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1. Introduction

Let X1, X2, * , Y1, Y2, * , be independent random variables where the X
(Y) have common strictly increasing and continuous distribution function F1 (F2).
Let N = 2n and WN, 1 _ WN, 2 < * * WN,N be a rearrangement of X1, X2,
* X,Xn Y1, Y2, * , Yn in increasing order of magnitude, n = 1, 2, * . . Define

(1.1)~ ~ ~ Z,i if WN,iis an X,

(1.1)i{1 if WN,i is a Y,

i = 1, ,N, and let ZN = (ZN, 1, , ZN,N)
Let F1 and F2 be two arbitrary strictly increasing continuous distribution

functions. Let

(1.2) LN = LN(ZN) = P(ZN = ZN|IF = FF =F2)

Note that the denominator in the above does not depend on F1 and is equal to
n/("') and that the numerator is unchanged if F1 and F2 are replaced by F1K-1
and F2K-1, where K is a strictly increasing continuous distribution function.
Let

(1.3) eN = eNN(ZN) = log LN(ZN)
From now on P(E) will stand for the probability ofthe eventE when the common
distribution of X and Y are FP and Y2, respectively. Our main aim is to prove
the asymptotic normality of eN(ZN) under suitable conditions (see Theorems 5.1
and 5.2). The conditions imposed are A1, A2, A3, and B or A1, A2, and B (see
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Sections 2 and 4). Conditions B and B are similar and in our opinion they form
the crucial condition. In Section 6 we exhibit an example in which Condition B
is not satisfied and the asymptotic distribution of fN is not normal.

In many statistical contexts it is of great importance to study the distribution
of a likelihood ratio like LN . It seems however that in nonparametric settings like
ours other statistics like linear rank statistics have been studied more than the
likelihood ratio. Laws of large numbers and bounds to the large deviation prob-
abilities relating to linear rank statistics have been obtained earlier than those
relating to t"N. Problems of asymptotic normality of linear rank statistics have
been well studied by now. We now describe some of the known results for e,.
Savage and Sethuraman [8] have shown. when F2 = Fj where A is a constant,

that there is a number I(F., F2; F1, Fj') such that for each e > 0 there is a p < 1
with

(1.4) P{\'N(ZN) -I(F*.>F: F F A) > £} < pN

for all large N. More generally, under some mild conditions. Berk and Savage
[1] showed that there is a constant I(F1 F. F,. F2) such that for each £ > 0
there is a p < 1 with

(1.5) P N(ZN) I(F. F: F1. F2) > £} < PN.

for all large N. These results were used by these authors in their study of sequentia.
tests based on eN* Some exact large deviation results for tN have recently been
obtained by Haijek [5] when F* = F* and F, and F2 satisfy some mild con-
ditions. The only results known about the asymptotic niormality of fN were
obtained simultaneously by Sethuraman [9] and Govindarajulu [4]. for the
special case when F2 = F' where A is a constant. In this case NI [tN/N-
I(F*1, F2; F1, Fj")] has a limiting normal distribution. This result was arrived at
rather directly since in this special case eN (ZN) turned out to be a slightly modified
Chernoff-Savage statistic.

In this paper we consider the asymptotic distribution of 'N in the general case.
We basically have two different proofs of the asymptotic distribution which are
applicable to different situations. These two situations do not exhaust all
possible cases and by the time we have imposed all of our conditions they do not
cover the case treated in Sethuraman [9]. In the first situation it is assumed
among other things that the density functions of F1 and F2 are bounded away
from 0. In the second situation the density functions ofF1 and F2 are histograms
with a finite number of feet. There are some other conditions imposed on F1
and F*. The proof of the asymptotic normality of eN uses some hints from game
theory in the first situation and relies heavily on the results of Berk and Savage
[1] in the second situation. A heuristic proof which applies to the first situation
is sketched in Section 3 and we hope that these heuristics can be justified in situ-
ations more general than what we have been able to do.

Section 2 deals with the notation and various preliminiaries. Section 4 contains



LIKELIHOOD RATIO BASED ON RANKS 439

some intermediate lemmas and theorems and the main results are in Section 5 in
the form of Theorems 5.1 an(i 5.2.

It may be noted that we are trying to establish the asymptotic normality of
t N in the two sample problem when the ratio of the first sample size to the com-

bined sample size, AN, is identically equal to 2. It is believed that our conclusions
are valid at least when AN = A + o(1/N) where 0 < A < 1. but we do not
treat these extensions here.

2. Definitions and notations

Let A be the class of all probability measures on [0. 1]. An element in A may
also be viewed as a distribution function (left continuous or right continuous).
Thus when we say that P belongs to A we may mean either that P is a probability
measure on [0. 1] or that P = P(x) is a distribution function on [0. 1]. This
ambiguity does not cause confusion and helps in reducing the amount ofnotation.
We say that a sequence {P,n n = 0, 1, * * } in A converges to PO when Pn con-
verges to PO weakly. Endowed with this topology, A becomes a compact metric
space (for example, see Gnedenko and Kolmogorov [31 Chapter 2). If I yw n =
0, 1. } is a sequence of probability measures on A (on the Borel a-field genera-
ted by the open sets in A) we say that yn -uyo if JA g dn - JA g dpo for every
bounded continuous function g on A. With this notation of convergence (which
is the usual weak convergence for measures) the space of probability measures
on A becomes another compact metric space (for instance. see Billingsley [2].
Section 6).
When the probability density function (p.d.f.) of a distribution function P(x)

exists we denote it by p(x), the corresponding lower case letter. Let A* be the
subset of A consisting of distribution functions P(x), with continuous prob-
ability density functions p(x) and with p(x) _ 6 on [0. 1] for some 6 > 0. Let
AN be the subset of A which consists of distributions that give masses in
multiples of 1/N to at most N distinct points of [0, 1], N .= 1, 2, .

Now let 0 = aO < a, < ... < aR = 1 be fixed and generate a partition of
[0, 1]. Relative to this partition we define A to be the subset of A consisting of
distribution functions P(x) with p.d.f. p(x) satisfying

(2.1) p(x) = Pr _ 0, x c [ar, ar), r = 1. R.

Let A* be the subset of A consisting of distribution functions P(x) with p.d.f.
p(x) satisfying

(2.2) p(X) = Pr > 0, xe [ar- 1, ar), r = 1,* ,R.

Finally let AN be the subset of A consisting of distribution functions P(x) with
p.d.f. p(x) satisfying

(2.3) p(X) = Pr, Pr(ar - ari) = a multiple of-NE
xe[ar- , ar). r = , ,R.
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Notice that when we talk of A or A* or AN, we always have the partition genera-
ted by {ao, a1, * * *, aRj} in mind and that this partition is arbitrary but fixed
throughout this paper.
We have remarked earlier that eN and LN are unchanged if we replace F1 and

F2 by F1K-1 and F2K-1, where K is strictly increasing continuous distribution
function on [0, 1]. For the same reason the distributions of eN and LN remain
unchanged if we replace F1 and F2 by F1K-1 and F2K- '. We will therefore
normalize F1, F2, F*, and F2 by appropriately choosing K as follows: put

H(x) = 2[F1(x) + F2(x)],
(2.4) Uj(t) = Fj(H-1(t)),

H*(x) = 4[F*(x) + F*(x)],
and

(2.5) Uj(t) = Fj(H*-l(t)), 0 _ t _ 1, j = 1, 2.

Note that

(2.6) U1(t) + U2(t) = U* (t) + U2(t) = 2t, 0 < t . 1,

and that U1, U2, Utr, and U*2 have probability density functions satisfying

(2.7) u1(t) + u2(t) = u;(t) + u*;(t) = 2, 0 < t _ 1.

When u1(t) and u2(t) do not vanish on [0, 1], define

(2.8) M(t) = lg u1(t)

We now state conditions concerning F1, F2, F*, and F2, in terms of U1, U2,
U1, and U2.
CONDITION A.
Al. U*I(t) is strictly convex on [0, 1] and u1(t) is continuous.
A2. U1, U2 belong to A*.
A3. M(t) is strictly increasing on [0, 1].
Condition A3 is equivalent to u1(t) being strictly increasing on [0, 1] which

is the same as U1 (t) being strictly convex. Conditions A2 and A3 together imply
that M is of bounded variation on [0, 1]. A general example where A2 and A3
are satisfied is as follows: F2 = 0(F1 ) where + is a distribution function on [0, 1]
with O' strictly decreasing and continuous with 4' _ c for some 6 > 0. As a
further special case we can put 0(t) = (1 -l)t + AtA for some A < 1 and
0<1<1.

Condition Al is restrictive and is not satisfied if U* (t) = t, 0 < t < 1, which
corresponds to the null hypothesis in the two sample problem. Condition A2 is
similarly restrictive. It is not satisfied in the case F2 = FjA though we know from
Sethuraman [9] that eN is asymptotic normal in this case.
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Note that the roles X and Y can be reversed without changing the asymptotic
distribution of {N. Thus if U1, U2, U*;, and U2 do not satisfy Condition A one
could reverse the roles of X and Y and verify whether U2, U1, U2, and U*
satisfy Condition A.

CONDITIONA.
Al. The p.d.f. uj is continuous on [0, 1].
A2. There is a partition 0 = aO < al < ... < aR = 1 of [0, 1] and U1, U2

belong to A*, that is

(2.9) uj(t) = Uj,r > 0, tE [ar,a.), r = 1,- - * ,R, j = 1, 2.

Condition A2 is used by Berk and Savage [1] when obtaining bounds on
large deviations probabilities of {N. They were successful in removing these
restrictions later on in their paper. We have not been able to do this. However
Condition A2 is a useful point to start an investigation of the properties of tN.

Let F1,N (X), F2, N (x), and HN (x) be the right continuous empirical distribution
functions of (X1, * - *, X"), (Y1, * * *, Y") and (X1, . . , X., Y1, . . , Y.), respec-
tively. Clearly HN(x) = 2[F1lN(X) + F2N(X)]- For t e [0,1] define

(2.10) HN1(t) = inf {x: HN(X) > t}.

Then HN`' is left continuous. Define

(2.11) UJ,N(t) = Fj,N(HN (t)), 0 _ t < 1, j = 1, 2.

Note that U1, N and U2,N are left continuous and

(2.12) Ul, (t) = E ( - ZN,L),
n i<Nt+1

(2.13) U2 N(t) =
I

E ZN,i,
n i<Nt+ 1

and

(2.14) Ul,N(t) + U2,N(t) = 2t, t = 0 !.** N1,N~~~~~I '~~N' N'N
With probability one, U1,N and U2,N assume (N) different values, each, in A.

Let P E A and Q e A*. Equation (3.1) motivates the following definitions. Let

(2.15) i(P, Q; U1,N) = 2 log u(t) dUj, N(P(t))2fJ=, o q(t) ~

and

(2.16) i(P, Q; U*1) = 2 log j(t) dU(P(t)).

Notice that these integrals always exist under Condition A or A since log uj/q
is a bounded function, j = 1, 2. For any P E A, the element PN of AN is defined as
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(2.17) PfN (t) =i~A P1(e) ~ < ~ (z +1). 0. -,( -1

1, P-1(1) _ t _ .

Then

(2.18) i =0,1, ..

and

(2.19) IPN(t) P(t) - 0 _ t _ 1.

Thus

(2.20) i(P, Q; Ul N)

n log______ ZN, ) + log ZN, iZn lg(P-1(j ) (1P=1 : :1~

= i(PN, Q; U1,N)-

Let

(2.21) WN(t) = ,/N [U1'N(t) - U(t)], 0 _ t _ 1

and

ItN(-) for -N-t . 1,

(2.22) IJ7N(t) =

t) for 0_< t <-N
Let D- be the space of left continuous function on [0, 1] which are right con-
tinuous at 0. This space becomes a complete metric space under the Skorohod
topology. If u; (t) is continuous (this is Condition Al and it is a part of Condition
Al) it follows from Pyke andl Shorack [7] (Theorem 4.1(a)) that the distributions
of {WkN(t), 0 _ t _ l} in D1- converge weakly to the distribution of a Gaussian
process {If(t). 0 < t < 1} with mean function 0 and variance-covariance
function

(2.23) K(t, s) = 2U(t) [1 - U* (s)] u* (t)u* (S) + 4U*2(t) [1 - U2 (s)] u (t)u; (s).
Since u; is continuous, it is easily seen from the form of K(t, s) in (2.23) that
{W(t), 0 < t _ 1} has continuous path functions with probability 1. We can
therefore state Lemma 2.1 below without proof in which for any function h on
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[0, 1] and any 6 > 0,

(2.24) w9(h, 6) = sup lh(t) - h(s)|.
It-sI=_a,0ot,s_=1

LEMMA 2.1. Let u; be continuous. Then
(i) the distributions of {WN(t), 0 _ t < 1} converge weakly to the distribution

of {W(t), 0 _ t . 1} and
(ii) for each s > 0,

(2.25) lim sup P{w)(WN, 6) _ E} -*0
N

as 6 - 0.
We would next like to investigate the asymptotic distribution of i(P, Q; U1, N).

Let log q be of bounded variation and let either A2 or A2 and A3 hold. Then,
from (2.20),
(2.26)

N[i(P, Q; U1,N) - i(P, Q; U1)]
A [i(PN, Q; U1,N) - i(PN, Q; U)] + N[i(PN, Q; U1) - i(P, Q; D)]

2 2
1 N ll, T 1 2PN Cj-

N E log jd(Uj NPN U;PN) + N UE UlogPjd(Uj -U;P

= log U (lNN UPN) 2 (U,P U,P o
2 JioNT U2\JNPN l 2 j'=1 j~q

Using (2.19), this becomes

(2.27) - I WN(PN) dM + o (W) = 2 |W(PN) dM + O(N)

LEMMA 2.2. Let u1 be continuous and A2 and A3 hold. Let p(N) be a random
element in A, N = 1, 2, * * *, such that the distribution of p(N) converges to the
degenerate distribution at P*, where P* E A*. Let Q e A* and log q be of bounded
variation. Then

(2.28) A/iN[i(P(N), Q; U1,N) - i(P(N), Q; U1)]
has a limiting normal distribution with mean 0 and variance ap* given by

(2.29) up* = 4 1K(t, s) dMP*-1(t) dMP*-1(s).

(Note that the P* above and in Lemma 2.3 can be any element of A* and not
necessarily the P* defined in Condition B which follows later.)
PROOF. Using the Skorohod representation for sequences of random

elements in A x D- (as Pyke and Shorack [7] do in D-), we can assume that
(p(N), WN) - (P*, W) in A x D- with probability 1. We can then imitate the
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proof of Theorem 4.1 (b) of Pyke and Shorack [7] for our case as follows. From
(2.26)

(2.30) N [j(p(N) Q; UN - i(P() Q; U1)] + 2 W(t) dMP* (t)

= - WN(PN)) - W(P*)] dM + N)

Using Lemma 2.1, this becomes

(2.31) - 2{I (WN(PNN)) - W(PNN)) + W(PNN)) - W(P*))dM + Opj1)

= oN(l).
This completes the proof of Lemma 2.2.

COROLLARY. Under the conditions of Lemma 2.2 the limiting distribution of

(2.32) V/IN[i(P*, Q; U1,N) - i(P*, Q; U*1)]
is normal with mean 0 and variance a*.
When A holds we can simplify the expressions for i(P, Q; U1 N), and so on

whenever Q E A*. Let Q E A*. Then

(2.33) i(P, Q; U1, N) = 2 Joglog (t) dUj,N(P(t))

12 R uj.
= 2 EE log i [Uj,N(P(ar)) - Uj N(fla,-1))]

which depends on P only through its values P(ar), r = 0, 1, * , R. Thus a
general P in A may be replaced by the unique P in A with P(ar) = P(ar), r =
0, 1, * * *, R, in i(P, Q; U1, N) without changing its value. Therefore it is natural
to restrict P to belong to A and Q to A* in dealing with i(P, Q; Ul,N), and so
forth, when (A) holds. Also note that with the convention 0 log 0 = 0,
i(P, P; U1, N) can be defined for all P E A. The following lemma and its corollary
are analogous to Lemma 2.2 and its corollary.
LEMMA 2.3. Let Al and A2 holp. Let p(N) be a random element of A, N =

1, 2, * - *, such that the distributions of p(N) in A converge weakly to the degenerate
distribution at P* where P* E A*. Then

(2.34) N [i(P(N), P(N); Ul,N) i(P(,p(; U1)]

has a limiting normal distribution with mean 0 and variance a* given in (2.29).
PROOF. Using the Skorohod representation as in Lemma 2.2 we may assume

that (p(N), WN) -. (P*, W) with probability 1. Since p(N) E A and P* E A*, it
follows that the total variation of log P(N) is bounded in probability for all large
N and converges to the total variation of log p*. Thus using a slight extension
of (2.27) and Lemma 2.1,
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(2.35)

N[i(P(N), P(N); Ul, N) - i(p(N), p(N); U1)] + 2JW(t) dMP*l(t)

- - 2J{[WN(PlN)) - W(P*)] dM + O( )

= - 2 J [WN(P(N)) - W(PN)) + W(PNN)) - W(P*)] dM + O( 'N)

= op(l).
This completes the proof of Lemma 2.3.
COROLLARY. Let the conditions of Lemma 2.3 hold. The limiting distribution

of

(2.36) [N [i(P*, P*; Ul, N) - i(P*, P*; U; )]
is normal with mean 0 and variance p.

3. A heuristic proof of the asymptotic normality of {N

An expression for LN may be written as below using a formula from Hoeffding
[6]. Fix Q e A* and write

r r ~N
(3. 1) LN(ZN) = N! .

J H {[U1(Wi)] 1ZN,i[u2(Wi)]zNi dw, ... dWN

O.wj._ <WN<l

= N! ... F exp { [(1 ZN,i) log (w)
J J U~~~=1 q(wi)

OW_W I .< WN _ I

+ ZN i log U2(W)} dQ(wl) ... dQ(wN)

= N! ... exp {Ni(P., Q- U1,N)} dQ(w1) ... dQ(wN),

0.W1.-<'.-<WN.l

where Pw, is the empirical distribution function of w1, , WN and i(Pw, Q; U1 N)
is as defined in (2.15). Note that Pw is in AN. Expression (3.1) is the first place
we have written down LN explicitly and is fundamental to this investigation. A
simple consequence of (3.1) is

(3.2) LN(ZN) . exp {N sup i(P, Q; U1,N)}
PeAN

since

(3.3) N! f * f dQ(wl) ... dQ(wN) = 1
O_ Wl.._***_WN _l
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Since Q is arbitrary, (3.2) implies that

(3.4) LN(ZN) . exp {N inf sup i(P, Q; U1N)}
QeA* PeAN

= exp {N inf sup i(P, Q; U1,N)}
QEA* PEA*

in view of (2.20). Again, since the integrand in (3.1) is an exponential raised to
the Nth power, we may for large N act as if

(3.5) tN = log LN - N inf sup i(P, Q; Ul,N),
PEA* QEA*

where - means that the expressions on both sides of it are equal in some
asymptotic sense. Let us look at the expression on the right side with U1,N
replaced by its limit which is U*. We get

(3.6) N inf sup i(P, Q; U*)
QEA* PEA*

which may be replaced by

(3.7) Nsup inf i(P, Q; Ul),
PeA* QEA*

if the appropriate result concerning the equality of a min max to a max min
holds. This last expression can be shown (see Lemma 4.1) to be equal to

(3.8) N sup i(P, P; U*).
PeA*

Let us assume that there is a unique P* in that A* such that the above is equal to
Ni(P*, P*; U* ). This assumption will be made precise in Section 4 as Condition
B. The simplification which occurs when we use the limit U1 leads us to write

(3.9) 6N
- Ni(P*, P*; Ul,N).

If the above were true, then from the corollary to Lemma 2.2 it follows that

(3.10) - [/N - Ni(P*, P* U*)]

has a limiting normal distribution with mean 0 and variance up-

4. Some intermediate results for i (P, Q; .)
This section deals with some properties of i(P, Q; U*) and i(P, Q: Ul,N).

These results are used in the proof of the main theorems of Section 5.
LEMMA 4.1. Let Condition A2 or A2 hold. Let P E A*. Then

(4.1) i(P, Q; U1) > i(P, P; Uj)
for all Q Ec A* with Q =6 P.
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PROOF. Condition A2 or A2 implies that i(P, Q; U*) is finite for P e A* and
Q e A*. For Q e A* with Q =6 P,

(4.2) i(P, Q; U*) - i(P, P; U;) = l(iog 1-log jdU*jP

= logpdP> O.

This proves (4.1).
LEMMA 4.2. Let Q e A*. Let A2 hold. Then i(P, Q; U*) is a continuousfunction

of P with P varying in A.
PROOF. LetPmc A,m = 1, 2, ,andP' --mP. Then

1 2rU.
(4.3) i(P', Q; U*) - i(P, Q; U;) = 2Jlog id(U;Pm - U;P) 0,

since log uj/q is bounded and continuous and U*jPm - UjP in A, j = 1, 2.
COROLLARY. Under the conditions of Lemma 4.1

(4.4) sup i(P, Q; U*) = sup i(P, Q; U*).
PC-A* PeA

REMARK. Let (V1. V2) be a pair of distribution functions on [0, 1]. Define

(4.5) i(P, Q; V1l V2) = 2 E Jlog jdVj(P),

whenever P e A and Q e A*. One can see in a manner similar to the proof of
Lemma 4.2 that for fixed Q e A*. i(P. Q. V1. V2) is a continuous function of
(V1(P), V2(P)).
LEMMA 4.3. Let Q e A*. Let Al, A2, and A3 hold. Then i(P, Q; U*,) is a

strictly concave function of P with P varying in A.
PROOF. Let P1, P2, ceA, P1 = P2, 0 < a < 1. Then

(4.6) i(aPl + (1 - )P2, Q; U1)-Oi(P1, Q; U1)- (1 -')i(P2, Q; U)

= 1Z J log-2d[U,(Pi ± (1 -)P2) -a (P1 )-(1 -a)U(P2)]

=- logu 1d[U*(aPi + (1 - 00)P2) - U1(Pl) - (1 -a)U;(P2)]

= -2{[Ul(aP1 + (1 - a()P2) - aU;(P1) -(1 - )U;(P]dM

> 0,
since U; is strictly convex and M is strictly increasing.
COROLLARY. If Q e A*, U; is convex, log u1/U2 is nondecreasing and bounded

then i(P, Q: U;) is concave in P.
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We now state one form of the critical and hard to verify condition of this
paper.

CONDITION B. There exists a unique P* in A* such that

(4.7) max i(P, P; U*) = i(P*. P*: U)
Pe-A*

and logp* is of bounded variation on [0, 1].
Notice that i(P, P; U*) may be written as J0 ,(t, P, p) dt with

2
(4.8) 2(t,P,p) = 2- [log Uj - log p]u;(P)p.

j= 1

Thus one might use the Euler formula of the calculus of variations to verify B.
The following lemma also can be useful in verifying Condition B.

LEMMA 4.4. Let U*1 be convex and log U1/u2 be nondecreasing. Let A2 hold.
Then i(P, P; UC) is a strictly concave function of P with P varying in A*. Thus if
there is a P1 with

(4.9) i(P1, P1; U* ) = max i(P, P; U*),
PeA*

then P1 is unique.
PROOF. Let Pl, P2, E A*, P, =E P2 and 0 < a < 1. Then aP, + (1-a)P2 E A*

and

(4.10) i(ctPi + (1 -x)P2, CaP1 + (1 -a)P2; U1)
-ci(Pl,P1;UP )-(1 - c)i(P2.P2; U1)

= - f [U1(caPl + (1 - cc)P2) - atUl(Pl)- (1 -a)U*(P2)] dM

- f [(aP1 + (1 -a)P2) log (CXp1 + (1 -a)P2) - P logp1
-(1 - )P2 logp2] dt > 0,

The first term is _ 0 since U* is convex and M is nondecreasing and the second
term is > 0 since x log x is strictly convex.
LEMMA 4.5. Let Condition B hold. Let U1 be convex, M be nondecreasing and

Condition A2 hold. Then

(4.11) max min i(P, Q; U1) = min max i(P, Q; UC)
PeA or A* QEA* QcA* PeA orA*

and

(4.12) max* i(P, P*; U*) = i(P*, P*; U*).
Pe-A or A*1

where the P* is as specified in Condition B.
PROOF. We first establish (4.12). Only this conclusion of the lemma will be

used later. The equality in (4.1 1) is aesthetically pleasing and is implied by (4.12)
in the presence of (4.1) and (4.4) as we shall see later.



LIKELIHOOD RATIO BASED ON RANKS 449

Let P e A*. From Lemma 4.1

(4.13) i(P. P: U' ) = min i(P. Q; U ).
QEA*

From Condition B

(4.14) i(P*, P*; U*) = max i(P. P; UL) = max min i(P, Q; Ul).
PEA* PEA* ~~Qc-A*

Now, let 0 < a < 1, P e A*, PJL P*. Then for Q e A*, i(P', Q; U*) is a con-
cave function of P' from the corollary to Lemma 4.3. Thus

(4.15) i((l -aC)P* + caP, Q; ul) _ (1 -a)i(P*, Q; Ul) + ai(P; Q; Ul)
> (1 -a)i(P*,P*; UI) + aci(P, Q; Uj)

from (4.1). Put Q = Q1 where Q1 = (1 -ac)P* + aP. The above reduces to

(4.16) i(Q1 Q1U.) (1 - cx)i(P*,P*; Uj) + aci(P, Q1; U*).
In view of Condition B we must have

(4.17) i(P, Q1; UI) _ i(P*,P*; Ul)
for all P e A*. Now let cx -+ 0. We show later in this proof that

(4.18) i(P, Q1; UC - i(P, P*; U*).
Thus

(4 .1 9) i(P , P*; r*1) _ i(P*, P*; U* )

for all P e A*. The conclusion (4.12) of Lemma 4.5 follows from (4.19) and (4.4).
Again, from (4.12) and (4.14)

(4.20) min max i(P, Q; U1) _ max i(P, P*; U1)
QEA* PEA or A* PeA or A*

= i(P*, P*; U*)
. max min i(P, Q; Ul).

PeA or A*QcA*

But a min max is always greater than or equal to a max min. Thus there is

equality throughout (4.20) which now establishes (4.11).
To make this proof complete it therefore remains to establish (4.18) which

can be done as follows:

(4.21) i(P, Q1; U*) - i(P,P*; U*) = ilogTj - log j dU,*P

log (1-a)p* + apP
which tends to 0 as a tends to 0 by the dominated convergence theorem since
the integrand in the last expression tends to 0 and is bounded in modulus for P
and P* belonging to A*.
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COROLLARY. Let Condition B hold. Let Al, A2, and A3 hold. Then

(4.22) i(P, P*;-1 U*) < i(P*, P*; U*)

for all P :L P*, P E A. Further if P** is any random element in A with

(4.23) i(P**, P*; U#l ) > i(P*. P*: U)

with probability 1 then P* = P* with probability 1.
This corollary follows readily from (4.12) in Lemma 4.5 and the strict con-

cavity of i(P, P*; U*) in P established in Lemma 4.3.
THEOREM 4.1. Let Conditions B, Al, A2, and A3 hold. Then there exist random

elements p(N) in AN, N = 1, 2, , such that (i)

(4.24) i(P(N)SP*: UlN) _ SUp i(P, P*; U1,N) -

PC-ANN
and such that (ii) the probability measures induced by p(N) converge to the de-
generate probability measure at P*. Here P* is as given in Condition B.

PROOF. With probability 1, U1, N is one of the (') distribution functions
that give masses 1/n to n of the N points 1/N, 2/N, , N/N. For each value of
Ul,N we can fix a p(N) in AN such that

(4.25) i(P(N) U1*;Li,N) _ SUp i(P, P*; U1,N) N
PEAN N

Notice that this supremum is always finite since

(4.26) |i(P, P; U1,N)I - 2- E SUP p*log

Thus we obtain random elements p(N) in AN, N = 1, 2, , satisfying (4.24).
Since A is compact and metric. the probability measures induced by tp(N)} have
limit points. Let the probability measure induced by P* * be one such limit point.
Since sup, IU1 N(t) - U;(t)| 0 with probability 1. the probability measure of
Uj (P**) is a limit point of the probability measures of {Ul N(P(N))}. (All these
random elements are in A.) From the remark following Lemma 4.2, the distri-
bution of i(P**, P*: U;) is a limit point of the distributions of {i(P(N). p*; Ul,N)}.
But. from (2.20).

(4.27) i(P(N), P*; Ul, N) > SUp i(P, P*; Ul,N)
PeAN N

= sup i(P, P*: 1,N) -

_ i(P* P*: U1,N) --

Again i(P*, P*; U1, N) converges in probability to the constant i(P*, P*; U1).
Hence
(4.28) i(P* *, P*; U* ) _ i(P* . P*; U* )
with probability 1. From the corollary to Lemma 4.5. P** = P* with prob-
ability 1. This establishes the second part of Theorem 4.1.
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REMARK. Under the conditions of Theorem 4.1.

(4.29) sup i(P, P*; Ul,N) i+ j(P*, P*; U' )
PeAN

in probability.
COROLLARY. Under the conditions of Theorem 4.1 and with the sequence {p(N)}

as defined there

(/4.0 [i(P(N), P*; Ul,N) - i(P(N), P*; U*)]
2

has a limiting normal distribution with mean 0 and variance up. as given in (2.29).
The above corollary follows from an application of Lemma 2.2.
We now state a condition analogous to the Condition B which will be used

when Conditions Al and A2 hold.
CONDITION B. There exists a unique P* in A* such that

(4.31) i(P*, P*; U* ) = mpax i(P, P; U*).

THEOREM 4.2. Let Conditions B, Al, andA2 hold. Then there exist random
elements p(N) in AN, N = 1, 2. , such that (i)

(4.32) i(p(N), p(N); Ul N) = max i(P, P Ul, N),

and such that (ii) the probability measures induced by {P(N)} converge to the de-
generate probability measure at P* where P* is as given in Condition B.

PROOF. Notice that AN contains only a finite number of elements. For each
one of the (nN) possible values of Ul_N we can fix a p(N) in AN to satisfy (4.32).
These p(N) are random elements in AN, N = 1, 2, Since A is compact and
metric, the probability measures of {p(N)} have limit points. Notice that these
limit points can only be probability measures in A. Let the probability measure
ofP * * be one such limit point. In a fashion similar to the proof of Theorem 4. 1,
the distribution of i(P**, P**; UC) is a limit point of the distributions of
i(P(N). p(N); U1N). From Berk and Savage [1] (page 1668. line 9)

4.33 ) pmax i(P, Pm Ul, N) i SUp i(P P: Ul sp) + °i( P )

_ i(P*. P* Ul, N) + 0o log )

Combining these facts,

(4.34) i(P* *. P**; U;) i(P*. P*: (')

with probability 1. From Condition B it now follows that P* * = P* with prob-
ability 1. This establishes the second part of Theorem 4.2.
COROLLARY. Under the conditions of Theorem 4.2 and uwith the sequence as

defined there

(4.35 [i(p(N), p(N). UlN) - i(P(N), p(N): U)]

has a limiting normal distribution with mean 0 and variance up* as given in (2.29).
This corollary follows immediately by an application of Lemma 2.3.
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5. The proof of the asymptotic normality Of eN

We present two theorems on the asymptotic normality of eN, one when B,
Al, A2, and A3 hold and the other when 3, Al, and A2 hold. It may be noted
once again that Sethuraman [9] has established the asymptotic normality of tN
for a case not covered by the two theorems alluded to above. In Section 6 we
have an example where Al and A2 hold but B does not hold and the asymptotic
distribution of eN is not normal.
The proof of the asymptotic normality when B, Al, and A2 hold is short and

is facilitated considerably by the results of Berk and Savage [1]. The proof when
B, Al, A2, and A3 hold is more lengthy and uses the results of Section 4 heavily.
We feel that it might be possible to generalize this method of proof to include
the case when B, Al and A2 hold and also to include other cases of interest
which are now excluded by the restrictive conditions B, Al, A2, and A3. We
have not been able to do this so far.
THEOREM 5.1. Let B, Al, A2, and A3 hold. Then

-[N - Ni(P*, P*; U-1)]
has a limiting normal distribution with mean 0 and variance ap as given in (2.29).
Here P* is as specified by Condition B.

PROOF. Substituting Q = P* in (3.2) we obtain

(5.2) tN - N sup (P, P*; Ul,N).PeAN

Let p(N) be the random element in AN given by Theorem 4.1. Using equalities
(4.12) and then (4.24), we have

1
(5.3) - [eN - Ni(P*, P*; U;)]

< /N [sup i(P, P*; U1,N) - SUp i(P, P*; U1)]
PEAN Pe-A

'

N [i(P(), P*; Ul N) - i(P(N), P*; U;)] +
N.

The corollary to Theorem 4.1 states that the above expression has a limiting
normal distribution with mean 0 and variance a2*. Thus

(5.4) lim infP{[I'N - Ni(P*, P*; U;)]! N . x} > (D
N

where 4>(x) is the distribution function of the standard normal random variable.
For any function h on [0, 1], define

(5.5) llhil = sup |h(t)|.
Substituting Q = P* in (3.1) and letting S = {O _ w1 _ ** WN < 1:IIPw-
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P* | | _E/FN/} we have, for any c > 0,

(5.6) LN _ N! J SJ'exp {Ni(P., P*, U1,N)} dP*(Wl) ... dP*(CON)
> KN(s) exp {N inf [i(P, P*; Ul,N): PE AN, IIP - P*II| E/ N]},

P

where

(5.7) KN(E) = ... f dP*(w1) ... dP* (WN)

with the integral taken over the set {w1, * *, WN: IIP, - P*1| <_ /N}. From
the Kolmogorov-Smirnov theorem (Billingsley [2], Section 16)

(5.8) KN(s) -+ K(E) > 0.

Consider

(5.9)

NI inf i(P, P*; Ul,N) - i(P*, P*; U1,N)I

< N sup li(P, P*; Ul N) - i(P*, P*; Ul N)
PEA, 11 P-Ps I1 SEi./fi;i'

= N sup li(p, P*; Ul,N) - i(P, P*; U*1)II P-P* 11iS1iN

i(P*, P*; U1,N) + i(P*, P*; U1) + i(P, P*; U1) - i(P*, P*; U'1)

_SUP 21 J [WN (PN) - WN(PN)] dM|

IIP- sIIp ""NJV2 |[U(P)- U*1(P*)]dM + OP4')
Thus using (2.29) in which PN and PN* are also defined, we have

(5.10) < I Cw(WN, + -) + CE + (

where C = Var (M) and in which we have used the fact that IIPNPN-I-
s,I/N + 2/N and ||u; _ 2. From Lemma 2.1 (ii), the first term in the above is
op(l). Thus from (5.6), (5.8), and (5.10), we have

(5.11)

- VN - Ni(P*, P*; U*1)]

_ IN [i(P*, P*; U; N) - i(P*, P*; U;)] + op(l) - CE-
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Using the corollary to Lemma 2.2 in the above and noting that £ > 0 is arbitrary,
we have

(5.12) irm sup P{[VN - Ni(P*, P*; U )]/ <A .} . F (j.
N

Theorem 5.1 now follows from (5.4) and (5.12).
The next theorem applies to the case when u1 and u2 are histograms.
THEOREM 5.2. Let B. Al, and A2 hold. Then [N - Ni(P*, P*; rLjl)]//N

has a limiting normal distribution with mean 0 and variance U2* as given in (2.29).
Here P* is as specified in Condition B.

PROOF. The expression for LN in (3.1) can be simplified in this case. Putting
Q = the uniform distribution on [0, 1] in (3.1),

N
(5.13) LN = N'! f** f H {[U1(Wi)] -ZN,i[u2(W,)]ZN,i} dw, ... dWN

O_W =_ *< WN_1i< 1

!l -N[Uj,N(P(a,))-Uj,N(P(a,- 1))1} (N[P(ar) - P(ari )])!
PeAANr=l j=

= N'! Y exp {Ni(P. P: ( 1,N)} R [P(a )P(r 1 )
PE-AN r1 (N'[P(ar) - ari!

where uj r = uj r(ar - ar-1), j = 1, 2, r = 1. R. Using Stirling's formula
and simplifying (5.13), Berk and Savage [1] (page 1667, line 17 and page 1668,
line 9) have shown that

(5.14) tIN - N sup i(P, P; U1,N)I = O(log N)
PEAN

and

(5.15) sup i(P. P: Ul, N) - SUP i(P, P; Ul N)I 0 logN
PEAN PCAN1

Now. using (5.14) and (5.15).

(5.16) /' [i(P*. P*; U1, N) - i(P*, P*; U1)]
_ A/ [sup i(P, P; Ul,N) - i(P*, P*; U)]

PeA

[N - Ni(P*, P*; U)] + O log)

= NA, [sup i(P, P; Ul N) SUP i(P, P; Ut1)] + 0( N")
PC-AN PEA N

< [i(p(N), P(N); U iN- pi(N), p(N) ; U] + log N)
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where p(N) is a random element in AN chosen as in Theoi'ein 4.2. The top expres-
sion in (5.16) has a limiting normal distribution with mean ( and variance up.
from the corollary to Lemma 2.3. From the corollary to Theorem 4.2 the last
expression in (5.16) has the same limiting distribution. This establishes that

[fNN-Ni(P*, P*; U*1 )]/ N/ has a limiting normal distribution with mean 0 and
variance P2.-

6. An example where IN has a nonnormal asymptotic distribution

An example is given below where with the usual normalization IN has an
asymptotic distribution which is not normal. In this example U1 and U2 have
probability density functions which are histograms and U* and U* have
continuous probability density functions. Thus Conditions Al and A2 are
automatically satisfied. We establish that B is not satisfied. Finally we evaluate
the asymptotic distribution of eN.

Let R = 2, ao = 0, a, = 2 a2 = 1. Let a > 0, ,B > 0 and a + ,B = 2. Let
A = log (a//3) > 0. u = log ( /3)1/2 Let

(6.1) ul(t)= : if 0< t12

(6.2) u2(t) = 2 - u (t), 0 . t < 1.

For P eA set P(4) = i. Then

(27 if O < t < 2(6.3) p(t) ={2 f2..
) (I- 7) if 2 < t < 1.

Also, 0 < 7r . 1 and it parametrizes the class A. Now, for any U*. U2.,
(6.4) i(7r) = i(P, P: U*)

U2{(r) log + [1 - U*l(7r)] log 2(1 -)

+ U2(i) log + [1 - U2(i)] log _n2 27r 2(1It7)

= [U (i) - ir] log a

(~/)1/2
+ -i log it - (1 - it) log (1 - it)] + log,-

= [U*(i) - it] + L(7Z) + y,

where L(7Z) = -i log t- (1 - it) log (1 - it). Notice that (7r) = L'(7r) =
log (1 - it)/it. Let AO = 1/(1 + e-), AO = (1 - AO) = e1/(1 + e-). Then
0 < AO <4 < AO < 1 and I(As) = -t(A0) = A. We choose U1 and U2 as

follows.
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{ 2 -2t/Ao if 0 _ t _AO,
(6.5) u;(t) = 1 (t)/A if A0 < t < AO,

2 2(t-A°)1(l AO) if AO < t<1< ,

and

(6.6) u*2(t) = 2 -u(t), 0 _ t _ 1.

Then u; is continuous on [0, 1], 0 < u;(t) _ 2, and o u*(t) dt = 1. Thus u;
and u*2 are continuous probability density functions. An explicit form for U; is

2t - t2/io if 0 . t _ AO,
(6.7) U*((t) = t + c-L(t)/A if A < t A,

2t - AO - (t - )A0)2/(1 - AO) if AO _ t . 1,

where c = L(AO)/A = L(A0)/A. Substituting this (4 in (6.4) we obtain

(A(7r 72/Ao) + L(7f) if 0 _ ir < AO,
(6.8) i(7t) - i = Ac if A0O_ A A0,

A( _0A _ (A_ 0)2/(l - AO)) + L(7) if AO _ _1.
It can be shown (for instance by the sign of the derivatives, and so on) that
i(ll) - < cA for 7t < Ao and i > AO, and that for any 0 > 0 there exists a
( > 0 such that

(6.9) i(it)-p A< C-6 for all n < A0-O0, >AO + 0.

Thus

(6.10) max i(n) = Ac + ,u = i(t) for any t E [A0, AO].
0 sR 1

This means that Condition B is not satisfied.
For 0 > 0 and x real let

(6.11) 00(x) = sup W(7t) < x},
XTC[AO-6, A° + ]

where {W(t), 0 < t < 1} is the Gaussian process in D- defined with mean
function 0 and variance-covariance K(t, s) as defined in (2.23).

Recalling relation (5.14) we have

(6.12) IeN - N sup i(P, P; Ul,N)I = O(log N).

Further, by a simplification similar to (6.4)

(6.13) i(P, P; Ul,N) = A(Ul,N(it) = it) + L(7i) + !,

whenever it = P(4) is a multiple of 1/N. Thus, from (5.14) and (6.13),

(6.14) /N [i(P, P; Ul,N) - i(P, P; U1)] = AWN(70),

whenever P e- AN, that is when n = P(!) is a multiple of 1/N.
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Now

(6.15)

N [sup i(P, P; Ul,N) - (Ac + /1)]PeAN

> N4sup{[i(P, P: Ul,N) - i(P. P: U)] Ao _< i<2, P AN}
P

2 sup { WN(7r): 20 _ 7r < A2, i a multiple of 1/N},

using (6.14). From Lemma 2.1 (i). comparing (5.14) and (6.15), we have that

(6.16) urn Sup P{({N - N[Ac + p])/V N x} < Go(x).

Again, for any 0 > 0, VN [SUPPe2N i(P, P; Ul N) - (Ac + /t)] is equal to the
maximum of

(6.17) N [sup {i(P, P; Ul, N) - (AC + p): PC AN, 7t [2A - 0,0 + °]}]
P

and

(6.18) N/i sup {i(P, P: Ul, N) - (AC + p): PC( AN, I r [2A - 0 i + 0]}

which is smaller than the maximum of

(6.19) XN/ sup {[i(P, P; Ul N) - i(P, P; U%1)] :P E AN, [20O 0. A + 0]}

-3/Nand

(6.20) N/ supu{[i(P,P. Ul, N) - i(P, P; U,)]: PC AN Et [2O 0 A + 0]}
P

in view of (6.9) and (6.10). The first term in the above tends to - x in probability.
The limiting distribution function of the second term is GO(x) by an application
of Lemma 2.1 (i). Thus

(6.21) lim infP{[1'N - N(2c + p)]/ N .<x} _ G0(x).
N

For the Gaussian process W with continuous path functions one can show that

(6.22) lim Go(x) = G0(x).
0- 0

Since 0 > 0 is arbitrary in (6.21), using (6.22) and then comparing it with (6.16)
we find that

(6.23) lim P{lN - N(Ac + y)]/N .x} = GO(x)
N

which is the probability that the supremum of the Gaussian process H' on
[2A, A2] is less than or equal to x. The distribution Go is clearly not normal.
This completes the example.

0 0 0 0 0
We thank Professors R. R. Bahadur and J. Hajek for several helpful remarks

and comments.
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