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1. Introduction

In a recent paper J. Hajek [4] proved a remarkably simple result on the limiting
distributions of estimates of a vector parameter 0. It turns out that this result, as
well as many of the usual statements about asymptotic behavior of tests or
estimates, can be obtained by a general procedure which consists roughly in
passing to the limit first and then arguing the case for the limiting problem. This
passage to the limit relies on some general facts which are perhaps not entirely
elementary. They depend heavily on the techniques of L. LeCam [8]. However,
these general facts are of interest by themselves. If they are taken for granted the
basic result of Hajek [4] and many results of A. Wald [13] become available
immediately.
The present paper is organized as follows. Section 2 recalls a number of de-

finitions and theorems which are variations on those given by the author in [8].
We have used here again a simplified definition of "experiments" barely different
from the one given in [8]. There is no essential difficulty in returning to the more
usual description, at least under appropriate restrictions. However the simplified
(or "more abstract" as is claimed by some) description avoids measure theoretic
technicalities and makes the arguments more transparent.

Section 3 gives further theorems concerning experiments with a fixed set of
indices. It uses the metric introduced in [8] to define a weak topology on the
space of experiments indexed by a given set E. Although the compactness state-
ments proved in this section are not absolutely essential to the remainder of the
paper, they do produce a number of simplifications.
The metric of [8] was intended, in part, to insure a certain continuity of risk

functions, at least if loss tunictions stay bounded. The purpose of Section 4 is to
show that a similar type of lower semicontinuity still exists for the weak topology
of Section 3, even if the loss functions are only bounded from below.

In Section 5 we consider two types of limits: (1) limits of experiments in the
weak topology of Section 3, and (2) experiments formed by taking limiting
distributions of certain statistics. The main result is that the experiments of
second type are always weaker than those of the first type. Statistics systems for
which the two coincide are characterized. Another result of Section 5 is the
existence of transitions which are convolutions in the case of shift invariant
experiments. For this see also E. Torgersen [12] and H. Heyer [6].

Section 6 elaborates a few examples indicating some of the results implied by
the previous propositions. It reproduces partially some results of Hajek, [4] andl
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[5]. Also it improves some results of LeCam [9] on the misbehavior of super-
efficient estimates.

In the normal situation a simplified direct proof of Hajek's convolution result
was communicated to us by P. J. Bickel.
Any resemblance between our results and those of Hijek is not entirely

accidental, since the present paper was greatly modified after Hijek's present-
ation during the Symposium.

2. Definitions relative to experiments

Let E be a set. An experiment indexed by E is usually represented by a a-field
,d carried by a set C and a family {P,: 0 E 0} of probability measures on a?. We
shall use instead a description which is obtainable from the usual one by ignoring
the set X.

Recall that an L-space is a Banach lattice whose norm satisfies the relation
|u + v || = | ,u || + || v || if ._ Oand v _ O. The dual of an L-space L is another
Banach lattice M whose norm satisfies the relation Ilf v g91 = Ilf 11 v |g II for
f _ 0 and g _ 0.

DEFINITION 1. Let E) be a set. An experiment o indexed by 0 is a function
0 P, from E to an L-space L. This function is subject to the restriction that
Po0 0 and Poll = 1.

Let S be a subset of the L-space L. The band generated by S is the smallest
linear subspace Lo of L such that: (1) S c Lo, (2) if y = X>icjIpjI with ,j E S
and Iv . p then v E Lo, and (3) Lo is complete for the norm.

If the experiment S: 0 -m* Po is such that S = {PO; 0 E 0} has for band the
whole range space L, we shall say that & generates L.

Since the above definition ignores the set ofX of the more usual description it
is necessary to translate to the present language the definition of "statistics."
This is done by the "transitions" described below.

DEFINITIoN 2. Let L1 and L2 be two L-spaces A transition from L1 to L2 is
a positive linear map A from L1 to L2 such that hhA,U+ || = ||u+ || for all y E L1.

Suppose that Z is a completely regular topological space. Let Cb(Z) be the
Banach space of bounded continuous numerical functions defined on Z. Let
C* (Z) be the dual of Cb(Z). This space C*(Z) is an L-space for the natural order.
Thus if & is an experiment generating an L-space L, one can consider "trah-
sitions" from L to C*(Z). It will be convenient to call these transitions statistics
with values in Z. It is clear that they correspond very exactly to the ordinary idea
of randomized Z-valued statistics except for the circumstance that the randomiza-
tion distributions need not be countably additive.

Consider a given L-space L with dual M. The formula Ip = ||u+ Ii - ||u ||
defines an element of M. The unit ball B of M is the set B = {u E M; |u| < I}.
Statistical tests correspond to the positive part of this unit ball. The following
result is the fundamental tool in [8].
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THEOREM 1. Let L be an L-space with dual M. Let H be a sublattice of M
whose unit ball {u: u E H, |u| I} is a(M, L) dense in the unit ball of M. Assume
also I E H. Let Z be a completely regular space. Let # be the set of all transitions
from L to C*(Z). Let .Jo be the subset of .// consisting of transitions T such that

(1) yT EH for each y E Cb(Z).
(2) there is a finite set F c Z such that for every ,i E L the image T,, of p by T

is carried by F.
In Cb(Z) x L let X be the class of finite unions of rectangles K1 x K2 such

that either (1) K1 is r[Cb(Z),. C*(Z)] compact and K2 is norm compact in L or,
(2) K1 is norm compact and K2 is a(L. M) compact.
Then /f0 is dense in . for the topology of uniform convergence on the sets

S ESi.
With a slight change in notation this is Theorem I in [8].
Some other definitions of [8] which will be needed below are as follows.
Let E be a given set. Let e: 0 Po be an experiment generating an L-space

L(g). Let F: 0 -* Qo be another experiment indexed by the same set (). It gener-
ates a space L(s).

DEFINITION 3. The deficiency of & relative to J is the number

(2.1) 6(4. E) = infsup IIAPO- Qo 1.
A 0

where the infinum its taken over all transitions from L(4') to L(YF). The "distance'
between S and E is the number

(2.2) A(. .F) = max [6(&, Y), (, 6)].

This "distance" is only a pseudometric. It becomes an actual distance if two
experiments whose distance is zero are considered equivalent.

DEFINITION 4. For a given set ED the equivalence class of an experiment S will
be called the type of & and denoted S.

Let & be an experiment 4: 0 -m PO indexed by a set 0. Let S be a subset of 0).
The experiment 4 restricted to 8, that is the function 0 -O PO defined on S only,
will be denoted es. If & and Y are two experiments indexed by 0 the deficiency
6(Ss, Ss) will also be called the deficiency of & relative to Y on the set S.

According to Wald a statistical decision problem is given by a triplet {&, D, W}
where 4 is an experiment indexed by a set 0D and W is a function from 0 x D to
[-x, +oo]j.

In all the situations encountered below D will be a completely regular space.
We shall identify the decision functions, also called decision procedures to the
transitions from L(g) to C*(D). If for each 0 E0 the loss function z -) W6(z)
defined on D by W is an element of C*(D), and if T is a decision procedure, the
risk at 0 of the procedure T is defined by the value WOTP6.

In order to state the result which was the main object of [8], we need a very
particular class of decision spaces (D, W). A more general situation will be
described in Section 4.
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DEFINITION 5. Let f be the class of decision spaces (D, W) formed by pairs
where

(1) D is a compact, convex subset of the space Y{E., [-1, + 1]} offunctions
from 0 to [-1,+1]

(2) the set D has finite linear dimension,
(3) the value W, (z) of the loss at (0, z), 0 E(0, z E D is the value of the element z

of F{e), [-1, +1]} at the point 0.
Note that for each 0, the function z -m WH(z) is linear in z. Also |W =

sup {I Wo(z)I.0 E). z E D} is always finite since I Wo(z)I < 1.
The main result of [8] can then be phrased as follows.
THEOREM 2. Let if: 0 -m P, and F: 0 -H Q0 be two experiments indexed by

0). For any given E E [0, 2] the following statements are all equivalent.
(1) There is a transition Kfrom L(g) to L(s) such that supo ||KP0 -Qo._ £
(2) IfT is a decision procedure relative to the experiment Y and a decision space

(D, W) E Y there is a procedure S of e to the same space (D, W) such that

(2.3) WOSP0 . W0TQ, + el W|
for every 0 E 0).

(3) If 8' > E. if /u is a probability measure with finite support on 0, and T, D, W
are as in (2), there is an S from e to (D. W) such that

(2.4) {(WoSPO)M(dO) f (W0TQ0)pu(dO) + 'l W|.

That (1) => (2) = (3) is obvious. The implication (3) => (1) is the subject of
[8] where it is shown also that in (3) one can assume that the procedure T is
"special restricted" in the sense described by the sublattice range and finite
support of Theorem 1.
An immediate corollary of Theorem 2 is as follows.
COROLLARY. The deficiency b(6, YF) is equal to sups 6(6s, Es) where the

supremum extends to all finite subsets S c E).
Furthermore, there is a transition K which achieves the infimum in

infA supo |APO - Qo 11
It is perhaps appropriate to include here a few words of warning on the differ-

ence between the setup just described and the more usual one. In the latter an
experiment indexed by 0 is a system {I, sl, PO; 0 E 0} consisting of a a-field a?
carried by a set T and a family {PO; 0 e 0} of probability measures on V. What
we have called "transitions" are replaced by Markov kernels. If {, a1} and
{IV, X} are two measurable spaces, a Markov kernel from X to 0( is a function
K(B, x) defined on X x X and such that it is a probability measure as function
ofB and measurable as function of x. It is well known that if X is the Borel field
of an analytic set 0Y in a Polish space and if the PO are dominated by a finite
measure every one of our transitions from Y(6) to measures on ccan be repre-
sented by a Markov kernel. The general situation is quite different.
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In fact J. Denny [3] has pointed out to us the following result.
Let & = {P0; 0 E EO} be an experiment given by probability measures PO on

the Borel sets of the real line. Let &" be the direct product of n copies of &. That
is, &f corresponds to n independent identically distributed observations, each
distributed according to some Po. Assume that P0 is nonatomic.
Then there is an experiment E = {Q; 0 E ®} given by probability measures

Po on a certain a-field ofsubsets of the real line which has the following properties:
(1) for every integer n the experiments 60I and F" are equivalent (in our sense),
(2) for every n, the sum of the observations is a sufficient statistic for E'.
To obtain F one just restricts the PO to a Hamel base which has elements in

common with every perfect set.
The apparent teratology does not come from our definition of experiment but

from the fact that we have elected to work with a category in which the mor-
phisms are "transitions" which may or may not be Markov kernels. If we had
restricted ourselves to Markov kernels we would not even be able to cover the
situations described by the usual (Halmos-Savage) definition of sufficiency. As
shown below, the category used here is just the appropriate one to reflect those
properties which can be expressed in terms of joint distributions of finite (or
countable) sets of likelihood ratios. One can also put it differently by stating that
the system described here relies on the feeling that Boolean algebras of events
are a more primitive notion that the points of the families of sets by which one re-
presents the algebras.

3. A weak topology in experiments indexed by a given set

In this section E) will be a fixed set. We are interested in the class of all experi-
ments which can be indexed by 0. Since the range L-space is unspecified this
"class" does not ordinarily qualify as a "set." We shall see however that the
corresponding equivalence classes called experiment types form a set E(E)). It is
this set which will be topologized.
When 0 is finite, D. Blackwell [2] used certain canonical measures to charac-

terize experiment types as follows. Let U be the unit simplex of the product
space R'. Specifically U is the set

(3.1) U = {x; x E R', xo _ 0, X0wx = 1}.

A canonical measure on U is a positive measure pu such that fxo dyu = 1 for each
0 E 0. Each canonical measure yu on U defines an experiment 0 po where po
is the probability measure defined on U by dpo = xo d,u.

Conversely, let &; 0 -m Po be an experiment indexed by the finite set 0. Let
m = S0PO. Consider the Radon-Nikodym densities uo defined by dP, = uo dnm.
(Here each uo is an element of the dual M of L(g) and 0 . uo . I with Eo uo = I.)
Let u be the vector u = {uo; 0 E 0}. Let y be an element of Cb(U). The lattice
algebraic properties of M allow the definition of y(u) as element of M. Thus.
there is a well defined transition S from L(g) to C*(U) whose value at (y, A) E
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Cb x L is ySA = < y(u), A >. In another notation if A is a probability measure
A E L(&) the value SA is the joint distribution of the likelihood ratios {u0: 0 E (9
for an initial distribution A. Consider then the image p = Sm of m = YPo by S.
This is obviously a canonical measure on the simplex U.

DEFINITION 6. Provide the space R9 with the maximiumt coordinate nornm,
lxl = sup, Ixoj. Let , be a signed measure on U. The Dudley norm of P is the
number

(3.2) lIPID = sup { Jfdy :fE A}

where A is the set of functions f defined on U and such that If 1 and If(x) -
f(x')| . |-x'l for all x and x' in U.

One basic simple fact concerning such canonical measures is as follows.
PROPOSITION 1. Let 6 and E be two experiments indexed by the finite set E).

Let p atnd v be the corresponding canonical mneasures on the simplex U c R@. Then
A(-. Y) II - VIID. Also A((. YF) = 0 if and only if p = v.

COROLLARY. Let E(O) be the set of experintent types indexed by the finite
set E). Metrize E = E(O) by the experiment distance A. Metrize the set K of
canonical measures on U c 9Rby the Dudley norm. Then bothE and Kare compact
metric spaces and the canonical one to one correspondence between them preserves
the corresponding topologies and uniformities.

PROOF. The statement that A((. E) = 0 if and only if p = v was already
proved by Blackwell in [2]. The inequality A(,. F) . 1p - v D can easily be
obtained by applying the implication (3) => (1) of Theorem 2. This is done for
instance in LeCam [10]. For further results see Torgersen [11]. The corollary is
immediate since U is a compact set.

Although the above proposition is not actually indispensible for the results
of Sections 4 and 5, it does afford a certain convenience and allows statements
of theorems in which existence of certain limits can be assumed without actual
loss of generality. For the same reason it will be appropriate to state a related
proposition for the case where 0) is an infinite set. For this purpose let us recall
that if a is a subset of a set 0 the experiment &: 0 -A P0 restricted to a is denoted
&5. If a is finite we shall topologize the set of experiment types E(a) by the
distance A. equivalent to the Dudley distance of canonical measures.

DEFINITION. 7. Let ED be an arbitrary set. Let E be a set of experiment types
indexed by 0. By the weak topology ofE will be meant the weakest topology which
makes the map & -m &x continuous for all the finite subsets a of E).
To study the class E(E) of experiment types indexed by 0 it is convenient to

investigate first the relations between E(a) and E(fp) for two finite subsets
3c 0).

It is obvious from the definitions that the restriction map from E(p3) to E(a) is
a continuous map of E(#l) onto E(a).

For each finite set o (E)0 let E, be an experiment type E' E E(a). Such a family
{E'} will be called compatible if whenever a c ,B the experiment type E' is the



LIMITS OF EXPERIMENTS 251

restriction to a of the experiment type E>. Let E'(@) be the set of all compatible
families of experiment types. This is in an obvious way the projective limit of
the sets E(ac). Since each E(a) is a compact Hausdorff space. the usual projective
limit theorems insure that E'(@) is a compact Haus(lorff space whose natural
map into E(a) is in fact onto. This leads to the follo-wing statement.

PROPOSITION 2. Let 0 be an arbitrary set. Then the class E(@) of experiment
types indexed by 0 is in one to one correspondence with the space of compatible
families of experiment types E'(E)). For its wveak topology E(03) is a compact
Hausdorff space. For the metric A the space E(E0) is a complete metric space.

PROOF. If E(E0) and the compatible families E'(E)) are the same set then
E(E) is compact for the weak topology because E'(E)) is compact. The complete-
ness statement for the distance A follows because the uniform structure induced
by A is stronger than the weak structure and because the set of pairs (&. E) such
that A(&, F) . E is closed for the weak topology. Furthermore if a compatible
family {Ea} e E'(0) derives from an experiment 6 indexed by 0, the type of
& is well determined as can be seen from the corollary of Theorem 2. Thus the
proposition will be proved if we show that any compatible family {E,} can be
obtained from an experiment in the sense of Definition 1.
For this purpose consider two finite sets a (- , c 0. Let R' be the Cartesian

product corresponding to oa. Let U, be the unit simplex of R'. Let C, = C(U2)
be the Banach space of continuous functions on U., Let C* be the space of
Radon measures on U,. Finally let K2 be the subset of Cx formed by canonical
measures on U,. For o c ,B and y e U, let s2p(y) = X6..yO. Finally, for all
y E Up such that s, p(y) > 0 let H2 (y) E U, be defined by [,2y]o =
[Is,p(y)] Y-Y6.

Let &#: 0 -) Po be an experiment indexed by ,B. Let p. be the corresponding
canonical measure image of mf = loXpPo. Let ml = locaPo and let 1u, be the
corresponding canonical measure for the experiment &2 = {PO; 0 E cx. The
canonical form of S. is given by the measures po p defined by dpo # = yodpp.
Similarly, the canonical form of f'a is given by measures dpo, = xody,. For
0 E a the above relation can be read x0 = [1`2,y]o = [s8j(y)]-1yO. Starting
from the transformation H1 , one can define a transformation Aa, B from C* to
C. and its transpose A', a from C2 to Co according to the formula [OA' 0] (y) =
[s.,28(y)]4f[n., , (y)] and < AA2, > = < OA',1 > for 0 E C. and p E C.
The transformation A' is well defined if [A',] (y) is put equal to zero when-
ever s8,p(y) = 0. One verifies easily that it is a transformation from C, to C.
Furthermore its transpose A2a 1is a transformation of C: into C* which maps the
canonical measures K06 onto K,. Finally. by virtue of its construction. the trans-
formation A,,, is such that, with the notation used above, A, #p,0j = p6,2 for
each 0 E a. This can be stated in a different way as follows. Let {Ea}. a c00 be a
compatible family ofexperiment types. For each E', let {po 2; 0 E ci} be its canoni-
cal representative. If a c , the restriction of E' to E' has for canonical repre-
sentative the linear operation A, ,. To associate to the compatible family {Eo}
an experiment in the sense of Definition 1 one can then proceed as follows.



252 SIXTH BERKELEY SYMPOSIUM: LE CAM

For each a c E) take a 4 E C' and all its images OA' for y D a. If 4 E C! and
E Cp are such that OA' y = OA', y for y = a u ,B call them equivalent. Call

such an equivalence class positive if the generating 4 is positive. Also if 4) E(c-.
/ E Cp define the sum of their classes as the class of OA, y + A'fA,, with y =
a u ,B. It is readily verified that these operations on classes are well defined. The
set H of classes so obtained is a vector space and in fact a vector lattice. A com-
patible family {E=} defines, for each 0 E 0, a linear functional PO on H as follows:
if 4) E Ca and 0 c oa define < 4, Po > = fJdpo 2. To obtain an experiment in the
sense of Definition 1, it is sufficient to take, in the dual of H. the band generated
by these functionals. This completes the proof of the proposition.

Let us mention now a corollary of Propositions 1 and 2 which is often useful
in specific computations.

Let 0 be an arbitrary set. Let 0 be the set of probability measures with finite
support on (). Each element T E 0 can be given by a finite set at E 0 and numbers
Tr. 0 E a such that T._ () an(d YOe. To = 1. Let 65: 0 -) P. be an experimient
indexed by 0. For each T E0 define another element H, of L(&) by dHr =
1`16(dPo)'o. This is a well defined Hellinger product. The map T -| lIH,11 from 0
[0, 1] will be called the Hellinger transform of the experiment S. It is easily seen
that if 1 is the canonical measure of &e, restriction of & to the support a of T,
then H, = f(Ho0..xEe) dy.

PROPOSITION 3. Let E(@) be the set of experiment types indexed by 0. There
is a one to one correspondence between experiment types and their Hellinger trans-
forms. The weak topology of E(@) is the same as the topology of pointwise con-
vergence of the Hellinger transforms.

PROOF. That the Hellinger transforms determines the type of an experiment
results from the uniqueness of the Laplace transform. The standard arguments
show that the uniform structure of E(E0) can be described as follows. Take a
particular finite set a c 0) and an c > 0. Consider the set S(a, E) of T E 0 such
that T is carried by a and min {To; 0 E a} _ e. Call two Hellinger transforms H
and H' close of order (a, s, 6) if IHT- H'J < 6 for all T E S(a, e). This defines a
uniformity on the space of Hellinger transforms. It is precisely the uniformity
induced by the topology of E(@). This results from the fact that the functions
x -& flox'o form, for T E S(a, E), an equicontinuous set of functions of U,.

4. Lower semicontinuity of risk functions

The present section indicates some continuity relations for risk functions when
the set of experiments is topologized by the weak topology. To state a decision
problem we need, in addition to the experiment S, a set D of possible decisions
and a loss function W. We shall always assume below that the following con-
dition is satisfied.

The decision space D is completely regular. For each 0 E 0, the loss function
WO is the pointwise supremum of a nonempty subset of Cb(D). The risk at 0 of a
decision function p is defined by the equality
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(4.1) R(H.p) = sup {7ppo YeCCb()), y . 1V0}.
y

This condition will be labeled the lower semicontinuity assumption. or for
short. the l.s.c. assumption.

For a given experiment & and a given pair (D, W). let 9 = 9(f, Dl Wf) be
the set of all available decision functions, that is, by definition. the set of all
transitions from L(oc) to C*(D). This set 9(&) will be given the topology of point-
wise convergence on Cb(D) x L(g).

Let K = K(O) be the set of all positive finite nonnull measures which have
finite support on (3. For each ,u E K(O), let

(4.2) Z(,u) = inif {' R(0O p)pi(dO): pc9(6)}.
This will be called the envelope of the risk functions. Flinally. let .P(6) be the set
of functionsf from 0) to (- oc. + oo] which are such that R(0, p) . f(0) for all
0 E E and some p E 9(g).

In all these definitions it may become necessary to indicate which experiment
and which pair (D, W) is involved. This will be done by writing x(I- ) or
X(,u: e. IV) or %(I: W) and similar expressions for R and M according to which
sets need to be specified.
One of the basic results from which many of the usual general statements of

decision theory can be derived is as follows.
PROPOSITION 4. Assume that the l.s.c. condition is satisfied. Then 9(g) is a

compact Hausdorff space and the function p -# .4(0, p) is lower semicontinuous
on 9(g). Furthermore this function is also convex in p. Finally a function ffrom
ED to (-oo, + oo] belongs to 39 if and only if

(4.3) zX(H) - f(O)lt(0)
for every ,u E K(E3).

PROOF. The compactness and lower semicontinuity assertions are almost
immediate consequences of the definitions. For the last assertion note that it is
enough to consider the subset Of of 0 where f is finite. Consider then a finite
set A c Ef and an e > 0. Let S be the set of measures It E K(@) which are
carried by A and such that inf {li[{0}]. 0 E A} > E. On such a set S. integrals
of risk functions are either everywhere finite or everyw.here infinite. The usual
theorems on separation of convex sets show then that a function f form S to
(-cc. +co] agrees on S with an element of 39 if and( only ifjfd.d_(,u) for
all juE S. A passage to the limit as E -. 0 and another passage to the limit letting
A increase to Of gives the result.

PROPOSITION 5. Let E and the pair (D, W) be fixed. Let E(e)) be the set of all
experiment types indexed by 0. Suppose that the l.s.c. assumption is satisfied. For
each e EE(0), let /i -. x(i. e) be the corresponding envelope function. Let S be
an arbitrary subset of K(E). Then &m sup {x(I'. &); Pu G S} is a lower senmi-
continuous function of e for the weak topology of E(e).
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PROOF. It is obviously sufficient to prove the result for a set S reduced to a
single probability measure p.

Since p has finite support, it is also sufficient to prove the result for E finite.
Assuming this, note that X(p, . W) is the supremum supv x(it, S. V) where V
runs through loss functions V such that VO E Cb(D) and VO _ WO for all 0.
Indeed, there is a decision function a such that x(u, S, W) = JR(0, a)p(dO).
Suppose that & = {P0; 0 E (9}. For this fixed a and for any b(0) < W0aP0 one
can find a V, l_'0 such that V0aPo > b(0). Let |V = sup {IIV7(t); 0E 0,
t E D}. This is finite since Vo E Cb(D) and since 0 is finite. However we have also

(4.4) Ix(, i. V) - X(i, , V)I < 1I VII A(&, Y).
Thus -m x((I, i, V) is continuous and the supremum X(It, i, W) is lower
semicontinuous.

COROL.LARY 1. LetJfbeafunctionfrom0E) to (-n . + so]. Suppo,se that f does
not belong to 4(6). Then there is an ox > 0 and a weak neighborhood G of if in
E(O) such that f + ox does not belong to any F(Y).E E G.

PROoF'. 'I'he relation f 0 ,(6) imnplies I fdp < y(p-. 4) for some p E K(@).
Thus, there is an x > 0 such that if g = f + cx then fgd,u < X(p, if). The neigh-
borhood G = {:; x(8, Y) > fgdp} satisfies the required conditions.
Some particular cases of this corollary will be of interest in the following

section. We shall restate two of them in a slightly different language. Recall that
ofs means the experiment i: 0 -m Po with 0 restricted to the set S c E.

COROLLARY 2. Suppose that r is an admissible element of X(g). Let 00 be a
given element of E® and let b be a number b < r(0O). There is an E > 0, a finite set
S c 0 and an ox > 0 such that iff E _(Yf) for some F such that A(Ys, ifs) <8
satisfies the inequality f(0O) _ b then f(O) > r(O) + x for some 0 E S.
COROLLARY 3. Let a = sup {x(li. i): p/1 K(E). llI|| = 1}. Let b be a numiber

b < a. There is a finite set S and an E > 0 such that if A(5s, ofs) < E then
sup {f(0): 0 e S} > b for erery f e (,fl).

Note that even when W is bounded, in which case S -8 x(u., f, W) is con-
tinuous in if for each fixed p, we cannot conclude that the minimax risk
sup {X(y, if): p e K(E), I111l = I} is a continuous function of i. This would be
true if instead of the weak topology we used the metric A on E(@).

5. Limits of experiments; distinguished statistics

Let Z be a completely regular space with its Banach space of bounded
continuous numerical functions Cb(Z). Let C*(Z) be the dual of Cb(Z). We
shall often call the elements of C*(Z) "measures" on Z or integrals even though
this is an abuse of language. The space C* can be topologized by the weak
topology o[C*(Z), Cb(Z)]. To distinguish it from other weak topologies we
shall call that one the vague topology of C*(Z). Recall that the positive elements
of norm unity of C*(Z) (abusively called probability measures or distributions
here) form a vaguely compact set.
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PROPOSITION 6. Let N be a directed set and let 0 be another set. For each
n EN let 6n 0 -m F.n be an experiment such that each F0, belongs to C*(Z).
Assume that for each 0 E(0 the Fon converge vaguely to a limit F,. Let Y be the
experiment Y = 0 -) Fo. On the space of experiment types E(0) let 6 be a cluster
point of the directed set of types gn for the weak topology of E(O).

Then E is weaker than & or more precisely 6(6. f) = 0.
PROOF. According to the corollary of Theorem 2 it is sufficient to prove the

result assuming that 0) is finite. This will be assumed henceforth. According to
Proposition 1 one can also assume without loss of generality that A('n, 6) -+ 0.

Let K be a compact convex subset of some Euclidean space and let W be a loss
function defined on 0 x K. Assume that WI . 1 and that for each 0 E0 the
map t -, WO(t) is continuous. For any decision procedure a provided by .F let
R(0, a; Y) be the risk of a at 0. Take an 8 > 0 and suppose n(E) so large that
n _ n(s) implies A(n 6) < £.

According to Theorem 1 for a fixed a there is a decision procedure p such that
supOR(, a; E) - 3(0, P; E)I < E and such that p is continuous in the sense
that its transpose maps C(K) into Cb(Z). This procedure p may also be applied
to 6n giving a risk Rn(0. p) = WopFo6n. Since Wop E Cb(Z) there is an n(e, a)
such that n _ n(ea) implies Rn(0 p) - R(0. P)I < E. This gives Rn(0. p) <
R(0. a: E) + 28. However since A(n, e) < s for n > max [n(e). n(8. a)] there
is a procedure of 6 such that

(5.1) R1(0. a': 6) _ Rn(0. p) + E . R(0 a: Y) + 3E.

This is true for every K. every W and every a. Thus a(&. E) . 38 according
to Theorem 2. This proves the desired result.

It is easy to construct examples where 6(,, 6) = 2. In other words, it may
happen that E is trivial but 6 is perfect. However our next proposition shows
that under special circumstances one can obtain the equivalence of 6 and E.

Suppose again that N is a directed set and that 0 and Z are given. Assumne that
0 is finite and that Z is completely regular. For each n E N let .6,: 0 -A* Po ,, be
an experiment indexed by 0. Let U be the unit simplex of R' and let Sn be the
canonical transition from L(6n) to C*(U). This is the usual likelihood ratio vector
described in Section 3. The experiment 0 -A nPo,n is therefore the canonical
representative of Sn,

Let Tn be any statistic from 6n to the completely regular space Z. (See Defini-
tion 2 and the remarks following it.) Let us recall that the distribution of Tn given
0, usually written Y[TnI0] is written TnPo,n in the present notation.

PROPOSITION 7. With the notation just described, assume that for each 0 E 0
the distributions TnP6,n converge vaguely to a limit FH. Assume also that the experi-
ments (n converge to a limit 6. Let !F be the experiment F; 0 -* F,. The following
conditions are equivalent:

(a) A(&, E) = 0,
(b) for each 8 > 0 there is a transition IF such that

(5.2) lim sup sup IInSo,n - fr,TnPo,nID _.
n 6
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for the Dudley norm of measures on U. Furthermore Fr is such that its transpose
maps Cb(U) into Cb(Z).

If these conditions are satisfied then A(,, En) -+O for n = {TnP0,n; 0 e E}.
PROOF. Let Go, = SnPo, and let F6, T,,Po n.Since e' = 0 -* Go,nis the

canonical form of en, the convergence of en to & implies that 11 Go, - Go 11 D - 0
for some limit measure Go. Suppose now that (b) is satisfied. Then F,Fo,n con-
verges to 1FoF. Thus the inequality in (b) may be replaced by the relation

(5.3) lim sup sup || Go - FOF || _
n 0

In particular Go = limn,_0FF0.
Let YE be the experiment 0 -r F,F6. This is obviously weaker than E. As

E -O 0 the family 'FE has some cluster point say E+. Since each 6(F, F,) = 0
one has also 6(Y, F + ) = 0. However by Proposition 6, the experiment 0 -M* Go
is weaker than F'. hence also weaker than Y. Since & = 0 -m Go, this gives
6(.F, &) = 0. Thus A(&, F) = 0, according to Proposition 6.

Conversely, assume A(&, .F) = 0. Let A be the set of Lipschitz functions used
to define the Dudley norm on C*(U). The equality A(&, F) = 0 implies the
existence of a transition F such that Go = FE6. Since A is a compact subset of
C(U), Theorem 1 implies the existence, for each E > 0, of a transition F, satisfy-
ing the continuity requirement of (b) and such that ifFFo-ffF,FO E for all
fE A and all 0. This can be written | Go- Fo || D . £ and implies (b). The last
statement is a consequence of the triangle inequality.

Let us note that the relation A(&,,, E) -(0 can be interpreted to mean that
the statistics Tn are asymptotically sufficient. However A(,X,,) = 0 would not
necessarily imply A(e, F) = 0. For this reason we shall introduce a definition.

DEFINITION 8. Let {Tn, n E N} be a net of statistics as described before the
statement of Proposition 5. If 0 is finite and condition (b) of Proposition (5) is
satisfied the net {Tn; n E NJ will be called distinguished. If 0 is finite. "distin-
guished" will mean that condition (b) is satisfied for every finite subset of 0).

Consider again a fixed arbitrary set 0 and a directed set N. For each n E N
let fn: 0- PO n be an experiment indexed by 0. Let Z and Z' be two completely
regular spaces. For each n let Tn be a statistic from on to Z and let Tn be a statistic
from en to Z'.

PROPOSITION 8. Assume that the distributions TnPo,n converge vaguely to a
limit F6 and that the distributions TnP, n converge vaguely to a limit Fo. If {Tn;
n E N} is distinguished, there is a transition M such that F, = MF6 for every 0 E 0).

PROOF. When E is finite, this is an immediate consequence of the definitions.
If 0 is infinite it is still true, according to Theorem 2, that 0 - F,' is a weaker
experiment than 0 -O Fo. Hence the result.
The theorem given by Hijek in [4] appears similar to the above except for the

fact that where we obtain the existence of a general transition, Hijek obtains a
transition representable by convolution. This more precise statement can be
derived from the above Proposition 8 under suitable assumptions, as we shall
now show.
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Let Y = {F,; 0 E 0} and let Y' = {FP4; 0 E E}.
Consider a transition A from L(.F) to itself and a transition A' from L(.,') to

itself.
DEFINITION 9. The pair (A, A') leaves the system (EF, .F') invariant if:
(1) A restricted to {F,; 0 Ec 0} is a permutation,
(2) A' restricted to {FP; 0 Ec 0} is a permutation,
(3) If AFP = F4 then A'FP = FP,.
NOTE. If the maps 0 -* F,,and 0 - F,,are one to one, each one of A and A'

induces a permutation of the set 0. Condition 3 in Definition 9 says then that
the permutation induced by A' is the inverse of that induced by A. It is more
customary to write the definition in such a way that A and A' induce the same
permutation. However the present formulation is more convenient here.

Suppose that (.F, .F') is invariant by (A, A') and suppose that K is a transition
from Y(sf) to g(f') such that KF, = FP,. Then A'KA is also such a transition.

Let X be the set of all transitions K from Y(s) to L(.F') such that KF, = FP4
for all 0 E 0. For the topology ofpointwise convergence on M(.F') x Y(.f), this
is a compact convex set which is transformed into itself by the continuous linear
transformation Y -s A'KA. An application ofthe Markov-Kakutani fixed point
theorem gives immediately the following result.

PROPOSITION 9. Assume that the experiments .F = {F,; 0 E 0} and F' =
{FP4; 0 E 0} are such that:

(1) F' is weaker than F,
(2) there is a family (Ag, A'), g E G, of transition pairs leaving the system

(EF, JF') invariant such that the induced family of transformations on #a is either
abelian or a solvable group or more generally a semigroup which admits almost
invariant means.

Then there is a transition K from L(JF) to L(.F') such that FP4 = KFP for all 0
and A,KA = K for all gEG .

In asymptotic theory one often encounters the following situation which is an
important special case of the one just described.

Suppose that F and .F' are as in Proposition 8 but that the two spaces Z and
Z' are one and the same. Suppose also that Z = Z' is a locally compact group
and that the measures F,P and Fo are Radon measures on Z. For any finite Radon
measures u on Z and any element ai E Z define the measure all, called i shifted
by cx, by the equality ff(z) [Lxu] (dz) = Jf(az),u(dz).
One can say that the pair (E, .F') is invariant by the (left) group shifts if for

each ax e Z the operations Fu -# aF, and FP4-* aFP are permutations and if aF,= F4
implies aF,, = F,. A transition K which is "invariant" can then be described as
a transition which commutes with the group shifts. That is for every cx E Z and
it E L(.F) one has aK,I = Kay. It is to be expected that such transitions will in
fact turn out to be convolutions by a fixed probability measure. However we
have been able to prove this only under special assumptions.
PROPOSITION 10. Let Z be a locally compact group. Let JF = {F,; 0 E 0} be

an experiment defined by Radon measures on Z. Let K be a transition from L(.F)
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to finite Radon measures on Z. Assume that K commutes with the group shifts.
Then there is a probability measure Q such that K/1 is the convolution K/1 = It * Q
if and only if the transpose of K transforms Cb(Z) into Cb(Z). This happens in
particular if the F, are either all discrete or all absolutely continuous with respect
to one of the Haar measures of Z.
PROOF. Consider the case where all the F0 are absolutely continuous with

respect to a Haar measure. Letf be a bounded measurable function defined on Z.
Then fIf Idp = 0 for all pu E L(s) if and only iff is locally equivalent to zero for
the Haar measure on Z. Indeed. suppose that f . 0 has compact support. By
Fubini's theorem

(5.4) {{{ f(z)II(dz) A(dx) = f (dz){f f(oz) (do)

= ff, (x) (do)

for the right Haar measure A on Z.
Let Ho be the space of equivalence classes bounded measurable functions

on Z, for the local equivalence relation defined by the Haar measure. According
to [7] the space Ho admits a lifting which commutes with the shifts. Let H be
the range of the lifting. That is H consists of the functions which have been
selected as representatives of classes in Ho. Note that if g E Cb(Z) the represent-
ative of the class of g is g itself.

SinceK is a transition from L(E) to finite Radon measures on Z. its transpose
Kt maps the dual of the space of finite Radon measures into Ho. However,
composing K' with the lifting, we can instead define Kt as a map into H. With
this agreement consider Ktg for some g cE Cb(Z). The equality aKu = Ka,u.
, E L(s). cuE Z. implies < axK'g. p > = < Ktotg., u > for p E L(s) and a E Z.
However c'Ktg is also in the lifting and therefore the almnost everywhere equality
just indicated implies that actKtg = K'ot'g everywhere. The same conclusion would
be available if we had assumed that the F, are discrete or that Ktg can be taken
equal to an element of Cb(Z).

Let then Xf be the space of continuous functions with compact support on
Z. Fix a z E Z and evaluate Ktg at z for each g E Yt. This gives a positive linear
functional Q. on -'C. The equality cxtKtg = Ktctg yields Q"z = aQ,. that is
Qz = zQ with Q = QO. Thus

(5.5) (Ktg)(z) = J'g(t)Qz(dt) = j'g(zt)Q(dt).
The result follows.

6. Applications to standard examples

In many of the customary applications of large sample theory one is interested
in the asymptotic behavior of certain test or estimate in the vicinity of a given
value of the parameter. This can be formalized as follows. One is given a directed
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set N, for instance the set of integers. For each n E N, let &, = E
be an experiment indexed by a parameter space En. One is given in addition,
for each n E N, a subset 0,n of the k-dimensional Euclidean space 0 and a
function 0 Xn(0) from On to sn. The small vicinity of interest is the set 0n( )-
For instance E,n may be the k-dimensional Euclidean space itself and the functions
Xn may be of the type cn(O) = cn(O) + 6n0 with bn tending to zero.

In brief the experiments of interest are not really the en but the experiments
en = {PO,n; 0 E (in} with Po,, = Q n.W,n.
To avoid extra complications we shall consider only cases where the following

conditions are satisfied.
(Al) Ifm and n are elements ofN such that m < n then E)®m C ,n2. Furthermore

0 = UnEn
(A2) For every finite subset S c 0 the experiments n,s = {PO:n 0 E S} have

a limit in the sense of Section 2 and 3.
One can extend arbitrarily the map 0 -m Po,n to the whole of 0. The experi-

ment {P n: 0 E 0} will still be denoted Gn2
According to Section 3 these experiments en converge weakly to a certain

limit o, which is. of course, independent of the manner in which the P6, are
defined outside O9n.
The following examples are taken from the standard statistical example list.
EXAMPLE 1. Let rn(t) be the likelihood ratio rn(t) = dP2, n/dPo. n. One assumes

that there are k-dimensional random vectors Yn and a positive definite matrix
F such that rn(t) - exp {tYn - -tFt'} converges in P0On probability to zero for
each t E E). Furthermore one assumes that the distribution Y'[YnIPO,n] con-
verges to a Normal distribution with mean zero and covariance matrix F.
The approximation to rn(t) can also be rewritten exp {jXnFX'} exp

{- (Xn- t)(Xn - t)'} with FXn = Yn. The limit experiment 6c is the experi-
ment {Pe; 0 E 0} with P,6 normal with mean 0 and covariance matrix Fr I

EXAMPLE 2. Let N be the set of integers. Consider n independent. identically
distributed variables U1, U2. ... , Un, which are uniformly distributed on the
interval [0. 1 + bn0] with 0 such that 1 + 6n0 > 0 and 6n = l/n. Let Yn be the
maximum of the observations U1, * -, Un. Then Y'{n[(l + n0) - YnJI' +
bnt} converges to the exponential distribution which has density e-x on the
positive part of the line. The measures PO of the limit experiment = {P6: 0 E 0}
have densities e-xO). x > 0.
EXAMPLE 3. Let Un j, j = 1. 2. - , n. be independent identically distri-

buted with individual distribution uniform on the interval [0/n, (0/n) + 1]. Let
Z' = n minj Un,j and let Z" = n maxj [Unj - 1]. The pair (Z'. Z") has a limit-
ing distribution equal to that of a pair (S. T) with S = 0 + X and T = 0 - Y
where X and Y are independent variables such that P[X > x] = P[Y _ x] =

e-x for x > 0. The limit experiment & is the experiment where Po =
Y{(0 + X, 0 - Y)}.

In all three examples we have stated a description of the limit experiment S.
Of course one needs to prove that en tend to the limit. For normal Example 1
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note that the statistics {X,J are "distinguished" in the sense of Proposition 7.
For the other two examples it is enough to remark that the statistics Xn =
n(Yn- 1) in Example 2 and (Zn. Z") in Example 3 are sufficient statistics whose
densities converge. Thus they are automatically distinguished.

For any one of these examples let {Tn} be some other family of statistics.
Suppose for instance that for each 0 E E) the distributions Y(Tn10) converge to
a limit F) and that F} is F' shifted by the amount 0. That is [TnI - 010] tends
to a limit Fo.

In Examples 1 and 2, Proposition 9 and 10 insure the existence of some prob-
ability measure Q such that Fo = Q*Fo for the distribution Fo = lim
$ [X,I0 = 0].

In Example 3 things are more complicated since the shift group does not
operate transitively on the plane. Introducing new variables 4 = 2(S + T) and
8=S- T. let lHo = Y°[(d. q)JO]. Clearly [(4. q1)J0] = Y[(; + 0. 11)l(] = H

say. Simple computation shows then that the limiting distribution G = Fo must
be obtainable by the formula

(6.1) fJ(z)(;(dIz) =fff(z + x)p(dzJy)('(dx J).}1(dy).
where C and M are the conditional and marginal distributions such that
H(dx. dy) = C(dxly)M(dy) and where for each y the symbol ,u(dzly) represents a
probability measure in z.

In other words, for each y one convolutes the conditional distribution C(dx|y)
with some probability measure ,u which depends on y. Then one averages the
result over all values of y according to the marginal distribution M.
Some other statements can be obtained by application of the results of Section

4. We shall state a few for the case of the normal Example 1. Take as loss
function the quadratic (0 - t)F(0 - t'). Then the normal veetor X of the limit
experiment is a minimax estimate with risk identically equal to the dimension k
of E. Suppose then that {T,} is any sequence of estimates. Let Rn(0) be the risk
of T, at 0. Let E > 0 be given. By Proposition 5, Corollary 3. there is some
finite set S c E). some no such that sup {R,(O): 0 e S} > k - E for all n _ nO.
Furthermore S and no do not depend on the choice of Tn. This gives part of a
result of Hajek in [5].

If k . 2. the estimnate X is also admissible. Corollary 2 of Propositioni 5 says
then that ifa = sul)nm Rn(0o) < k for a giveni 00 there is a finite set S anl Ito
and an a > 0 such that sup {R,(O); 0 e S} _ k +±a for n . no. Here again o.
no and S depend only on 00 and a < k. This strengthens considerably a result of
[9] according to which super efficiency at one point must imply misbehavior
nearby. The result of [9] was proved only for k = 1. Of course the result does
not extend to k _ 3 since X is no longer admissible.

It was proved in [13] that the x2 test which rejects 0 = 0 if X'FX is larger
than a given co has best minimum power over the surface O0O' = c. Suppose
then that oo = Po{X'FX _ co}. fl, = P[X'rx > co] for 0ro' = cl. Let al _ O
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and fl, _ 13o be two numbers. Suppose for instance f,B > I3o and let 0In be tests
such that f0,,dPo n< a 1. Then there is some finite subset S, S c {0; OFO' = c,
and some no such that if n _ no we have fo<>dP0,n < fl, for at least some 0 E S.
This is another application of Proposition 5. Corollary 3.
For such tests one can even say more. A. Birnbaum in [1] proved that every

convex subset of the Euclidean space is admissible as a test of 0 = 0 against
0 * 0. Thus suppose that al _ o f,1 _ /3o with at least one of the inequalities
holding strictly. Let t be a particular point such that tFt' = c1. There is then an
no, and s > 0 and a finite set S c= 0 such that if n _ nO the inequalities
fq5,dPo, < oa and f|4dP,t >_ , imply E + 4)dPo,n < PO[X'FX _ cl] for
some 0 E S.

Analogous statements can be made for the cases of Examples 2 and 3. We
shall leave them to the care of the reader.
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