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1. Introduction and summary

This paper is concerned with a simple generalization of the Bernoulli trials
model to a Markov chain which has an additional parameter that measures
dependence between trials. Small and large sample distribution theories are
worked out for the model with a new and simple closed form expression obtained
for the exact distribution of the sufficient statistics.
The model is applied to a sample of birth order data from an appropriate

human population and a slight dependence of sex on that of the previous child
is found to be significant.

2. Notation and model

In the Bernoulli model, denote two valued random variables by Xi = 1 with
probability p and 0 with probability q = 1 - p, for i = 1, 2, * , n. The joint
distribution for a sequence of independent trials is given by
(2.1) P[X1 = xi, X2 = x2, * * *, Xn = xn] = p8qnl8,
where s = xI + x2 + * + xn and xi = 1 or 0. To generalize this model to
permit dependence between successive trials, consider a Markov chain with
symmetric conditional probabilities given by
(2.2) P[Xi = 1 Xi_ = 1] = P[Xi = 1 Xi+1 = 1] = Op,
with the remaining conditional probabilities completely determined by sym-
metry:
(2.3) P[Xi = 0[Xi'l = 1] = 1 - Op,

(2.4) P[Xi = lXi,l = 0] - P[X, = 1, X01 - 0] (1 -p)p

(2.5) P[X; = OlXsi=O]= 1 - (l-Op)p =1-2p + p2

and unconditionally
(2.6) P[X,= 1]= 1 -P[X, =O] = p.
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The parameter 0 is a measure of dependence. The value 0 = 1 gives the
Bernoulli model (2.1) and independence, while values of 0 > 1 (0 < 1) imply a
tendency for pairwise clustering of like (unlike) values in the sequence of random
variables. In order to avoid negative conditional probabilities (2.2) through (2.5),
we restrict 0 to the range max (0, (2p -1)/p2) . 0 < 1/p which contains the
value 1.
The joint distribution of a sequence can be written

(2.7) P[XI = XI, X2 = X2, ..., XI = x"]
= P[Xn = XlX.-1 = X.-1, Xn-2 = Xn-2, * * XI = X1]

P[X.-1 = Xn.-I, Xn-2 = Xn-2, . * XI = X1]
= P[Xn = X.JX.-1 = X.-l]P[X-.1 = Xn-,lXn-2 = Xn-2]

... P[X2 = X2IXl = Xi]PtXI = XI],
repeatedly using the Markov dependence assumption. Using (2.2) through (2.6)
and xi = 1 or 0, we can write

(2.8) P[Xi = xiXi.i. = xi-II
=(0p)zXi-(1 - Op)(l -)x:zi- [(1 -oP) p]zi(l-xix) 1 -2p + 0p2 (l-x,)(i-z,-

(2.9) P[X1 = x,] =

Substituting (2.8) and (2.9) into (2.7), the joint distribution becomes the
product
(2.10) {][2 (0p)-m1(l - [)i.)z1[(1 0P)p](i)

[ - 2p+ 0p2] (1Zi)( i-i) p-ql_z

e =Onl(1 - Op)(nol+nis)(1 - 2p + 0p2)n?p-S1xiq-X2 (1-x),
where

n n-1
nll= E XiXi_1= ExiXi+l,

i=2 i-

n-i
no, = (1- )xi+,

(2.11) i=i
n-1

nio = E x,(l -Xi+)i=1

noo = xi(1-x)( -Xi+),

so that nn, + not + n10 + noo = n -1.
In this paper attention is restricted to inference on 0 and it is assumed that p

is known. The case where p is an unknown nuisance parameter is of interest but
somewhat more complicated and will not be considered here.
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3. Large sample theory

The model (2.10) is a particular case of the general Markov processes discussed
by Billingsley [1], and the large sample theory developed there can be applied
directly. Expression (2.8) corresponds to the notation f(Xi,1, Xi; 0) in [1]. If
terms not depending on 0 are neglected, the log likelihood (the log of (2.10))
can be written
(3.1) Ln(O) = nil log 0 + (no, + nio) log (1 - Op) + nOO log (1 - 2p + 0p2).
The term f(X1, 0) of [1] corresponds to (2.9) for the model and does not depend
on 0. Thus, the exact likelihood (3.1) and the large sample approximate likeli-
hood used by Billingsley are equivalent. Theorems (2.1) and (2.2) of [1] give the
following.
THEOREM 1. If 0 is restricted to an open interval, there exists a sequence of

estimators 0(X1, X2, *-- , Xn) which converge in probability to 0. The sequence
0(X1, X2, * , XXn) is a solution of

(3.2) dL.(0) ni_ (no, + nio)p noop2 -
dO 9 (10-p) (1-2p +0p2)

with probability going to one as n -- oo. Further, the asymptotic distribution of
\/n( - 0) is normal N(O, r2(0)), where

(3.3) T2(0) =0(1 - Op)(1 - 2p + Op2)
p2(1- 2p + Op)

For testing the hypothesis H:0 = 0o against the alternative A :0 5 00, the log like-
lihood ratio test statistic has an asymptotic chi square distribution (1 degree of
freedom):

(3.4) 2[Ln(f) - Ln(f)] > 2

as n -+ co under H.
A large sample confidence interval for 0 can be obtained by using (3.4). If x.

is the upper 100a per cent critical value of the chi square distribution (1 degree
of freedom), then the set of 0 values which satisfy
(3.5) 2[Ln(O) - LO(0)] _ X2a
is a confidence interval for 0 with confidence coefficient approaching 1 - a as
n -+ oo. It is an interval since Ln(f) is concave (Ln'(0) < 0).

4. The exact distribution of the sufficient statistics

The joint distribution (2.10) can be rewritten in the form

(1 -2p + p2 0r(1 - 2p+ii+(4.1) qnP-2 (1 - +p2)] 2 ixi+1
[ pq(1 - Ip)21E=i [1 - 2p + Op21z1+R
L(1 - 2p +Op2)2J L (1 -p)q I
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Denote R = _=,' XiXi+l, S = ,l=I Xi, and T = X1 + X.. By the factoriza-
tion theorem they are sufficient although not minimal since Nil = R and

(4.2) (N., + N10) = Xi+(l- Xi) + Xi(1 -Xi+) = 2(S- R) - T

are also sufficient, which can be seen from the likelihood expression (2.10) using
Noo = (n - 1) - N1 - (No, + N1o). However, the joint distribution of (R, S, T)
seems easier to derive than that of (Nl, No, + N1o).

Since the joint distribution (4.1) of XI, X2, * , X. is constant for fixed values
of R, S, and T, using (4.1), it follows that

(4.3) P[R = r, S = s, T = t] = Mn(r, s, t)CIn?qX127in3
where

(1 - 2p+ 0p2)n-1 0(1 -2p+0p2)
(4.4) Ci. = qn-2 (1- op)2

(4.4) pq(l - Op)2 (1 - 2p + 0p2)
(1 -2p + op2)2 3 (1 - p)q

and M.(r, s, t) is the number of sequences (xl, x2, * , x,) of zeros and ones which
have xixi+ = r, _?= xi = s, and x1 + xn = t.
To count the number of such sequences for given (r, s, t), first note that there

are (t) different ways of getting a sum of t from xi + x.. Next, since Et= 1 Xi = S,
there are a total of s ones in the sequence. If we count the number z of zero
runs between the first and the last of these ones in the sequence, we have
the relationship

(4.5) r = s-1-z.

The reason for this is that every time a run of zeros is inserted between con-
secutive ones, the value ofR is decreased by one. The number of ways of putting
n - s zeros into z + (2 - t) cells of zero runs where z =s - 1 - r (from 4.5)
and no cell is empty is given by

(4.6) ( + ( t 1)= (n s- t)

(see, for example, Feller [5], p. 37). We define throughout ( 1) = 1, as is re-

quired for the special case s = n. Finally, the number of ways of inserting s
ones into z + 1 cells of ones (where the cells of ones are separated by the z zero
runs between the first and last ones) with no cell empty is given by

(4.7) ( + (s 1 - ) = (s 1),
again using Feller [5], p. 37, and (4.5). Thus, the total number of ways that
these three conditions can hold (and which must hold so that R = r, S = s, and
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T = t) is the product of

(4.8) Mn(r, s, t) = (2)(n-s-1)(s-1).
Summarizing, we have proved the following.
THEOREM 2. If XI, X2, * * - , X. is a Markov chain satisfying (2.2) through

(2.6), then the sufficient statistics R, S, and T have joint distrbution given by

(4.9) P[R=r,S =s,T=t] = t)s r ) 7117273

where Cl., '1l, 172, and 13 are given by (4.4).
Using (4.9), the joint distribution of Nil = R and No, + N1o = 2(S - R) - T

can be derived since
(4.10)

P[Nnl = r, (No, + N1o) = w] = i P[R = r, 2(S - R) - T = w, T = t]

= i P[R = r, S = r + 1(w + t), T = t].

For even values w = 2u,
(4.11) P[Ni1 = r, (No0 + N1o) = 2u]

= P[R = r, S = r + u, T = 0] + P[R = r, S = r + u + 1, T = 2]
(r + u-1)(n-r-u 1) rr+U

{r+u \n-r-u -2 C r+u+l 2
+ \ r u\u 1 Cln17N2+ 173

CGin(nli22)172 [(r + u-l)(n-r-u-1)

+ (r + u)(n-r-u-2) p]

For odd values w = 2u + 1, similarly,
(4.12) P[Nll = r No, + N1o = 2u + 1]

= P[R = r, S = r + u + 1, T = 1]

= 2 (r + u)(n - r - u - 2) C1.(n1l72)'t,71U2n218
(r )( u ) ( )

5. The exact maximum of the likelihood

For maximizing the likelihood, consider the derivative equation L'(O) = 0
given by (3.2). This equation leads to a quadratic equation and we prove that
the solution with the positive square root term maximizes the likelihood in all
cases.
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THEOREM 3. The maximum likelihood estimator of 0 is given by

(5.1) O+(nln, (no, + n1o)) = 2 [{2nnl + (no, + n1o) + m _ (nil + nio + no,)
2L.MP MP2

+ ({2nnj + (no, + nio) + m _ (nn + no, + n_10)}2 + 4nnl(1 -2p)
+

mp mp2 MPap

where m = n - 1.
PROOF. See the Appendix.
For the special case of p = Y2, (5.1) reduces to 6+ = 2[1 - ((noi + nio)/m)].

6. Large sample distributions and small sample comparisons

Using (4.9) and writing X = (R - (n - 1)0p2)/v'n, Y = (S - np)/Vn\, it
can be shown that the limiting distribution of (X, Y) and T is that of a bivariate
normal N((O, 0), 2) and an independent binomial B(2, p), where the asymptotic
variance covariance matrix of X and Y is

/40p'q + 6p2(j-2p + Op)(l -p2p + p2) 2Op2q2

(6.1) Y = 1 -Op - 2 +0p2O2p2q
\ ~~~~2Op2q2 pq(l -2p + Op)

This result, which should take no longer than a day to verify, was obtained by
writing out the factorials in the binomial coefficients in (4.9), using Stirling's
approximation and a log expansion, and taking the limit as n -> 0.

Because of its greater simplicity, one is tempted to use the estimator of 0
given by R/[(n - l)p2], which is unbiased. However, from the asymptotic vari-
ance of X, we note for max {0, (2p - 1)/p2} < 0 < l/p, 0 < p < 1,

(6.2) lim n Var [(nR )p2]

= p4np2q + 0p2(j - 2p + Op)(l- 2p + Op2)1
p~L -Op

> 0(1 - Op)(l- 2p + 0p2) = 72(0) = him nE(O+ - 0)2.
p2(1-2p+Op)n-

For small sample comparisons, because of the complexity of 6+ and the distri-
bution (4.9), it seems unlikely that there exists a computationally convenient
closed form expression for its mean and variance except for p = 12, 0 = 1. In
this exceptional case, 6+ = 2[1 - ((No, + Nio)/(n - 1))] and it can be shown,
summing (4.11) and (4.12), that

(6.3) P[(Nol + N1o) = w] = ( w ) -
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so that EO+ = 1, Var 0+ = 1/(n - 1), and n Var 0+/T2 = n/(n - 1). Also for
0 = 1 but 0 < p < 1, we can calculate

(6.4) ! Var R < p2q(1+ 3p)[1- n((+53P

which has the extra factor [1 - (1 + 5p)/(n(l + 3p))] compared with the
asymptotic value p2q(1 + 3p) obtained from 2. Although the maximum likeli-
hood estimator is still preferred, the finite sample ratio of its variance or mean
squared error to that of the unbiased is smaller than the asymptotic ratio for
these cases.
For the general case, expectations and variances were numerically computed,

in a metallurgical application of the model [8], by Dr. Charles A. Johnson at
Argonne Laboratories and are reproduced in Table I. The computations were
performed using (4.9) and so forth. For example,
(6.5) ES+ = 1E 0+(r, w)p[Nn, = r, (No, + N1o) = wI,

r to

with similar expressions for the variances. Table I gives E@+ and Var 0+ for
selected combinations of n, 0, p, and compares them with the asymptotic values
o and T2(0). It is interesting to note the oscillatory behavior of both EO+ and
Var 0+ and the size of the samples for good asymptotic approximation.

TABLE I

FINITE SAMPLE, MEANS AND VARIANCES OF 0+ AND COMPARISON
WITH THE ASYMPTOTIC APPROXIMATIONS 0, T2(0)

p 0 72(0) n + 100(E0+ - 0)10 nVari+ 100[nVar&+ - r2]/nVari+

0.5 1.0 1.0 10 1.000 0.0% 1.111 10.0
40 1.000 0.0 V 1.026 2.5
100 1.000 0.0 1.010 1.0

0.1 5.0 163.5 10 1.221 -75.6 197.1 17.1
40 4.173 -16.5 Fr 252.6 35.3
100 4.995 -0.1 - 205.5 20.5
200 5.007 0.1 181.5 9.9
500 4.999 0.0 169.8 3.8
1000 4.996 -0.1 166.5 1.8

0.06 2.0 433.7 10 .360 -87.0 1230.0 64.7
40 1.861 -7.0 1082.0 59.9
100 2.192 9.6 736.3 41.1
200 2.019 1.0 591.6 26.7
500 1.997 -0.1 493.4 12.1
1000 1.999 0.0 458.7 5.5

0.06 10.0 687.7 10 1.363 -86.4 4513. 84.8
40 5.002 -50.0 1140. 39.6
100 8.961 -10.4 1008. 31.8
200 9.964 -0.4 843. 18.4
500 10.008 0.0 741. 7.2
1000 10.000 0.0 713. 3.5
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7. Distribution theory for independent samples

When several independent, identically distributed samples are combined,
the distribution theory is modified slightly. Denote each sample size by Nk,
the corresponding individual sufficient statistics by (Rk, Sk, Tk) or Nllk and so
forth, for k = 1, 2, * * *, K, where K is the total number of samples to be com-
bined. Using the factorization theorem on the combined joint distribution of
(Rk, Sk, Tk), k = 1, 2, *.. , K, or on Nllk, (Nolk+ Nlok), k = 1, 2, * * *, K, we
have R = k'=I Rk, S = Xk=l Sk, T = Fk2=i Tk, are sufficient or, more mini-
mally Nil = FS Nllk = R, (No, + N1o) = Yk (Nolk + N1Ok) = 2(S -R) - T
are sufficient. We have the following.
THEOREM 4. If (Rk, Sk, Tk) are independent for k = 1, 2, * , K, then the

joint distribution of R, S, T is given by

(7.1) P[R = r, S = s, T = t] = (2t s)( _s )( ) CK07172nsj

where CKn = (1 - 2p + 6p2)n-K/qn-2K n = k nk, and i71, '12, 7/3 are given by (4.4).
PROOF. We can prove (7.1) by induction on K. For K = 1, (7.1) reduces to

(4.9). For K + 1, we compute the joint distribution by convoluting (7.1) and
(4.9):

(7.2)
rK+I=O 8K+1=O tK+I=O

( 2K n - nK+l - (s - SK+1) -K ' (s - SK+1 - K
\t - tK+, - SK+1 -(r - rK+1) - (t - tK+1)J\ r-r1+i J

X 2 T2K+178 S+17t tx+CKn-

(2 )( nK+l - SK+1 1 )(SK+1 -1\ rK+i1rK+ltK+lCX II 31 321 l2?73 InK+itK+l \SK+1 - rK+l - t)+11 \ rK+l /

=(2(K+ 1))(n -s8 - (K + 1))(s - (K + 1)) CK+1011712'7227
( t )( s-r-t )( r )

provided the combinatorial identity can be shown for the sums of the products
of the binomial coefficients. To do this use the following three identities:

t ' 2K )(2\ (2(K + 1)
(7.3) tx,i 't - tKlt)= t1)tKjl+ = - tK+l) ktKR t

(7.4) E (~S-S+l - K) (SR+ - 1) (S - (K + 1))(7.4) K1=0(s T I(=(~kL IJ'l= r- rR+i rK+l r

(7.5) n - nK+l - (s - SR+1) - K /nK+l - SR+1
*K+I=O S - SK+1 - (r - rK+l) - (t - tK+i)JS'K+l - rK+l - tK+l1

= (n s- -(K + 1))
Both (7.3) and (7.4) hold since the hypergeometric distribution sums to one and
(7.5) can be proved by induction on s. Note that (7.4) holds for any SK+1 and
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(7.5) holds for any ri+I, tK+1. Taking the products of (7.3), (7.4), and (7.5) and
using the above remark for appropriate orders of summation gives the required
result.
The distribution of the more minimal sufficient statistics Nii, (No, + N1o) can

be obtained using (4.10) and (7.1).
The maximum likelihood estimate 0+ is similarly given by (5.1) except that

m = n - K in the formula, since now N0o + No, + N1o + N11 = n- K.
For independent samples, Theorem 1 is modified slightly to read:

(7.6) \/n( - 0) -e N(0, yT2(O))
as n -- oo, where y = lim [n/(n - K)]. The proof follows Billingsley [1] (p. 14)
with r = 1 and g replaced by a g(*), which is the sum of the log of (2.8) over
the kth sample sequence. A law of large numbers for independent nonidentical
random variables and a similar central limit theorem is combined with the
martingale argument there.

8. An application to birth order data

To apply the model and investigate possible Markov dependence of sex be-
tween successive births, appropriate family data was sought. Data was required
from families not practicing family limitation by sex so that the fixed sample
analysis of the model would be appropriate instead of complicated mixtures of
inverse sampling schemes. Family limitation is a common difficulty in sex ratio
studies [10] (p. 175), [3], [7].
A geneology of Amish families [6] appears to provide appropriate data. Birth

control was considered sinful and the prescript "be fruitful and multiply" was
followed [4]. The only type of limitation that might have been practiced was
that of limiting the total number once the family size was considered enough.
The data also support these considerations since, according to Edwards [3] (p.
343), families practicing limitation by sex composition would have an increased
number of girl-boy or boy-girl outcomes in the last two children and the count
of such sequences is 86 out of the 195 families in the sample.
Table II gives the coded sex composition in order of birth for selected Amish

families. Families were chosen from Old Order Amish or Amish Mennonite
parents born before or up to 1900-1910 and who were mostly farmers or car-
penters. Families with multiple births were eliminated. To conserve space in the
table, the girl and boy family sequence is considered as a binary number with
girls corresponding to ones and boys to zeros, a leading one is placed at the front
of the sequence and then the resulting sequence converted to the corresponding
octal number code. Thus, for example, ggb, gbg, bbg, ggg, bbg is coded 165171.
The leading one is used to denote the start of the sequence so that zero sequences
of different length are not confused.

In the application of the model, we assume that data from different families
are independent and identically distributed and that p and 0 do not differ be-
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TABLE II

OCTAL CODED BIRTH ORDER DATA FOR 195 AMISH FAMILIES
Convert the octal number to binary, drop the leading one, and associate

girls with ones and boys with zeros in the resulting sequence.

17 336 7443 106 240 42
167 235 264 63 6 4
203 17 16 75 24 1137
24 115 54 13726 2153 3004
21 11117 1670 760 35 237

342 17760 306 434 2636 130
1275 367 24 576 254 3200

63 1350 471 115 460 136
1703 503 211 13403 43677 24220
304 156 6 1402 25175 367
267 37 1575 5621 33 7702

4676 23241 56 234 56 4
206 12 120 1413 237 41
32 1556 37 70 13 1675

144654 2410 6211 353436 1100 7
4456 165171 16 640 5377 73
1205 4 4233 302 32 223

15020 110 171 100564 4602 4320
143 4 20 55 27431 33
713 103 46 7 161 147
1550 43 23 70 3054 267

10372 606 217 237 45207 70
7552 4350 2462 27 115 130

64 763 334 225 317 773
744 1175 11222 46240 61 561
131 3015 1135 1363 7450 2177

1254 47 14261 71 13 53
312134 13357 4 445 14 37

.510 37 627 1112 127 652
70 11001 62 731 125 650
14 15533 41 57 52 1066

130 765 14 16240 144062 6370
47 3056 134137

tween trials or families. Although there is some evidence that p can vary between
families [11] (P. 645) and between trials [9] (p. 447), other evidence [2] (p. 249)
suggests that this is a not unrealistic assumption for the overall model since
the variation is slight. Applying model (7.1) with K = 195 families, we com-
pute from Table II, n = 2nk = 1466, R = 2Rk = 337, S = 2Sk = 723, and
T = ZTk = 184. 'Using either p = 0.48 or p = 0.49 for the probability of a
female birth, we estimate #+ 1.08 applying (5.1) with m = n - K = 1271.
Using (3.4) and p = 0.49, we reject the hypothesis that 0 = 1 in favor of 0 5 1
at the 0.01 level of significance, since 2[L(O) - L4(1)] 7.10 > 6.6 - x',o1.
The 95 per cent confidence interval for 0, using (3.5), is 1.02 _ 0 . 1.13 to two
decimals. Although the model is different, the finding of an increase in the con-
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ditional probability of a girl given a previous girl is in agreement with Edwards
[3] (p. 343) and Renkonen [9].

APPENDIX

PROOF OF THEOREM 3. To show that (5.1) maximizes the likelihood, we
consider two cases: (no, + n1o) > 0, and = 0.

Case 1: no, + n1o > 0. If we examine the derivative equation (3.2), we note
Ln(l/p) =-o and L'n'(0) < 0. Assume first that L'(max (0, (2p - l)/p2}) C 0.
Then Ln(0) is decreasing and the maximum occurs on the boundary
(A.1) 0 = max {0, (2p -)/p2}
we must show #+ gives this value. If p c Y2, the assumption reduces to L'(0) _ 0
so that from (3.2), nil = 0 and -(no, + n1o)p + [noop2/(1- 2p)] c 0. Using
nil = 0, nil + no, + n10 + nw = m, this condition becomes

(A.2) I (mp - (no, + nio)q) _ 0.
Consequently, evaluating (5.1),
(A.3)

1 [fno +n1 + m no, + n(o/fn0 + n10 + m (noi + n1o)j!\31
2 LI mp m mp mp2 J J

_ 1 [m - (no, + nio)q _ mp - (no + nio)q] _ 0
- 2L ~mp2 MP2 -

If p > , the assumption becomes L'((2p - l)/p2) C 0 so that no0 = 0 and
niip - (2p - 1)m _ 0. Evaluating (5.1),
(A.4)

= Ffnn + 2m _ + fnl,p + }2p-12 _ 4n,,pm(2p- ))-%
2 LJ mp mp2J + kjpp2 2 Jm2p4 /

_ 12 + nlp + In,p _ 2p-11] 2p- 1
2 Lp2 mP2 Imp2 p2 IJ p2

Thus, under the assumption 6+ = max {0, (2p - l)/p2}. Next assume
L'(max {0, (2p - l)/p2}) > 0. Under this assumption there will be a root
which maximizes L.(O) in the open interval (max (0, (qp - l)/p2}, l/p) since
L'n(0) <0 and L'(1/p) =-. This root will be one of the two roots of the
quadratic equation
(A.5) 0(1 - op)(1 - 2p + 0p2)( ll _ (nO1 + n1o)p + _______ )i-Op1 1 2p+ p2I
or

062
-

2nil + no, + n10 + m _ (n1l + no, + n1o)_ nl(l - 2p) 0(A.6) MPpM_2mp =0
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Since 0+ is one of the roots of this equation, it remains to rule out the other root

(A.7) @ = 1 [{2nn + no, + n1o _ (n11 + no, + nio)lIf MP mp2 j

_ ({2nn + no, + n1o + m _ (nll + no, + nio)}2 + 4n(l(1- 2p))
mp mp2 J mp3M

by showing L _ max {0, (2p -1)/p2}. Substituting no, + nio = m - ni - noo,
we can rewrite

(A.8) = 1P + mP2+ }

(f2p - 1 + nhlp + nOoq}2 + 4n1l(1 - 2p)) ]
\f p2M 2 1MP8

For p _ Y2, if we replace the second term in the radical by zero, we obtain

(A.9) 0 < 1 [2p - + n1lp + nooq} _ 2p -

+ nulp + nooqi < O+2 mp2J p m21P0.

For p > ½2, rewrite 0- in the form

(A.10) 1=
M

1 + mP2o}

R a(2p -t + 2(p - 1)(-nilp + nooq) + + nooq12)H]

Replacing the +nooq term in the center of the radical by -nooq, we obtain

(A.11) - [ 21 + fluP+flOO2}
(2p- 1 + (nilp - )2]< p2-

so that L _ max {0, (2p -l)/p2}.
Case 2: no, + n1o = 0. If no, + nio = 0, then L'(0) > 0 so that L.(O) is in-

creasing and maximized at the end point 0 = l/p. Substituting in 0+ with
no, + nio = 0 gives
(A.12)

21 mpmp-nil(l-2p) + mp m-nl(l-2p) 2 m4njj(1-2p))M]
=2 mp[ mp(P2 mp+

1 fmp-nl(l -2p)j + mp + nli(1-2p) 11
2 LL mp2 f mp2 Ip

Q.E.D.
Note, mp + nn(l - 2p) = (nil + no, + n1o + noo)p + nnl(l - 2p) > 0.

Methods similar to those used to rule out _ can be used to verify max

{0, (2p - l)/p2} < @+ 1i/p.
A0, (2p -
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The model was first considered in a metallurgical application with the late
Charles Johnson. Conversations with John McDonald, Nathan Keyfitz, and
Tom Espenshade (who provided the data) were most helpful.
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