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1. Introduction
This paper surveys some of the developments which have appeared in the

literature on spacings during the five years since the presentation of two papers
[16] and [17]. The first of these, by Proschan and this author, deals with the
asymptotic theory of a class of tests for Increasing Failure Rate (IFR) which are
based on spacings, whereas the second paper surveys the substantial literature
on spacings that had appeared prior to 1965. In the present article we also set out
some open problems which still remain in the asymptotic theory of tests based on
spacings.
The general area of limit theorems for dependent random variables is broad

and complex, with no unifying methodology. For example, problems related to
rank statistics, linear combinations of order statistics and stationary sequences
all require different approaches. Limit theorems for spacings represent some of
the more challenging problems involving dependent variables, and the various
approaches used provide interesting comparisons.

2. Basic formulations

By spacings we refer to the gaps or distances between successive points on a
line. Let {Tn: n _ O} be a sequence of random variables (r.v.) for which To <
T1 _ T2 ... The spacings are then the differences {Ti- Ti-1}. There is a
basic ambiguity in the theory of spacings caused by the radically different
assumptions which can be placed on the T process. These differences can clearly
be seen for example between the three basic models outlined below.
Model I: order 8tati8tics. For fixed n, one is given independent random

variables X1, X2, *.. , X,,, with common distribution function (d.f.) Fx. One
defines T1 _ T2 . ... < T_ to be the order statistics of the sample and con-
siders the spacings Di = Ti-Ti1. The range for i is 2 _ i . n unless the
support of Fx indicates that spacings D1 and/or D,, +1 may be defined. The usual
situation under Model I is a hypothesis testing one in which the two hypotheses
are
(2.1) Ho: Fx c- F HI:Fx e.F
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Usually YFo consists of a single continuous d.f. which can therefore be assumed
to be uniform on (0. 1).
Model II: point processes. In this model, the T process could be a general

one sided point process with To = 0, say. The most common situation is that
of testing the null hypothesis that the T process is Poisson against some alter-
native involving non-Poissonian point processes. In this special case the spacings
are taken to be Di = (Ti - Ti 1 )/T,,1 with i = 1, 2, , n + 1, where To <
T1 . T2 . * , are the successive points.
Model III: renewal processes. This is technically a special case of Model II.

Assume that the T process is a renewal process with common d.f. F. Use the pro-
portional spacings or interoccurrence times Di = (Ti - Ti-1)T+. The most
common hypothesis testing problem within this context is to test the null hypo-
thesis that F is exponential against some appropriate alternative for the common
d.f. F.

Although the null hypothesis limit theory of statistics based on these spacings
is the same (namely, that of uniform spacings) for all three of the specific models
given above, the asymptotic theory under the alternatives is drastically different
for each model. Consequently, particularly in the study of asymptotic power,
asymptotic relative efficiency, and limiting distributions under contiguous alter-
natives must be made separately for each case and different techniques must
be used.

3. Uniform spacings.

The theory here is essentially complete (see [17]). Let U, . ... < U_ be uni-
form (0. 1) order statistics and let IDn i = n(Ui- Ui 1): I < i . n + 1} be
the set of n + I weighted spacings, with UO = 0 and Un+1 = 1. Let {Yj: i > 1}
be independent exponential r.v. of mean 1. Let

n+ 1
(3.1) Sn= n-'12 E (Yi- 1)

i= 1

Write

(3.2) Dn = (D.,1 * Dn+), Y. = (Y1, Y+,),
and for any Borel measurable function g on R + 1 let Gn = g(Dn) and Jn = g(Yn).
It is well known that Y(Gn) = Y(Jn|Sn = 0). Functions of uniform spacings
have been studied by several authors; the first general methodology was given
by Darling [10]. The most general method available today for proving limit
theorems for functions of spacings was introduced by LeCam [14], who applied
classical limit theory to (J, Sn) and utilized the representation of spacings as
exponential random variables conditioned by S,, = 0.

Using the same general approach. this result was generalized for a wider class
of functions g by Pyke [17] in 1965 and by Wichura [25] in 1968. In the latter
case, conditional distributions given S,, = x #& 0 are also considered. Bickel
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[2] in 1969 also generalized the theorem for the case of sums to include con-
ditional distributions given S,, = x * 0 and obtained for this case uniformity
in x.

Although the conditional construction Y(D,,) = £9(Y,,IS, = 0) provides a
relatively simple collection of limit theorems for uniform spacings, there re-
mains at least one striking open question.

Problem 1 (Uniform spacings under random sample size). Let {N,: t _ 0}
be a positive integer valued process for which N,/t -P 1 as t -+ oo. For G,, as

defined above, show that G,, 4- G implies that GN, L G for a large class of
functions g.
Random sample size versions of limit theorems have previously been obtained,

for example, for sums, maxima and empirical processes of independent, identi-
cally distributed random variables; but nothing has been obtained for spacings.
For example, it is unknown whether or not ON, converges in law for such a
simple statistic as an = n- 1/2 +l (Dn, i- 1)2.

4. Limit theory under alternatives: Model III

As indicated above, several different models lead to test statistics which under
the null hypothesis are functions of uniform spacings. However, when one turns
to questions of distribution theory under alternative hypotheses, one finds that
each model poses distinct problems. The easiest model to work under alter-
natives is Model III, for in the case of a renewal process the interoccurrence
times {Ti - Ti-1} remain independent and identically distributed under the
alternatives. Consequently most results can be derived directly from standard
theory. For example, consider the problem of establishing the weak convergence
of the empirical process of the spacings. Under Model III, Dn,i = Xi/Xn for
1 i _ n + I where Xn = (XI + -- + Xn+,)/n and where {Xi:i> 1} are
independent with common d.f. F. Assume that F is continuous, E(X1) = 1 and
Var (X1) = a2 < oc. Let F. denote the empirical d.f. of {X1, * * *, Xn+I} and
let Hn denote the same of {Dn,, * * Dn, nI+ } (Excuse the unconventional but
convenient use of n for n + 1 in the subscripts of Xn,. F,, and Hn.) Then Hn(x) =
FP(xXn) for all x. Write

(4.1) U. = nI/2(FoPF- - e), V. = n1/2(HnoF-1 - e)

for the empirical processes of {Xj} and {Dn, ij, respectively, defined on (0, 1),
where e denotes the identity function e(x) = x. Elementary algebra shows that
for all x

(4.2) Vn(F(x)) = Un(F(XX.)) + {P(XX- 1-} xZ,

where Zn = n12( ,n- 1). (The second term is taken to be zero when x = 0.)
Notice that

(4.3) Zn = n'12(X,n - 1) = -n12 f [Fn(x) - F(x)] dx = - IUndP-
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Since it is known that U,, L Uo where UO is a Brownian bridge, one may,
without loss of generality for our purposes, assume that U. converges uniformly
to UO. (See Pyke [18] and Pyke and Shorack [19].) When this is the case it
follows from (4.3) that Z,, Zo where

(4.4) ZO= - dUoPdF-fo
is a N(O, a2) r.v. with

(4.5) a 2 = 2J Ju(1 - v) dF- 1 (u) dF-1 (v) < OO

To show this, use uniform convergence to get

(4.6) jsUndF-1 f u°dF-l
I £

for any E > 0. Then use Chebyshev's inequality to show that the remaining
integrals can be made small in probability in view of the finiteness of af, a
direct consequence itself of the finiteness ofE(X2 ). This establishes the fact that
(U,, Zn) + (Uo, ZO) on the natural product space. It is now convenient again to
use equivalent constructions as in [18] for which Z,, -nZo and U. converges
uniformly to UO. The expression in (4.2) then suggests that under suitable
smoothing and tail conditions on f = F', one should obtain that V,, converges
uniformly to

(4.7) Vo = UO + (foF-')F-Zo.
Hence VO is a Gaussian process of zero mean whose covariance function, by
virtue of the special construction of ZO, can be computed to be

(4.8) E[VO(u)Vo(v)] = u(I - v) + h(u)h(v)a2 + h(u)g(v) + h(v)g(u)
forO _ u < v _ 1 whereh = (foF-P)F-P and

(4.9) g(u) = E[ZoUO(u)] = - f (u A w - uw) dF 1(w).

Sufficient conditions for this to hold are given in the following result.
THEOREM 4.1. If (i) f satisfies a Lipschitz condition on bounded intervals and

(ii) supIX1>Tf(x)x -+ 0 as T -+ oo, then V,, converges in law to VO, a Gaussian
process of mean zero and covariance given by (4.8).

PROOF. Using the special constructions described above it suffices to esta-
blish that

IF(X,Yx) - F(x) I
(4.10) sup Z,, - f(x)Zox - 0,

(X,,1)X
or equivalently that supx If(O.,x)Zn - f(x)ZoIIxI - 0, where O, x is some value
between x and X,x. Since Zn -+ Zo, condition (ii) enables one to delete Z,, and
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ZO from the expression. Then oy (i). there exists for each T a constant M1 such that

(4.11) sup If(0.,.) - f(x)IIxI _ M*1 -XI T2 0.
Ixl<T

Condition (ii) guarantees that the supremum can be made small on the com-
plement of (-T. T). Q.E.D.
The above result does not use the assumption that Xi > 0 which would

ordinarily be assumed within the context of Model III. Weak convergence could
also be obtained relative to the stronger metries Pq of [19]. which are defined by
Pq(f h) = sup If - hk/q. for a wide class of weighting functions q. Along this
line we quote the following result of Shorack [21] which involves, however, the
inverse empirical (or quantile) process rather than the empirical process. The
former has some implicit simplicities over the latter. Although results are given
in [21] for the general case. for simplieity of notation we state the result only for
the uniform case.
THEOREM 4.2 (Shorack). 1fF is an exponential d.f. of mean 1,

(4.12) W (t) = n' 2[D1, -F-1(t)] for i - 1 < (n + l)t . i,

and q is a nonnegative function which is nondecreasing (nonincreasing) on (0. 1/2]
([1/2. 1)) and whose reciprocal is square integrable over (0, 1), then Wn L W
relative to the metric Pq/( 1 - e) -

It should be remarked that if one deletes the factor n112 from (4.2), it is obvious
that the Glivenko-Cantelli theorem for Hn holds whenever sup IxIf(x) < co.
This observation is due to Bickel and provides a simpler proof of the Glivenko-
Cantelli theorem given in [17].

5. Limit theory under alternatives: Model I

When describing alternatives for tests based on spacings. one should keep in
mind that spacings tests are only appropriate for problems whose alternative
hypotheses involve the shape of the density functions. Two suitable problems of
interest might be

(5.1) Ho: Fx is uniform (0, 1) versus H1: fx >, on (0. oc)

and

(5.2) Ho: Fx is exponential, versus H1: Fx is IFR (that isfx(l -Fx)' h )

Both of these alternatives restrict the shape of the density function fx: other
examples might involve the unimodality or bimodality offx or the monotoneity
of f/lfx.
For the problem in (5.2), Proschan and Pyke [16] proposed a family of tests

based on the normalized spacings Dn i = (n - i + 1)(Ti - Ti-,). Under Ho
these normalized spacings are independent and identically distributed whereas
under H1 they are stochastically decreasing. The test statistics were of the form
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(5.3) G.= g(D), . Dn,j)
i<j

for bounded nonnegative g satisfying g( y) ,, and g(x. ) - for all x, y. (It is
well to emphasize that only nonhomogeneous functions of spacings should be
considered in Model I.) Central limit theorems for these statistics are given in
[16] and [17]. Of particular interest is the Wilcoxon-like statistic, Vn = number
of pairs (Dn;* Dn,j) with Dn i > Dn, j for i < j. Similar statistics suggest them-
selves for testing (5.1), but in terms of the regular spacings Dn,j = Ti- - 1*

All approaches to limit theorems for alternatives under Model I can be said to
depend upon Taylor's expansion methods. The dependency of the spacings
causes considerable difficulties, but basically the approach is to observe that
when Fx = F,

(5.4) nD., i -n[F-'(Y /Sn+1) - F'1(Yi_j1/S+1)] = Yi/f(F-'(O.,j))Xn
or

(5.5) Dn, i= (n - i + 1)[F-' o H(Y:) - F-1 H(Y_1)] =Y£r(An,j)
where {Yi} are independent exponential random variables with mean one, H is
their common d.f.. {Yi*} denote exponential order statistics, r = (1 - e)/fo F 1
is the reciprocal of the failure rate defined through F- on (0, 1), and where {On, ij,
{An, i are defined by appropriate Taylor expansions. Thus although the spacings
are dependent, the above representations indicate their approximate independ-
ence and exponentiality. Except when working under contiguous alternatives,
the errors in these approximations make a significant cumulative contribution.
To illustrate this, consider somewhat simpler statistics of the form G*=
E g(D,ji, i/n). In [17] it is shown that under regularity assumptions on g and f,
n12(G*- Rn) O 0 where

(5.6) Rn= [g(Yjr(i/n). i/n) + (Yi- l)C(i/n)]
and

(5.7) C(w) = (1 - w) 1 (1 - u)[r'(u)/r(u)] e - y(y - 1)g(yr(u), u) dydu.

This result shows how the errors cumulate to give the second summand in
(5.6). It is interesting to compare the form of this result with that of Bickel
and Doksum [3]. derived under contiguous alternatives, which states that
n-12(Tn- Sn) -P* 0 where Tn = Y h(Xi), Sn = Y a(i/n) On, i- 1), and h and
a are functions satisfying certain regularity assumptions which are related by

(5.8) a(u) = (1 -u)-u1 h'(x)eKdx.(5.8) E~~~~~~~~~-og(l1-u)
In [3], Bickel and Doksum show that under contiguous alternatives {fOn with

0n = bn- 1/2 and b _ 0, the test based on Vn described above is asymptotically
inadmissible. They do this by showing that Vn is asymptotically equivalent to
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I iRi (where the Ri are the ranks of the normalized spacings) which in turn is
always asymptotically inferior to -I i log [1 - Ri/(n + 1)]. They show.
furthermore, that among "studentized" linear functions of spacings or of their
ranks there exist asymptotically most powerful ones. By analogy. the result
suggests the following.

Problem 2. For the problem (5.1) of testing uniformity against monotoneity
(or unimodality), do asymptotically most powerful tests exist among those based
upon linear functions of (nonnormalized) spacings?

Other results involving limit theory under contiguous alternatives include the
following one by Weiss [22]. Assume for X a sequence of distribution functions
Gn with density functions gn = I + n - 'r on (0. 1). where 8 > 0 and r is a function
whose second derivative exists and is uniformly bounded in absolute value. Let
W = (Wl1.'-, W.+,) be independent exponential random variables with Wi
having mean go° G,-1(i/(n + 1) and set Zi = +IV/(1±l .±+ + +1). If D, =
(Dn 1, Dn. n+ ) are the spacings wvhen Fx = Gn. then Weiss proves the fol-
lowing theorem.
THEOREM 5.1. (Weiss). The ratio fZ(D,)/fD,(Dfl) tends to 1 in probability.
It is further shown that in fact Theorem 5.1 holds w.hen convergence in prob-

ability is replaced by convergence in 1-mean. thereby imnplying the contiguity
of the corresponding measures.

In [23] this result is used to establish the asymptotic dlistribution of homo-
geneous functions of spacings under such contiguous alternatives. Although
expressed in terms of spacings. Theorem 5.1 can equivalently be viewed as a
result about the order statistics T1 . T2 _ _< T_ in view of the one to one
correspondence between the two. In fact, the proof in [22] notationally works
with the equivalent densities of the order statistics. Thus if Vi = Z, + * + Z
then Theorem 5.1 is equivalent to stating that fT,(T,)/fv,(Tf) - 1.

In a recent paper. Rao and Sethuraman [20]. motivated by problems involving
circular data. also develop limit theorems for spacings under contiguous Model
I alternatives. They use the representation (5.4) and postulate, as in Weiss [22],
a sequence of distribution functions Gn with densities gn = 1 + n-r. 6 > 1/4,
where r possesses a uniformly continuous derivative r'. The approach of Rao and
Sethuraman is to study the empirical processes of the spacings, and they begin
by studying these in the approximate situation in which 0, i in representation (5.4)
is a constant. Specifically. they study the empirical process of {Yi/cn, : 1 _ i _ n}
where {Yi} are independent exponential random variables of mean one, and
where the constants are determined by c,i = c,,(i/n) where
(5.9) c,,(u) = 1 + A(u)n + R.(u), 6 > 1/4.

In this representation. the function A satisfies certain smoothness conditions
and Rn is uniformly o(n"-'2).

If H denotes the exponential d.f. of mean one, set
n

(5.10) Ui(y) = I[Yi<y] - H(y); W. (y) nn 1/2 E Ui(ycn,i)
i= 1
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for y _ 0. Then Wn is the empirical process of {Yi/c, i} and may be written as
n n

(5.11) Wn(y) = n-2 E Uj(y) + n 11 E [Ui(yc., ) - Ui(y)]
i=l i=

= Vn(y) + Qn (Y), y . 0.

Here, V,, is the usual empirical process for an exponential sample whose weak
convergence is known. The remainder term Q, is bounded in absolute value by
the modulus of continuity of the exponential empirical process over intervals
of width

(5.12) sup {I1 - cn, i 1 . i . n} . n sup{IA(u)I:O _ U . 1}.
However, only for 6 > 1/2 is the bound sufficient to enable one to deduce

Qn - 0 directly from the weak convergence of V,. To establish the limiting be-
havior of Qn for general 6 one must make better use of the fact that Q, is a sum
of n independent processes and apply the standard methods ofweak convergence
(see [4]). In passing, observe that for any 6 > 0, Qn(Y) _P 0 for eachfixed y. To
verify this, compute

n n

(5.13) Var Q,(y) < n1 le-Y -e-C iYI = n- Y u|l -

for u = e- Y. Since u|l -ubl < 1 - (1 + b)-ll(1 + b)- /lb < 1 -(1 + b)-l
for 0 . u . 1 and real b. it follows that

n

(5.14) Var Q (y) _ n1 Y |1 -Cn i
i= 1

which converges to zero under even weaker assumptions than (5.9).
The study of empirical processes of "perturbed" random variables also has

applications in the theory of rank statistics when the underlying independent
distribution functions are not identical.
Problem 3. Let {Fni 1 < i < n. n _ 1 } be a triangular array of distribution

functions and let {Xi: i _ 1} be a sequence of independent uniform (0, 1) random
variables. Find necessary and sufficient conditions on {F, i} to ensure the weak
convergence of the empirical processes

n
(5.15) bn E {I[Xj.F. i(y)] - FnJ(Y)}, -oo < y < oo,

for suitable constants {b.}.

6. Limit theory under alternatives: Model II

This is a situation of considerable importance and the reader is referred to
Cox and Lewis [9] for a review of the pertinent literature. Let it suffice here to
mention the following general question, suggested by the results of Weiss [22],
Bickel and Doksum [3], and Rao and Sethuraman [20] described above.
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Problem 4. Let {AO: 0 _ 0} be a family of intensity functions for nonhomo-
geneous Poisson processes in which AO =1. Find sufficient conditions of these
functions to ensure that a sequence {Po,} of corresponding measures is con-
tiguous with P0, the measure for the Poisson process of rate 1.

7. Other results

In this section, capsule descriptions of other recent references on spacings
are given.

In [5] and [6], Blumenthal studies the limit theory of statistics of the form
7% {DI'/D'I}' where {Df'} and {DfY are the spacings of two independent
samples, with common d.f. Fx and Fy, respectively, and where r is a constant.
The proofs are difficult, indicating again the particular complexities associated
with spacings and the need for more general methods. A study of the limiting
behavior of statistics of the form 1i g(DW, DY) suggests itself. In [7], Blumenthal
establishes a strong limit theorem in connection with the two sample spacings
problem. Note the open problems stated on p. 112 of [7].

In [13], Kale derives some of the standard spacings' statistics as functions of
the data that minimize certain distances between the empirical and null hypo-
thesis d.f. In particular the statistics I D"- i, I (D, i- I/n)2, v log D, i, min D. i

and max D.,i can be obtained in this way. See also [11] and [12].
The asymptotic distribution of the k smallest spacings, for fixed k, is obtained

by Weiss [24] for the case of a continuous densityfx over (0, 1) which is bounded
away from zero.

In unpublished papers, Blumenthal [8] derives the asymptotic normality of
E log D., i for Model I alternatives satisfying restrictive smoothness conditions,
while Shorack [21] derives the weak convergence of the empirical processes of
spacings relative to a wide class of metrics and applies his results to tests based on
linear combinations of functions of ordered spacings.

8. Miscellaneous problems

Problem 5. A study of rates of convergence for limiting distributions of
spacings would be of interest. No results are presently available. In the case of
uniform spacings presumably classical theory could be applied by making use

of LeCam's approach [14].
Problem 6. Show that

(8.1) 'fIfD,if i Dn,, (X, Y) -fDn, (x)fD,,J(y)Idxdy = 0 (n)
for a large class of underlying densitiesfx. This would give an applicable measure
of the rate of asymptotic independence of spacings; (see [17], p. 434).
Problem 7. If, as in [17], p. 420, one defines the empirical distribution

functions of the spacings D, i and D., i, respectively, by

(8.2) L"(x) = n-1 EI[D,,i < x], M"(x) = n-I EI[Dn,i _ x]
i i
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and the associated processes by

(8.3) Y.(x) = n112[L.(x) - L(x)], Z.(x) = nI2[Mn(X) - M(x)]

where

(8.4) L(x) = 1 - C f(y)e-xf(Y) dy, M(x) = 1 - f1 e-x1r(u) du.

can one verify the weak convergence of these processes? In [17] the convergence
of the finite dimensional distribution functions is established rather straight-
forwardly, but the weak convergence has not been shown. Such a result could
possibly have application to the rank statistics of Bickel and Doksum [3].

ADDENDUM

The discussion in Section 5 of [20] was based on a preprint of the same title
(Tech. Rpt. No. Math-Stat/11/69-Mar. 1969, Indian Statist. Instit.). Reference
[20] is given since the results there are more general and accessible than those of
the preprint.
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