in the plating medium, replication is delayed until all possible repair has
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occurred. Thus, the probability that a particular section has a faulty repair when
replication begins is P3(to) + rP2(to). In terms of dose d = pto, we have

(50) 1 - s(d) = P3(d/p) + irP2(d/p).
Using relationship (45), Sp(d) the probability that a cell survives a dose d at
the dose rate p is given by
(51) log Sp(d) - N{P:(d/p) + rP2(d/p)}.
Similarly, let H(d, t) be the probability of surviving a dose d at high dose rate

exposure followed by liquid-holding for time t. Then it can be shown that
X-RAY DOSE (krads)

0 10 20 30 40 so

z-5
>

o ~ ~ ~ ~ FGR6.

L 7.

Effect of X-ray dose following ultraviolet exposure
(fitted curves are obtained from equation (54)).

Pre-U.V. exposure: 1: 0; 2: 400 ergs/MM2 ; 3: 800 ergs/MM2;
4: 1,000 ergs/MM2; 5: 1,200 ergS/MM2; 6: 1,400 ergS/MM2; 7: 1,600 ergs/MM2.
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(52) log H(d, t) -- d2 {re-o' + v(1 -e-eP)}.

In the particular case t = 0, we have the case of immediate plating. To demon-
strate the effect of low dose rate exposure as distinct from liquid-holding re-
covery, Harm also considers H(d, dlp), that is, the effect of liquid-holding for
the same time as low dose rate exposure. Three empirical sets of survival data
corresponding to instantaneous dose, low dose rate exposure, and instantaneous
dose followed by liquid-holding for the same time as the low dose rate exposure
are given in Figure 5. Theoretical curves with the parameters 7r = 0.25, p = 0.15,
N = 2 X 105, X = 5.4, and u = 0.173 are drawn for comparison. For larger
values of total dose with low dose rate the model is inadequate since log Sp(d)
must decrease steadily in this dose range whereas the empirical data suggest
that the proportion surviving has reached a minimum. This effect could possibly
be due to a process of damage reversal in which radiation is involved.
The data for liquid-holding recovery as a function of time should be fitted by

the function H(d, t). In Figure 4, the theoretical curve with the same parameters
as above is superimposed upon the empirical data points.

In a series of experiments Haynes [7] irradiated the bacteria E. coli B/r at a
relatively high dose rate with one dose of ultraviolet light and one dose of X-ray,
alternating the order of exposure. Although there are indications that the order
of exposure does affect the probability of survival, it is possible that this is an
experiment artifact. With this possibility in mind, an extension of the previous
mechanism is proposed. In this model there is no effect of the order of exposure.
It is assumed that X-ray ionizations produce a Poisson distribution of X-ray
lesions which are uniformly distributed along the chromosome. The X-ray lesions
are considered to be large compared with ultraviolet lesions. They are assumed
to damage both strands and may be extreme enough to cause chromosome
breaks. Let q6 be the mean number of X-ray lesions on the chromosome after a
dose 0 of X-ray. Let p be the probability that a section containing an X-ray
lesion and no other damage has a faulty repair. Let wr be the probability that a
section with either X-ray damage or ultraviolet damage on both strands will
have a faulty repair. In all other cases it is assumed that repair is successful.
Then the probability a section has a faulty repair after a dose d of ultraviolet
and a dose 0 of X-ray is given by

(53) 1 -s(d, 0) = - exp { 7r - (7 - p) exp

+ 7r exp V -(1 exp { 2N})
rpO + - p)i7X0d )X27rd2
N N + 4N2

The probability S(d, 0) that a cell will survive a dose d of ultraviolet and a
dose 0 of X-ray is given by

(54) log S(d, 0) _-{ jA + N + 4N }
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This function can be readily fitted to the empirical data of Haynes [7]. With
parameters q = 49.3, p = 0.0037, N = 2 X 105, X = 3.84, and 7r = 0.25; the
fitted curves are superimposed upon the empirical data in Figure 6. The fitted
curves compare favorably with the empirical data.

c 0 0 0 0
Dr. R. H. Haynes sparked my interest in this subject in the course of several

discussions I had with him. In the preparation of the paper I have received
encouragement and many helpful suggestions from Professors J. Neyman and
L. LeCam.
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