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1. Introduction

The many postwar conferences on allocation of fishing rights on the high seas
between various nations and on the conservation of marine resources have
focused attention on the dynamics of marine populations and particularly those
exploited by man. This interest has brought forth numerous models of various
degrees of sophistication pertaining to the dynamics of such populations. The
forerunner of these perhaps was the model of Baranov [2]; the most extensive
modern study is that due to Beverton and Holt [5]. The emphasis of all of these
studies has been in determining the optimum level of exploitation by man, that
is, to determine what is the maximum sustainable catch. Since catch is the result
of fishing effort, initial population size, growth rate, natural mortality, and cer-
tain other parameters, the over-all structure can be examined only if there is
information to estimate such parameters. This information comes partly from
samples obtained or experiments made by the research biologists and partly from
data obtained in connection with the exploitation. In fact, in general it is feasible
to study a large population only if it is exploited. Consequently a statistical
study of the dynamics of a large population is necessarily based on such infor-
mation, that is, catch data, effort data, returns of tags from the fishery, and so on.

Such data may be used to estimate the parameters of the various processes
that go to make up the total yield and the changes in these parameters in response
to manipulations of man. That is, one can attempt to study the structure of the
several processes in the small. Alternatively it is possible to consider only the
end result of the total catch and try to relate this to changes in effort or other
manipulations of man.
Beverton and Holt in the paper cited used the first approach and studied a

number of models in detail; however, it was not their aim to give a complete
statistical treatment. They have used a number of special methods; some
methods suggested have been used uncritically. Often no formulas have been
given for variances of the estimates nor confidence intervals for the parameters.
It is the aim of this paper, therefore, to formulate some of the statistical prob-
lems associated with the dynamics of exploited fish populations, to provide
solutions to some of them, and to note problems which are still open.
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Almost invariably the statistical problems have been formulated in terms of
deterministic models. Where the studies treated large populations far from any
"boundaries" it may have been reasonable to assume that the differences between
deterministic and stochastic models are second-order effects. However, the form-
ulation here, except for the growth process, will be as a stochastic process. It
is also unsatisfactory to study a population as if it were isolated from the other
species in its environment; usually, we know too little of the prey and predator
species to treat them specifically and can only consider them indirectly through
their effects on the exploited population.

2. Mortality rates

The deterministic theory of fishing is based on the equation, for yield in weight,

(2.1) dYf = qf(t)N(t)w(t),dt

where Y,,(t) = catch (by weight) of the fishery in time (0, t),
f(t) = effort applied at time t,
N(t) = population size in numbers at time t,
w(t) = average weight of fish at time t,

and q is a parameter usually defined as the fraction of the population taken by
one unit of effort. In probability terms it can be defined as the probability that
a unit of effort captures any specified fish. While we do not use the deterministic
equation (2.1) or its integrated form, we merely point out that a study of yield
certainly depends on the processes N(t), w(t), the parameter q, and the initial
conditions. We first study N(t).
We assume that the population has initial size No and is subject to the two

death processes with instantaneous transition probabilities M, and qf(t), that is,
the differential equation for the probability of n individuals surviving at time t is

(2.2) PN(t) = [M + f(t)] [(N + 1)PN+l - NPN(t)].
As is well known, this has the solution

(2.3) PN(t) = (NO) exp {-No[Mt + qF(t)]} (1 - exp {- [Mt + qF(t)]})NO-N,

where F(t) = f0 f(u) du, that is, F(t) is the accumulated effort up to time t.
Further,
(2.4) E[N(t)] = No exp {- [Mt + qF(t)]}
and
(2.5) a2[N(t)] = No exp {-[Mt + qF(t)]}(1 - exp {-[Mt + qF(t)]}).
Equation (2.4) is essentially the same as the usual deterministic equation. In the
deterministic theory of fishing a similar differential equation leads to a catch
equation. Hidden in this approach is the assumption that f(t) = f, that is, that
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fishing goes on at a continuous level of effort at all times. This is unrealistic for
most fisheries. We avoid making this assumption in general but rather approxi-
mate f(t) by a step function.
Thus let C(t) = catch (in numbers) in interval (0, t) and let

(2.6) f(t) = fi, ti-I < t < ti; i = 1, 2, ***
where to = 0, and limi.-ti = oo, and we write ti - tii = Ai so that

(2.7) F(ti) = L fj,j = Fi,
j=1

say. During the ith interval the expected mortality is
(2.8) No{exp [- (Mti-l + qFi-,)] - exp [-(Mti + qFi)]}
and hence the expected catch in this interval is

(2.9) Mfi+f_ N0 exp [- (Mti_l + qFi_l)]{1 - exp [- (M + qfi)Ai]}.
Such a step function approximation to f(t) may be the most that can be achieved
with actual data. However, for theoretical purposes we may regard this as a
Riemann sum and with the usual limiting operation find that

(2.10) E[C(t)] = fo Noqf(u) exp {-[Mu + qF(u)]}du.

In the special case that f(t) = f, then

(2.11) E[C(°o)] - f No.M+qf
Because of the important role that annual data play in fishery statistics we note
some formulas pertaining to C(1). If

(2.12) fO.tf.T,<T _ t . 1,
then

(2.13) E[C(1)] = qfNo {1 - exp [-(M + qf)T]}M+qf
and
(2.14) E[N(1)] = No exp [- (M + qfr)]
so that it is natural to identify qfir as the fishing mortality rate.
For simplicity in later work we write qfr = F and note that when fishing is

at a constant level, that is, f(t) = f, then T = 1 so that F = qf in this simple case.
A further specialization is the case of a short intensive fishery which may be

realized by letting r-0,f---o, with 0 <F <x, hence

(2.15) E[C(1)] = No(l - e-F).
2.1. Tagging estimates. Consider now the estimation of the mortality rates

M, F (or M and the catchability coefficient q). In some cases only M + F are
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estimable; we then set M + F = Z, the total instantaneous mortality rate. The
subpopulation of initial size No may be a tagged population and the estimation
of population parameters in this case has been well studied for a sequence of
discrete point samples. These results are applicable to short intensive fisheries
of the type above, formula (2.13). In this case the total survival rate and the
total population size can be estimated (see Chapman [6]); it follows easily that
the mortality components F, M may be also estimated. Less attention has been
paid to the case where sampling of the population and tag recovery is based on
a continuous fishery. For a fishery that is both continuous and at a constant
level, Gulland [13] has given the maximum likelihood estimates of M and F and
noted that they are biased. That no minimum variance unbiased estimate of F
exists may be shown following the methods of Barankin [1]. But an essentially
unbiased estimate may be found for this case where f(t) is constant. Suppose there
are n recaptures of the No tagged animals at times ti where i = 1, 2, - * *, n. As
noted above, the probability of recapture is qf/(M + qf), that is, F/(M + F)
or F/Z. Now assume that the recaptures are binomially distributed,

(2.16) P{n} = (No)( + F)n(M+ F)

Further, given n 2 1, the random variables tl, t2, * * * , t, have an exponential
distribution, that is, their density function has the form

0, _-0 < t < 0,
(2.17) f(t) = <.(F + M) exp [-(F + M)t], 0 < t < .

Define T = E2 ?iti. For n > 1 there exists a minimum variance estimate of
F + M as a function of T, namely, (n - 1) T-1, but no such estimate -exists
for n = 1 and only trivially for n = 0. Also, n/No is a minimum variance esti-
mate of F/F + M. Hence, neglecting P{n = 1}, that is, a single recapture,

(2.18) F {NoT
otherwise,

is almost unbiased. Also,

(2.19) ~ 2(F) = F(F + 2m) + 2(F + M) +No No0 0N
Further, the corresponding estimate of M is

(2.20) = No-n)(n -1)
NoT

with

(2.21) a2(M) M(F + FM + M2) + OQg2)

For the more general case this method of attack is complicated by the un-
pleasant form both of the ultimate probability of recapture and of the conditional
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distribution of the ti. The expected number of recaptures is given by (2.10) while
the conditional distribution of the ti is

(2.22) h(t) = qf(t) exp {- [Mt + qF(t)]}
f0 qf(u) exp {- [Mu + qF(u)]} du

A general method of estimating M and q based on the recaptures tl, t2, t**
(but not on No) would be to obtain maximum likelihood estimates from this
conditional density. The equations to be solved are
(2.23) nE(u) = T, nE[F(u)] = FT,
where FT = E 1 F(ti) and where the expectations are functions of M and q.
In case f(t) is approximated by the step function (2.6), then E(u) is the ratio of

0 fi4
(2.24) i2 (M + qfi)2 {[(M + qfi-,)ti-i + 1] exp [-(M + qfi_ )ttii]

-[(M + qfi)ti + 1] exp [-(M + qfi)ti]} exp [-q(Fi- - tiifi)]
divided by

(2.25) L.f.exp [-(Mti-l + qFi-,)]{1 - exp [-(M + qfi)Ai]}.
In practice the infinite sums reduce to finite sums but even if there are only a
small number of terms, estimation of M and q appears prohibitive without a
high-speed computer. As an alternative, we consider two approximate methods
depending on whether the Ai, the intervals of constant effort, are small or large.
Which method is usable will also depend on the available data. Neither of these
methods depends on knowledge of No; we comment on this later.

If the total number of recaptures is small so that the dependence between
successive recaptures may be neglected, and if the recaptures are grouped by
interval of uniform effort (ti-1 _ t < ti), then

(2.26) Ef NoM+qf {1- exp [-(M + qfi)(ti -ti-1)

exp (Mti-l + q E fjAj) ]

Now if

(2.27) log 1 - exp [-(M + qf )(ti -ti- I
(2.27) log ~~M+ qfi

may be approximated by

(2.28) log (ti- ti.1) - (M + qfi)(ti-ti_)2

which is reasonable if (M + qfi) (ti- ti1) is small, then q and M may be esti-
mated by regressing log ni/fi on ti and Fi. The variances of the estimates of M
and q are found as usual in multiple regression analysis. As is frequently found
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in data of this type, the logarithmic transformation may lead to approximate
homoscedasticity.

If the periods Ai are longer and if recapture times are recorded, then these
provide information on M + qfi for each period Ai. The earlier analysis is not
directly applicable since the periods of observation are truncated. For each
period (ti-1, ti) of length Ai, the conditional distribution of the times of recapture
measured from the start of the period has the form of the truncated exponential

(2.29) h(t) = 1 Zit_ ,

where we have written M + qfi = Zi and, as noted, Ai = ti- tii.
The maximum likelihood estimate of the scale parameter of the truncated

exponential was studied by Deemer and Votaw [10]. The estimate of Zi is the
solution of the equation

(2.30) Ti _I 1
ni- ZiAi eziAi -1

when Ti < niAj/2 and 0 otherwise. Here Ti = =t'_ the t' being times of
recapture in the interval Ai measured from ti-i and ni being the number of re-
captures. Deemer and Votaw provided a table [10] to assist in the solution of
(2.26). The large-sample variance of Zi is

(2.31) n2(Z)= 1 [Zi 2- AeZiA(1 -eziA>211.

Finally then, since Zi = M + qfi, estimates of M and q are again found by
weighted regression analysis, the estimated weights of the Zi being found with
the help of (2.31).

In both of these methods separate estimation of M and q is possible if and
only if fi id f for all i, that is, effort varies. Also, in general the greater the varia-
tion the smaller the variances of estimate of M and q.
A statistically complete treatment of the estimation of M and q (or M and F)

based on No, n, and ti ... t,, for a continuous fishery with varying fishing inten-
sities remains an open question. A number of attempts that have been made
are reviewed and criticized by Beverton and Holt ([5], pp. 185-191). While there
is a theoretical gap here, from a practical point of view it may be advantageous
not to have to use information on No, for there may be initial tag loss and mor-
tality caused by the tagging procedure which reduces No from the indicatedvalue.
Further, there may be a time lapse before the tagged fish are fully "vulnerable"
(systematic errors of type C in Ricker's terminology [20], p. 122).
There are in addition other problems associated with tagging experiments,

for example, continuing tag loss or differential tagging mortality, incomplete
reporting or return of tags (Ricker's systematic type A and B errors). In studies
of large marine populations there are also the more acute problems of placing
a sufficient number of tags in a large and widely scattered population and of
having them dispersed randomly throughout the population, While this point
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cannot be discussed here in detail, it is important to point out that a tagging
experiment cannot be analyzed completely without taking into account move-
ments in the population and the degree of mixing. For example, it should be
asked: is the population composed of a collection of subpopulations which do
not mix at all, or a single homogeneous freely mixing population, or is the actual
situation somewhere between these two extremes? Much qualitative work has
been done upon migration based on information obtained from tagging experi-
ments. A statistical study of tag recoveries in a stratified population was given
by Chapman and Junge [7]; these results apply to point samples from a popula-
tion with M = 0. Extensions to the general case with samples obtained by a
continuous fishery are necessary.
Rather than a purely statistical approach which may involve a formidable

tagging program, models may be formulated which utilize biological information
on the movements of the fish. Skellam [24] has shown the possibility of using a
diffusion model in a related problem, namely, the dispersion of a population
into new areas and in connection with certain other ecological models. Beverton
and Holt, in their work already referred to [5], suggest some tentative models
which are deterministic. However, if the results are to be applied to tagging
experiments, then a stochastic model may be necessary, for whereas the popula-
tion as a whole may number in the millions, the tag returns classified by subarea
and by year will number from two or three to a few score. For these reasons
estimates from age composition and effort data have been sought that are not
based on a tagging process. Leslie and Davis [15] and independently DeLury
[11] showed how effort data could be used to estimate the population size (and
hence q or F) for populations with M = 0. For the more general case where
M 5 0 it is necessary to consider two possibilities, the fishery operating at a
constant level vs. a variable-level fishery. Only in the latter case is separate
estimation of M and q possible. In the former case estimation of Z = F + M,
the total mortality rate, is possible. We consider this case first.

For the case of constant effort and a short intensive fishery, methods developed
by Chapman and Robson [8] for the analysis of a single catch curve are appli-
cable. We assume that the short intensive fishery operates annually at a similar
effort level. Now consider any year class and code as zero that age at which the
fish are fully available to the fishery. Let X = age of capture (coded). The as-
sumption of constant fishing and natural mortalities implies a constant probab-
ility of survival and thus leads to the following frequency function for X,

(2.32) f(x) = (1 -S)S,
where S = 1 - eZ. Then, following Chapman and Robson, the minimum
variance unbiased estimate of S is

(2.33) X (1 + X -

with
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(2.34) a2(S) nS(1-S)2
Extension of this to truncated samples are given in the paper cited; also given
is a nearly unbiased estimate of F + M.

If the fishery is continuous at a constant level and continuous catch data is
recorded, then times of capture tl, t2, * * *, tn from a specified year class yield a
minimum variance unbiased estimate of Z, namely,

(2.35) Z = (n - 1)T-1, a2(Z) = n-2

With data obtained annually or continuously, the combining of results
from several year classes presents no problem. The relevant statistic to be cal-
culated is T, the total time until capture measured from zero. Estimation of Z
from incomplete (truncated) data follows exactly the formulas given earlier
(2.30), (2.31).
Turning to the more general case where there are variations in effort, M and q

can both be estimated. This possibility of utilizing variations in efforts to
estimate M and q separately from age and effort data was apparently first recog-
nized by Silliman [23], who considered variations in total mortality from a high
level of effort to a low level. Widrig [28] and independently Beverton and Holt
[5] extended the methods as follows. Let C1 = catch in year i; assume ft = fi
in year i; from (2.9)

(2.36) E(Ci|Ni) = _gf,N {I - exp [-(M + qf1)]},M+qfj
(2.37) E(N1+uLNj) = Ni exp [-(M + qfi)],
whence they write

(2.38) log Ci- log Ci+i = log { _ exp [- (M + qf )]}}(M + qf1)i.fi fi+1 {1 -exp [-(M+ qfi+,)]}(M + qf1) +M+q,
The nonlinear term on the right side of (2.38) may be negligible; in particular
it is, to a first approximation,

(2.39) l(fi+i- fi)( 6)
The method proposed is to regress yi = log Ci/fi- log Ci+l/f*+l on fi by least
squares (and in addition Beverton and Holt propose an iterative procedure to
take account of the nonlinear term). Ordinary regression methods are insuf-
ficient for the yi are correlated, since they are defined as successive differences.
In addition there is the correlation of the series of catches from the same popu-
lation. If the second of these effects and the nonlinear term are neglected, as is
perhaps reasonable for large populations and small changes of effort, and if it
is assumed that the log Ci are normally distributed with expectations of Ci given
by (2.36) and common variances g2, then the yi with 1 = 1, 2, - * *, r - 1 have
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a simple moment matrix with a well-known and easily computed inverse. This
inverse is proportional to

rr-1 r-2 r-3 ... 3 2 1
r- 2 2(r-2) 2(r-3) - 6 4 2
r-3 2(r-3) 3(r-3) ... 9 6 3

(2.40)

3 6 9 ... 3(r-3) 2(r-3) r-3
2 4 6 - 2(r-3) 2(r-2) r-2

L 1 2 3 r-3 r-2 r-1_
so that least squares estimates of the parameters may be calculated. If (2.39) is
not negligible, then not only is a tedious iteration required but this weighting
is not optimum.

These problems may be avoided by noting that either of the regression methods
given earlier can be applied to captures from any specified year class. These
regression equations were

(2.41) logy- = log (Noq)-M (ti + tiqi_ q F(ti) +F(ti21)

where the intervals Ai are small, and
(2.42) Ai = M + qfi,
where the Zi were based on times of recaptures witin the intervals Ai. That
the (unknown) No does not enter into these equations is now essential. Actual
data of this kind will be grouped into broad classes and to this extent the vari-
ances given by (2.27) underestimate the true variance. We re-emphasize that
the estimation of M and q is improved as variations in effort increase.
Throughout this treatment we have followed the usual assumption in fisheries

of a constant natural mortality rate M. If M is not constant mortality rates could
be determined only from a tagging experiment (see, for example, Darroch [9]),
though this would require a large tagging experiment in a widely dispersed
marine population.

3. Growth rates

The growth rate of the population plays a role in the determination of the
optimum exploitation: exploitation should be designed to let escape those age
classes in which growth exceeds natural mortality but exploit as rapidly as
possible those ages in which the situation is reversed. The earliest attempts to
resolve this problem were based on empirical growth curves. But another factor
in the optimum level of exploitation is the response of growth rate to change in
the population level. It does not seem possible to incorporate such responses into
a purely empirical curve. Thus there has been a search for simple growth curves
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which are not entirely artificial. The most commonly used growth curve is that
due to von Bertalanffy [4], which starts from the basic equation

(3.1) dw = Hs - kw,dt

where w = weight, s = surface, H, k are parameters, and proceeds further from
the assumption that
(3.2) s = pV, w = ql3,
where p, q are parameters, 1 is length, and w, s, and 1 are all functions of time.
However, it is known for many fish that w is not proportional to length cubed

but some other power of 1. It is also questionable both that synthesis of mass
is directly proportional to surface or that surface area is directly proportional
to length squared. A more general starting equation than (3.1) is

(3.3) d Hwa - kwdt
with
(3.4) w = qlp.
Then we have

dl
(3.5) dt = El8 - Kl,
where
(3.6) E Hqa-l K = k, a ( a).
Integrated, this yields

(3.7) 1-
E -I exp [-K(1 - 6)(t + C)],

with C the arbitrary constant of integration.
If at t = 0 we set 1 = lo (not necessarily zero) and further note that as t 0o

then 1 --+ (E/K)11/(0-), the equation becomes
(3.8) 1 = I - (l08 - l1-') exp [-K(1 - 6)t].
Finally, write Li = 11-";K' = K(1 - 5) and the equation reduces to the von
Bertalanffy equation
(3.9) Lt = L. - (L. - L)e-K",
but unless a = 0 the units involved are of course different. It may be noted that
integrating (3.3) as an equation in w would lead to an equation of similar form
to (3.8) in w.

Consider first the case where a is known, that is, is assumed to be zero as
classically has been the case or is estimated separately from weight-length
relationships, together with the additional assumption that a = 2/3. Then (3.9)
is meaningful with L, the observed random variable and K' = K so that we
drop the prime for now. The estimation of the parameters of a nonlinear regres-



EXPLOITED FISHERIES POPULATIONS 163

sion equation of the form of (3.9) has been the subject of an extensive literature
in recent years. In particular, Stevens [25] has given a procedure to determine
maximum likelihood estimates of the three parameters, assuming that the de-
pendent variables are uncorrelated and have equal variances. Stevens' method
involves some heavy computation, though it is well adapted to high-speed com-
puters and hence should not be avoided on this account. Patterson [18] has
given a simpler procedure and he and Finney [19], [12] have discussed in two
separate articles its efficiency and the efficiency of the classical autoregressive
estimation of the parameter K in the exponent. The latter is based on the
fact that equation (3.9) can be transformed to
(3.10) L,+1 = LX(1- e-K) + e-KL,.
While this transformation is the one that has been used in recent work in fisheries
(see Beverton and Holt [5], pp. 279-2F8, and Walford [27]), two other variations
of this seem more promising. Let
(3.11) Lt+1- L = A,L, 1 - = K.
Then

(3.12) AtL = K(Lo, - L)
and
(3.13) AtL = At_1L(1- K).
The latter equation was given by Willers [29]. The use of (3.12) would depend on
the assumption that AjL is distributed independently of Li. This may be reason-
able but it is also probable that the growth increments AlL have variances which
are functions of t, so that some weighting factor should be introduced. This and
questions connected with the use of (3.13) to estimate K and L need further
investigation. The use of a weighted regression to give parameter estimates
based on (3.13) would lead to simple confidence interval estimates for these
parameters.

It is reasonable to think of these equations as applying to an individual fish,
each fish having its own parameters L., Lo. We are really interested in E(L.),
E(K) over the whole population. But the linear regression applied to all the data
leads us to weighted estimates of these parameters. Data on lengths of fish at
several ages is obtained through the technique known as back-calculation, mak-
ing use of the annual rings laid down on scales, otoliths, and so on. It has been
found that there is usually some simple relationship (often one of direct pro-
portionality) between scale radii and body length. In the simplest case, K could
be estimated directly from scale-radius increments. For the more general case,
with 6 of (3.8) unknown, an iterative procedure can be set up to choose 8 as
that estimate of 5 which minimizes the residual variance of Al '-L when regressed
on 11`(Atl-L = 11+ - 11`). This leaves open two important problems: the
variance of S so obtained and the effect estimation of a has on the estimated
variances of L,, and R. When high-speed computing equipment is available this
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procedure can be programmed to yield 8, L::, K for each fish measured and hence
variances of estimates of E(a), E(LX,), E(K) are obtained in the usual elementary
manner.
The extended form of the von Bertalanffy equation and the procedure of esti-

mation given above both bear some resemblance to a formulation of Parker and
Larkin [17]. However, they start with the simpler equation dw/dt = kwz, where
k and x are parameters, rather than (3.1) and are led to an equation of the form
Ft+ = a + l¶, with a, z parameters.
The value of any of these parametric treatments is in giving meaning to the

parameters. Thus Beverton and Holt, following von Bertalanffy, assume K is
directly related to the rate of catabolism of the fish and is thus essentially
constant. This- implies that where growth rate is density dependent, if equation
(3.9) is an adequate formulation of the growth pattern, then L. is the parameter
that changes with population size. The determination of whether this is so and
if so what the relationship is between L. and population size follows standard
procedures. Studies of this are limited at the moment chiefly by the availability
of data.

4. Sampling problems

The problems associated with acquisition of the data necessary to estimate
population parameters have not been considered so far. As noted, the primary
sampling of an exploited fish population is done by the commercial fishery. It
is easy to realize that the commercial fishery is hardly interested in proper
design to obtain a probability sample. The research agency must determine what
information it is possible to obtain from the fishery and what additional infor-
mation must be obtained by sampling the commercial catch (which is then a
subsampling with respect to the original population) and what must be obtained
by independent experiments.
The first problem is that the population may not be well defined: are there

isolated segments of the population not fished? While this problem can be side-
stepped by defining the population as those elements available to the fishery, it
is not clear that with this definition the population remains the same from year
to year. Widrig [28] in particular has raised this question with respect to the
California sardine population. The problems associated with movement of the
fish have been referred to earlier. Even if the fishery moves rapidly with respect
to the movement of the fish so that the sampling of the fishery is adequate, there
remains the question of whether the probability of a fish being sampled by the
fishery is the same for each individual in the population. In fact, in general it
is known this is not so. One type of selectivity found in most fisheries is based
on size. The commercial fishery fixes its gear (in type or place) as required by
law or dictated by economic considerations to avoid the smallest fish. There may
also be selection against the largest sizes (if, for example, they avoid the gear).
In some cases there may be a question of whether or not there is selection. More
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frequently in fisheries the existence of selection is well known and the problem
is the estimation of the "selective curve." This needs to be made more precise.

Let X, Y be random variables with probability density functions r-1S(x)f(x)
and f(x) respectively, where 0 _ S(x) _< 1,

(4.1) r = f s(x)f(x) dx, F(y) = f f(t) dt

is the length distribution in the population while S(x) = probability that an
individual of length x is sampled. S(x) is the "selection function." In general,
O ' S(x) ' 1 but it is clear that it may be redefined so that sup S(x) = 1,
-X0 < x <oo.Wedoso.
A few foims of S(x) are of interest as suggested by actual situations.

The simplest is

(4.2) S(x){
x<
x a,
x >a,

which results in a truncated distribution. This idealized situation rarely occurs
and more usually S(x) has the same shape as a symmetrical cumulative dis-
tribution. This led the earliest workers to assume S(x) has the integrated normal
form, that is,

(4.3) S(x) = exp (t As) dt,V%2,7r 2aS

with parameters ;zs, a'
If it is further assumed that f(x) is known and the data comes in groups as

will usually be the case, then the estimation problem is closely related to those
of probit or logit analysis.
Let pi = relative frequency of fish in length class i,

{i = midpoint of class i,
N = total population size,
p = probability that individual is available to unselective gear,
xi = number caught in length class i, with i = 1, 2, - * *, r.

It is reasonable to assume that the xi have a Poisson distribution with

(4.4) E(xi) = Np ( i A

and since Np are inseparable we write instead Np = y. The unknown parameters
are -y, gus, as. It is feasible to obtain R.B.A.N. estimates of these iteratively.
Given any estimate of y (a simple starting estimate is X,p, ') then estimation
of ps, as proceeds along the lines outlined by Taylor [26], that is, minimizing

(4.5 [(p) _-; y2[(S]2[¢P(X.)]1 p2

Then, if ,us, as are estimated, it is possible to estimate y by minimizing
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(4.6)
1 Xi-[x(pi( ;( )1]-

The minimizing parameter values are solutions of linear equations only.
If f(x) is not known but observations on Y are also available (in fisheries

terms this means that it is also possible to take a nonselective sample), then we
have an additional set of variables Yi with i = 1, 2, * * *, r, which may be as-
sumed to have a Poisson distribution with E(Yi) = Np'pi. Denote Np' = -Y and
plp' = X. As -y, -y' - 0,

Xi_ (ti-hs)

(4.7) Yi as

Yi Yi
is asymptotically N(O, 1) and a similar estimation procedure may be used. It
is not correct to say the resulting estimates are R.B.A.N. for we start with the
random variable Xi/Yi rather than (Xi, Yj). If there are no observations on
Y and f(x) is either completely unknown or assumed to have some parametric
form with some unknown parameters, then the problem of estimating As, as,
and f(x) or the parameters of f(x) is completely open.

In fisheries we may have none of these situations but instead may have catches
by two or more nets, each with its own selectivity function. Or alternatively,
an attempt may be made to build a model relating the selectivity to the physical
characteristics of the fish and of the catching device (compare Baranov [3],
McCombie and Fry [16]). Also, other forms may be assumed for the selection
curve. There may be selection in both directions; in this case, if some symmetry
is apparent in the selection function, it is customary to assume that the selection
function has the same form as a normal density. On the other hand, the selection
in the left and right tails may be due to different reasons so that it is not reason-
able to assume this symmetry. Only partial solutions have been given in these
cases and in general these are statistically incomplete.

5. Maximum sustainable productivity

The problems so far considered relate essentially to static situations, that is,
the estimation of the parameters is treated for a given population level. Next
must be determined which parameter values are responsive to changes in popula-
tion level and what those changes are. This requires that data to make satis-
factory estimates of the parameters be available over a range of values of the
population levels and, as in all regression studies, the larger the range the more
satisfactory the results obtained. The North Sea plaice population has been
studied carefully for a long time and the cessation of fishing that was imposed
by World War II gave rise to the large variations in exploitation and hence in
population level that are required to explore such possibilities. Beverton and
Holt have used the available data to make such exploration in considerable
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detail. However, as noted, their aim was to indicate the range of possible effects
rather than to yield precise intervals for the estimates.

In the absence of such detailed information, a number of studies have been
made based on catch and effort data alone, that is, the processes have been
studied in the large. The aim of such studies has been to relate equilibrium
yield (the catch sustainable by the population without changing the population
level) to population size. Perhaps the most careful of such studies is that due
to Schaefer [21], [22]. He assumes a logistic growth law so that the equilibrium
population change for any year is related to popuilation level from catch and
catch per unit of effort data. All of this involves a number of important assump-
tions which he notes but also some additional assumptions on the validity of
effort data over a period of years. Nevertheless, this gross approach may be more
useful at present to the management of the fishery,which must try to assess maxi-
mum sustainable productivity (catch) of the fishery and which has only such
data available to it.
More interesting perhaps statistically is the establishment of a stochastic esti-

mation procedure to determine this maximum, following the precedure of Kiefer
and Wolfowitz [14] and several subsequent authors. In fact, many regulatory
schemes do now proceed with the aim of working toward the maximum sustain-
able productivity. It might be useful to formulate explicit stochastic estimation
procedures which must incorporate side conditions of "continuity" of behavior,
that is, the regulation must be reasonably stable, and which also take into account
the lags in the system.
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