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This paper is dedicated to the memory of Dr. Frank Wilcoxon.

1. Introduction

Frank Wilcoxon joined the faculty of the Florida State University ill 1960.
He brought with him a number of ideas for further research in rank-order statis-
tics and proceeded to develop them in association with colleagues and graduate
students. This paper is largely expository and reports research based on his
suggestions.
Two major topics are presented: sequential, two-sample, rank tests and multi-

variate, two-sample, rank procedures.

2. Sequential two-sample rank tests

2.1 Preliminary remarks. The two-sample, rank-sum test was introduced by
Wilcoxon [29], [30]. Two populations, X- and Y-populations, are given with
distribution functions,
(2.1) P(X < u) = F(u), P(Y < u) = G(u),
X and Y being the random variables associated with the two populations. The
basic null hypothesis tested is that

(2.2) Ho: G(u) =F(u),

usually with the assumed alternative of location change, G(u - 0) e F(u).
Samples of independent observations of sizes m and n from X- and Y-popula-

tions respectively are taken and ranked in joint array. The sum of ranks, T for
the X-sample or S for the Y-sample, is taken as the test statistic, and departures
of the statistic from its mean under Ho, lm(m + n + 1) or 'n(mn + n + 1), are
judged for significance. In order that ties in ranks between X- and Y-observations
occur with probability zero, one may restrict F and G to be continuous.

Small-sample tables are available as are approximate, large-sample distribu-
tions for the rank sum under Ho. A recent extensive set of tables was developed
by Wilcoxon, Katti, and Wilcox [31]. This table is divided into four sections
corresponding to four levels of significance, 0.05, 0.025, 0.01, and 0.005 for a
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one-sided test, and exact probabilities are given to four decimal places for the
rank totals which bracket these significance levels. The critical rank totals are
tabulated for sample sizes, m, n = 3(1)50.
Much has been written on the asymptotic properties of ranking procedures

for large sample sizes. Properties of these procedures for small samples are diffi-
cult to investigate and depend on the forms of distribution functions like F and
G, although empirical methods have been the bases for a limited number of such
studies. Lehmann [15] suggested a class of alternatives to Ho,
(2.3) Ha: G(u) a Fk(u), k > 0.
For this class of alternatives, the small-sample power of the rank-sum test may
be evaluated with the power dependent upon k but free of the form of F(u).
The basic sequential methods of Wald [27] and the class of alternatives of
Lehmann permitted the development of two sequential, two-sample, grouped
rank tests.

2.2 Basic procedures. Define a basic group of observations to consist of m
X-observations and n Y-observations with ranking effected within the group in
joint array as for the original Wilcoxon method. The sequential aspect of the
experimentation consists of deciding at the end of each group of observations
whether to continue experimentation by taking an additional group of observa-
tions or to terminate experimentation with a decision to accept the null hypothe-
sis or with a decision to accept an alternative hypothesis. In this paper we restrict
attention to Ho of (2.2) and take the specific, one-sided, alternative among those
of (2.3) to be
(2.4) H,: G(u) Fkl(u), k, > 1.
This is the basic sequential system in [32]; the two-sided procedure is developed
briefly in [33]. More generally, it is possible to consider a null hypothesis
Ho: G(u) E FI°(u) and an alternative hypothesis
(2.5) H*: G(u) Fki(u), k1> ko0> 0.

Consider the y-th group of observations. Let ri,, , rm,, and si, * * * X 8n,
be the ranks assigned to X- and Y-observations respectively. The relevant infor-
mation is retained if we consider only the Y-ranks and take sl, < ... < sn ,.
From [15] or [32] the probability that the Y-sample is given the indicated ranks
under (2.3) is

(2.6) P(sl,,, * *, snl,.)m, n, k) = k_ P(sj.,1 +jk e(m + n) j r(sj+1,.. + jkc - j)Fr(s,,~)

where sn+1 is taken as (m + n + 1).
For a sequential rank test of Ho versus H1 based on the actual configuration

of ranks, the probability ratio for the -y-th group is

kn(M + n))! n r(s+j j++jk - j)(2.7) rny(m, n, kic, 1) =j (se,-=1)r.1(s,+1,,, + jkl -j)
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the ratio of two probabilities of the form (2.6) with k = ki in the numerator
probability and k = 1 in the denominator probability. If experimentation has
proceeded to the end of t groups, the probability ratio for the complete experi-
ment to that stage is, from an assumption of independence of groups of ob-
servations,

(2.8) Pit/pot = II r(m, n, ki, 1),
7=1

the statistic required for the Wald sequential analysis. The procedure based on
(2.8) has been called the configural rank test.
For a sequential rank test of Ho versus H1 based on rank sums, let

n m

(2.9) S7 = E sj, and T. = E ri,
j= t=1

The probability of S, may be formally expressed as

(2.10) P ( s, z = S7lm, n, k) = E P(sl,*y , s.,zym n, k)

where the summation in (2.10) is over the limits,
n

(2.11) 1 < S1,i < ... < Sn, < m + n, L sj , = S,,.
j=1

The y-th group probability ratio corresponding to (2.7) is

(2.12) R,(m, n, ki, 1) = P ( S, = 57m, n, k1)/P ( s = Slm, n, 1

and that corresponding to (2.8) is

(2.13) Pit/Pot = II R,(m, n, ki, 1).
7Y=1

The procedure based on (2.13) has been called the rank-sum test.
In sequential analysis, a and ,B, the probabilities of Type I and Type II errors

respectively, are used to form the constants,

(2.14) A = (1 - p)/a and B = B/(1- a).
Let P1t/Pot be the generic probability ratio at stage t. Then the decision process
in logarithmic form is as follows.

(i) If In B < In (P1t/Po,) < In A, take another observation (another group
of observations).

(ii) If In (P1t/Pot) < In B, terminate experimentation and accept Ho.
(iii) If In (P1t/Pot) 2 In A, terminate experimentation and accept H1.

Substitution of (2.8) or (2.13) for P1t/Pot is made for the sequential rank tests.
Insight into the interpretation of the Lehmann model and the specification of

ki may be obtained from the properties of the model. First, note that if X and Y
are randomly selected from their respective populations,

(2.15) p = P(X < Y) = k/(k + 1),
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and conversely, k = p/(1 - p). Second, when G(u)- Fk(U), k > 1, G(u) is
skewed to the right relative to F(u), and if F(u) is a standard normal distribution
function, the mean of the Y-population is /ut, > 0 and the variance is a' < 1.
Thus, associated with a value of k, we may consider also values of p and /,u as
defined. It is noted also that if k is an integer, G(u) is the distribution function
of the largest of k independent observations on X.
To facilitate use of the sequential, rank-sum test, tables [32] have been pre-

pared for m = n = 1(1)9 giving values of T., S, and corresponding values of

(2.16) P' = P (, 8j z = Syjm, n, ki)

defined in (2.10) and ln R,, with R, defined in (2.12). The values of P, and ln R,,
are computed for k1 = 1.5, 2.33, 4, and 9 with associated pi = 0.6(0.1)0.9 and
.uv = 0.282, 0.658, 1.029, and 1.485. To facilitate use of the sequential, configural
rank test, Wilcoxon has devised an ingenious algorithm for the computation of
(2.6); its use is illustrated in [32]. The method consists of setting forth the or-
dered array of m X's and n Y's for the group and placing unity under each X and
ki under each Y. Then cumulative totals from the left are obtained and the
probability of (2.6) results from division of knm!n! by the product of these cu-
mulative totals.

2.3 Examples. The sequential rank tests were illustrated [32] for a screening
experiment on chemical compounds for possible amelioration of the harmful
effects of radiation. At each stage of the screening process ten laboratory animals
were chosen, exposed to equal doses of radiation, divided randomly into equal
size Control (X-sample) and Experimental (Y-sample) samples with the Experi-
mental sample being subjected to injection of the chemical compound under
study. The example is summarized in table II.1; although survival times are
given in [32], only ranks representing orders of death are given here.

TABLE IIA.

RANKS FOR CONTROL AND EXPERIMENTAL SAMPLES BY GROUPS
IN A SCREENING EXPERIMENT TOGETHER WITH TEST STATISTICS

Group X- and Y-ranks T, S, In r, In (pit/pot) In R, In (Pt/P1ot)

1 1, 2, 3, 5, 8 19
4, 6, 7, 9, 10 36 1.511 1.511 1.403 1.403

2 1, 2, 5, 9, 10 27
3, 4, 6, 7, 8 28 0.182 1.693 -0.498 0.905

3 1, 2, 3, 7, 9 22
4, 5, 6, 8, 10 23 1.070 2.763* 0.669 1.574

4 1, 2, 3, 6, 7 19
4, 5, 8, 9, 10 36 - - 1.403 2.977*

* The sequential process terminates with acceptance of H1.

For this illustration, m = n = 5, k1 = 2.33 (pi = 0.7), a = 0.15, f3 = 0.05,
ln A = 1.85, and ln B = -2.83. Values of ln r,, ln (plt/pot), ln R,, and In
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(P,i/Pot) are shown in table I.1. The Wilcoxon algorithm was used to compute
In r, and thence In (pit/pot), and the tables noted were used to record In R, and
thence In (Pil/Pot). Both the sequential, configural rank test and the sequential,
rank-sum test led to rejection of Ho and acceptance of H1, the former with one
less group of observations than the latter. Termination is judged by comparison
of In (pit/pot) or In (P1t/Pot) with In A and In B as explained in the preceding
subsection.
Numerous other possible applications exist in the medical-biological area and,

indeed, many of these necessitate the use of within-group ranking. A second
example is given in [33] and is based on visual ordering of severity of ulceration
in rats.
The sequential ranking methods may be particularly useful in research wherein

measurement is difficult but subjective ordering within groups of limited size is
possible. Sequential triangle and duo-trio tests for the selection of expert taste
panels have been discussed [2]; Kramer [13], [14] has extended the matching
process to more samples. Sequential rank methods could be used for judge selec-
tion for tests where X- and Y-samples differ in and are to be ordered by basic
taste characteristics.

Other applications may be noted in life testing. A specific case noted by the
author involved a testing machine with a rotating cam which flexed six small
springs under test. If two sets of three springs each, the sets differing in metal
composition, were randomly allocated to test-machine positions, an appropriate
sequential experiment could be devised and depend on order of failure of the
springs.

2.4 Properties. Wald has provided means of evaluation of the average sample
number (ASN) function and the power function of sequential tests at special
values of the parameter under test. These formulas have been applied to the
sequential rank tests [32] but do not adequately characterize the functions.
Monte Carlo studies were undertaken [3] to further evaluate properties of the

sequential tests. These studies included empirical calculation of points on the
ASN and power functions for the sequential rank-sum test with a = , = .05,
the calculations for each set of design parameters being based on 500 simulated
sequential experiments. The studies were made for data generated in accordance
with the Lehmann model and also for data generated from normal populations
with unit variance and with means differing by ju, corresponding to the parallel
value of k in the Lehmann model.

It was found that the power function cI(k, A,u) could be adequately represented
by the probit model,

(2.1)1 a+bM,-5(2.17) 4(c i)= J e-'/2 dW.

Estimates of a and b for the various designs are given in table II.2; k and A,u are
related as noted above and as tabled in [32]. In general, it was found tha a and f8
were somewhat less than the nominal values of the designs. Note that & tends to
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TABLE 1I.2
ESTIMATED PARAMETER VALUES FOR FITTED POWER FUNCTIONS

FOR THE SEQUENTIAL RANK-SUM TEST
(Main entries are for the Lehmann model; values in parentheses are for

the normal model.)

m = n
Design 2 3 4 5

k= 2.33 d 3.89 (3.68) 3.44 (3.31) 3.16 (3.99) 3.51 (3.86)
a =,/ = .05 6 4.34 (4.25) 5.01 (4.80) 5.59 (3.79) 4.93 (3.84)

k= 4 a 2.59 (2.98) 3.16 (3.10) 2.63 (2.81) 2.71 (3.08)
a , = .05 6 4.30 (3.43) 3.60 (3.43) 4.27 (3.70) 4.17 (3.40)

k= 9 a 2.83 (3.05) 2.56 (2.65) 2.40 (2.69) 2.42 (2.47)
aY =8=3 .05 6 2.87 (2.30) 3.11 (2.69) 3.42 (2.75) 3.36 (2.97)

be larger for the normal model than for the Lehmann model, and b tends to be
smaller indicating a larger Type I error and lower power for positive Ay or k in
excess of unity; a and b are estimates of a and b respectively in (2.17).

In table II.3, some typical values of the ASN functions are given for the se-
quential, rank-sum test with data generated from the Lehmann model and from
the normal model. This table also contains information on the ASN function for
a modified configural rank test to be discussed in the next subsection. Note that
ASN values tend to be slightly higher for the studies on the normal model but
are not excessively so.
The Monte Carlo studies suggest an element of robustness for the sequential

rank-sum test and give confidence in its use when the Lehmann model may not
be entirely appropriate.

Additional information from the Monte Carlo studies is given in [3]. Effects of
truncation were considered as were the distributions of termination numbers.

2.5 Modified sequential rank tests. It appears intuitively that better sequen-
tial rank tests might be obtained when it is feasible to effect complete re-ranking
of the totality of X- and Y-observations at each stage of the sequential process.
Such a procedure has at least theoretical interest.

Suppose that X- and Y-observations are still taken in groups of m and n and
that no group or block effects are present. Then, at the t-th stage of such a
process, mt X-observations and nt Y-observations are ranked in joint array. If
the Lehmann model is used again, a modified, configural rank test might be based
on the probability ratio,
(2.18) p*l/pot = r(mt, nt, ki, 1)

with r defined in (2.7). Similarly, a modified, rank-sum test might be based on

(2.19) Pl/PO* = R(mt, nt, ki, 1)

with R as in (2.12). Use of Wald bounds (2.14) may be tried. The case with
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m = n = 1 assumes more interest now and is the case considered in the Monte
Carlo studies noted below.

Savage and Savage [22] have demonstrated that the bounds (2.14) arc appro-
priate for the modified, configural rank test but have not so demonstrated for
the modified, rank-sum test. In the former case, they have shown the properties
of finite termination and finite expected termination under Ho and H1. Savage
and Sethuraman [23] are developing stronger termination results following some-
what the approach of Jackson and Bradley [12]. fHall, Wijsman, and Ghosh [11]
discuss the problem as does Berk [1]. Further theoretical work is required to
obtain information on ASN functions and power functions wheni the basic as-
sumption of Wald's methods are not met. Much more extensive tables of ln R
would be required to facilitate use of a modified, rank-sum test.

Limited Monte Carlo studies have been conducted under the Lehmanni model
for the modified, configural rank test, and values of the ASN functions are
shown in table II.3. Values of the power function are very close to those for the
grouped, sequential rank tests. The comparison in table 11.3 is somewhat con-
founded in that the modified, configural rank test with n = n = 1 is compared
with the grouped, rank-sum test. Appreciable reductions in ASN values are
shown.
More complete discussion of the modified, sequential, rank tests is given in [4].
2.6 Other research. MIilton [17] has computed probabilities of possible rank

configurations for 1 < n < rm < 7 and n = 1, n = 8(1)12 for F(u) and G(u)
normal with unit variances and differences in means, p., = 0(0.2)1l, 1.5, 2, .3. He
has used these tables for various nonparametric power and efficiency computa-
tions and comparisons [18] and also to develop grouped, rank-sum and con-
figural rank tests of the normal shift hypothesis [19].
For the sequential rank tests, Milton has tabled values of the group probability

ratios comparable to (2.7) and (2.12). He has used Wald's formulas to evaluate
ASN and power functions at the selected points for which such formulas are
available. It is difficult to compare his results with the Monte Carlo studies
[3], [4] because his values of 4, under the alternative hypothesis do not match
those corresponding with our values of k1 or pi very well. Limited comparisons
suggest that his ASN values are slightly lower than those of our Monte Carlo
studies, but it appears that the Wald formulas may underestimate ASN values,
at least for the Lehmann model (see [3] table 4).

Parent [20] has defined sequential ranks and applied the concept to the two-
sample problem discussed above and also to the paired-sample problem leading
to a type of sequential, signed rank procedure. The sequential rank of an observa-
tion Xt relative to the set X1, * * *, X: is k if Xt is the k-th smallest observation
of the set; X1, - * *, Xt-1 are not given new ranks at stage t, and several of these
X's could have received rank k also as they were observed in sequence. It is
pointed out that the sequential ranks for X1, * * *, Xt are uniquely determined,
and moreover, that they uniquely determine the ordering of X1, * * , X,.
The use of sequential ranks provides some simplifications in modified sequen-
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tial rank tests discussed above. However, sequential ranks are not independent
for the Lehmann model unless k = 1, and they do not avoid the requirement for
stronger basic theory of sequential analysis than that provided by Wald.

Signed sequential ranks are discussed by Parent also. Independence of the
signed sequential ranks is demonstrated when the observations giving rise to
them are independent and equally distributed from a population with cdf F(u)
satisfying the "symmetry" relationship,
(2.20) F(-u) = F(0)[1 - F(u) + F(-u)], u > 0.
This condition is met by distributions of positive, negative, and symmetric-
about-zero random variables, but for random variables taking both positive and
negative values with median different from zero, the condition is rather restric-
tive, ruling out many common distributions. A sequential, signed rank test analo-
gous to Wilcoxon's procedure is not developed; rather, a procedure to detect a
change in distribution from F(u) to some G(u) at some stage in a sequence of
observations is developed and applied to process control.

3. Multivariate two-sample rank tests

3.1 The multivariate problem. Consider two, p-variate populations with asso-
ciated, column-vector variates, X and Y. Let F(u) and G(u) be the distribution
functions as in (2.1), X and u now being vectors. The null hypothesis is expressed
again as in (2.2), and alternatives specifying location change only are usually
the ones of interest. Samples, xi, * * *, xm and yi, * - *, y,, of independent, column-
vector observations from X- and Y-populations respectively are taken.
The problem considered is basically the two-sample form of Hotelling's prob-

lem with the generalized Student ratio when F(u) and G(u) are multivariate
normal with common dispersion matrix 2 and, under Ho, identical mean vectors.
The well-known statistic used then is

(3.1) T2 = mn (- )'S-(-Y)
where

(3.2) x = ~~~mEa= ng=i
and

~~ m ~~~n

(3.3) S= XX mx-Y' , yyO - nyy' /(m + n - 2).
_a=l {1=1I

Given the multivariate normal populations, it is known that (m + n - p - 1) T2/
(m + n - 2)p has the variance-ratio distribution with p and m + n - p - 1
degrees of freedom while, asymptotically with m and n as they become large in
constant ratio, T2 has the chi-square distribution with p degrees of freedom.
These distributions are central under Ho but noncentral under the location
change alternative with noncentrality parameter,
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(3.4) X2 mn

where ,u = Ax -,, A. and ,uy, the mean vectors of X- and Y-populations. When
the multivariate normal assumption is removed, little is known about the small-
sample distribution of T2 and nonparametric methods may be needed.

3.2 Nonparametric procedures. Wald and Wolfowitz [28] seem to have been
first to consider multivariate, two-sample, randomization tests. (They considered
the univariate case in some detail and indicated that extensions to the multi-
variate case were straightforward.) A modified statistic, proportional to

(3.5) T2 = m+n (x- VSM-(X-
was used, where

(3.6)
X"X
m n

SM = yEyXaX + E - (m + n)-1(mY + ny)(mx- + ny)' /(m + n -1).

The statistic TM is monotonically related to T72 through the relationship,

(3.7) T77, = (m + n - 1)T2/[(m + n - 2) + T2].

The randomization test of Ho is conditional on the numerical values of the
observation vectors. Let zi, - - *, Zm+n constitute the complete set of vectors,
xl ... Xm,yi,Y * *, yn. Under Ho, the designation of a z-vector as an X- or

Y-vector is taken as a matter of random labeling; each of the (m + n possible

distinct assignments of m X-labels and n Y-labels is taken to be equally likely.
For each labeling, T2 is evaluated, and one of these values is the observed one,
say, T2 obs.. Let a test with significance level a be desired. Let 17 be the number

of values of Th > T os. If X <a (m + n), the observed value T ob. iS taken

to be significant and Ho is rejected. Since SM is invariant under the random
labeling and S is not, Tm2 is used for the test because it is considerably easier
to compute or study than T.2 The test based on TM is equivalent to the similar
test based on T2 because of (3.7). It is seen that the randomization test in the
multivariate case follows the same principles as in the univariate case.
Minor simplifications may be made. The constant multiplier in (3.5) may be

dropped, and we may replace (x-y) by ( X, - mz) where 2 = z+n
z./(m + n) and obtain a new statistic monotonically related to T72 and Tm2. Since
z is fixed for given observation vectors, the latter substitution yields a statistic
for which only the vector = 1 xa, changes from one labeling to the next. Even
so, the randomization test is numerically difficult and tabling is not possible.
Wald and Wolfowitz show that the limiting distribution of TM is the central

chi-square distribution with p degrees of freedom for the randomization test
subject to mild restrictions on the sequence of vectors of real constants, z1, * * -*
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Zm+n. It follows directly that T2 has the same limiting distribution under Ho for
the randomization test. Thus, for moderate sizes of m and n, one might assume
that use of the limiting distribution is adequate for applications as an approxima-
tion to the randomization test.

Bradley and Patel [5] in work in progress have considered moments of TjM
over the randomization distribution. We note only the first two moments here:

E(T) =p

(3.8) E(1) =(cl) p(p + 2) + (mn+n) (co - 6cj) El 97
p(p+ 2) for m, n large,

where
co = mn/(m + n)(m + n -1),

(3.9) cl = m(m - I)n(n - 1)/(m + n)(m + n - 1)
(m + n - 2)(m + n - 3),

= (Z^, - Z)/SM1(Z - Z).
A basis for an approximation to the randomization distribution of TM is to
fit a continuous density function of appropriate type to it. The statistic
T2/(m + n - 1) has the beta distribution on (0, 1) with parameters 2p and
2(m + n - p - 1) under normal theory. Suppose a beta distribution is the
appropriate type and determine its unknown parameters 'vP and v2 by the
method of moments, two moments of TMr/(m + n - 1) being available from
(3.8). Then
(3.10) vi = Op, V2 = O(m + n-p-1)
with

(3.11) 2=m [{P(m + n- - 1)} 1]

where
(3.12) v = var (TM) = E(TM) [E(T-2)]2
from (3.8). The corresponding approximation to the randomization distribution
of (m + n-p- 1)T2/(m + n - 2)p is the variance-ratio distribution with vi
and P2 degrees of freedom as computed from (3.10). Note that 4 approaches
unity with large m, n since v - 2p.

In the univariate problem, it is possible to replace the original observations
with ranks. Then the randomization distribution depends only on m and n, and
tables are available [31] as we have seen. Use of ranks in the multivariate prob-
lem leads to only slight simplifications. Suppose that observations on each variate
are ranked separately as in the univariate problem, and let ri, * * *, rm, Si, * * *,
be the resulting vectors of ranks. The computation of SM is simplified as all diag-
onal elements are known and equal, but the nondiagonal elements are propor-
tional to the various rank correlations of the data. In different problems, for
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given m and n, different arrays of rank correlations will arise and tabling of the
distribution of TM is not feasible. Bradley and Patel have considered the use of
ranks as well as normal scores and have developed some large-sample theory
associated with them.

Following the paper by Wald and Wolfowitz, much new theory of nonpara-
metric and rank-order statistics was developed, but there was an interval wherein
little more was done on the multivariate problem, an exception being the work
of Lynch and Freund [16]. Recently, there has been more activity. In addition
to [5], Chatterjee and Sen [6] discuss the bivariate problem with use of ranks and
give some consideration to the nonnull distribution of ThM. Sen [24], [25], Sen
and Govindarajulu [26], Govindarajulu [10], and Chatterjee and Sen [7] provide
more general results including two-sample, multivariate problems, C-sample,
multivariate problems, and limit theory. Robson [21] proposes a distance method
with application to ecology.

Wilcoxon had a long-term interest in the multivariate generalization of the
rank-sum test. He was seeking a procedure of relative simplicity and proposed
two bivariate methods with that characteristic. Neither of these methods has an
adequate theoretical base, but both have intuitive appeal. They are presented
here in order to record his ideas and perhaps to stimulate further consideration
of them.

3.3 Wilcoxon's first bivariate method. Consider m bivariate X-observations
and n bivariate Y-observations with corresponding rank vectors (rin, r21), ..,
(rim, r2m), (Sii, 821), * * *, (Sin, S2n). Let the sample mean vectors be (7l, r2) and
(a1, s2), and let r be the pooled correlation coefficient calculated from the ranks,
(3.13)

[ m n

E (r. -ri)(r2a- F2) + E (sln - S1)((82-2)1
_ ~mn ~ _~m n _1Fr (r1. - 7-)2 + E (s,- g)22 E (r2 - r2)2 + E (S20 82)2]

Wilcoxon computed Fisher's discriminant function from the ranks, the linear
function that has the greatest variance between samples relative to the variance
within samples. A quantity proportional to this discriminant function for an
arbitrary point (tl, t2) is
(3.14) z = t1+ t2 tan 0

where

(3.15) tan 0 =A-r2-r Ar2
Arl- r Arl

with
m m

(3.16) Ar,= Erla- m(m + n + 1), Ar2= E r2a- 'm(m + n + 1).
a=l a= l

Substitution of each rank vector (r1a, r2a) and (s1a, s2a) for (t1, t2) in (3.14) yields
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(m + n) values of z. The z's are then ranked and the ranks associated with the
X- and Y-samples, the ranks being Ri, . * , Rm, 1,Si, * Sn. Wilcoxon again used
the rank-sum statistic, but in the function

(3.17) A2 = 12 R[, - im(m + n + 1)1 /mn(m + n + 1).

The procedure is simple geometrically. The observation vectors are trans-
formed to rank vectors as a scaling process, since first and second variates in
an observation vector may not otherwise be commensurate. The rank vectors
are plotted in the two-dimensional space, and a line with slope tan 0 of (3.15)
is drawn, say, through the mean point [I(m + n + 1), I (m + n + 1)]. Each
plotted rank-vector point is projected orthogonally onto the line, and the projec-
tion points are ranked along the line yielding the required ranks, R1, * * Rm,
Si, * * * , Sn.
The distribution of A2 is not known. It is formulated from the univariate prob-

lem in which A may be taken to be standard normal under Ho for moderate sizes
of m and n. In the bivariate problem, the line chosen for the final ranking gives
a maximum or near maximum value for A2, and univariate tables for the small-
sample distribution of ,m=1 Ra, are not satisfactory. Wilcoxon believed that A2
had approximately a chi-square distribution with two, rather than one, degrees
of freedom under Ho. This belief was based on empirical studies; his notebook
contains many calculations of A2 for various sets of data and some limited calcu-
lations of the randomization distribution of A2 for special examples. Further
study is needed to substantiate his belief.

3.4 Wilcoxon's second bivariate method. Again consider the bivariate rank vec-
tors (rla, r2a) and (81i, s20), a = 1, * * *, m; i3 = 1, * * *, n, of subsection 3.3. Wil-
coxon transformed the rank variates to yield new vectors, (Ula, U2a) and (v1P, v20),
wherein uln = rin - r2a, U2a = ria + r2a; vio = sip -s2p, v2P = Si,2 + 520. Note
that a randomly selected vector (t1, t2) from the set of r- and s-vectors yields a
correlation between ti and t2, but that a randomly selected vector (w1, w2) from
the set of u- and v-vectors has zero correlation between w1 and w2, a result that
follows since ti and t2 have equal variances.
Wilcoxon supposed that lack of correlation might justify an approximate pro-

cedure, properly valid when w1 and w2 are independent. Thus he suggested re-
ranking of the variates in the u- and v-vectors leading to new rank vectors, say,
(Ri,, R2U) and (Sin, S2n). Then he computed ,m= 1 R,, and Xm= i R2a, A2 and A2
from (3.17) by substituting the two new rank sums for Em=1 R, in that formula,
and W2, his proposed statistic where

(3.18) W2 = A2 + A2

On the basis of the assumed independence, he took W2 to have the chi-square
distribution with two degrees of freedom under Ho.

This method should be correct asymptotically with large m and n. It does not
provide easy generalization beyond the bivariate case.
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4. Other research

Wilcoxon had a third major interest in research in rank-order statistics. This
was in regard to the distributions of ranges of rank totals in a two-way classifica-
tion. His notes contain much preliminary study of the problem, and he worked
with Dunn-Rankin [9] in the development of a dissertation on the topic in the
School of Education. In addition, in research in progress, McDonald and Thomp-
son have developed new results in this area at the Florida State University.

Daniel and Wilcoxon [8] have a paper on the design of factorial experiments
scheduled for publication in Technometrics in the near future.
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