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1. Introduction

If xi is N(O, 1), and the xi are independently distributed, the function Qk =
Et= 1 aix2t where ai > 0, arises in many situations where knowledge of its distri-
bution is required to resolve a problem. This is true also when k is infinite and
appropriate restrictions are placed on the ai. The quadratic form which arises in
the problems we will examine, and usually all others stemming from similar
contexts, can always be reduced to Qk or some known function of Qk. Some
writers have analyzed directly the distribution of Qk as a methodological piece
of work and others have investigated the distribution because it directly solved
some applied problems. Among the former are papers by Robbins [8], Robbins
and Pitman [9], and Hotelling [7]. In the second category there are several
papers. There is a paper by von Neumann et al. [12] on the distribution of the
mean square successive difference when it is used as a suitable estimator of
variability when a secular trend in the mean is suspected. Grad and Solomon [5]
prepared a paper on the subject which resulted from the study of a generalized
hit probability problem in operations research and briefly discussed other ap-
plications. The development and the application of the distribution of a quad-
ratic form to problems in spectral analysis especially arising from the power
distribution of noise was given by Grenander, Pollak, and Slepian [6].

There are other applications. For example, in tests for goodness-of-fit when
the parameters are estimated by maximum likelihood from the original observa-
tions rather than from cell frequencies and the regular chi-square statistic form
is used to test the hypothesis, Chernoff and Lehmann [3] demonstrated that the
distribution is the same as the distribution of Qk. Watson [13], [14] has followed
this up in subsequent papers. Billingsley [2] and Goodman [4] have demon-
strated that the distribution of Qk arises in the consideration of the asymptotic
distribution of goodness-of-fit tests for stochastic processes. Anderson and
Darling [1] showed that the limiting distribution of nc2 is the distribution of

= E a1X where a, = 1/i2w2 and c2 is the von Mises criterion for good-
ness-of-fit between a sample cumulative distribution function and a specified
population distribution function. In Rosenblatt [10], it is shown that a simple
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variant of the w2 criterion for the corresponding two sample tests problem has
the same limiting distribution.

2. Methods of obtaining the distribution

Several different procedures have been offered for computing the distribu-
tion of Qk and preparing appropriate tables. These have taken the form of both
simple approximations and exact methods. An oft suggested approximation is to
replace Qk by cx2 where x2 is a chi-square variable with f degrees of freedom
and c and f are determined by equating the means and variances of Qk and cx'f.
Still another approximation is to use a Cornish-Fisher expansion of Qk which is
rather easily done since the cumulants of a chi-square variable are easily ob-
tained. Both approximations were computed in the Grad-Solomon paper for
k = 2, 3 and were contrasted with the exact results. The differences indicated
that the approximations were reasonable. It is possible to contrast the first ap-
proximation with the exact distribution of Q., in the Anderson-Darling paper
which was obtained by an electronic digital computer. We get E(Q'o) = 1/6,
E(Q2 ) = 1/90 and arrive at the following (taking exact values from the table
in Anderson and Darling)

Exact .10 .42 .93
Approx. .17 .40 .90.

Once again we get a reasonable approximation especially when one compares
the high cost of getting the exact values with the very cheap manner in which
the approximation is obtained.
As for exact methods, Robbins in his first paper observes that if the coefficients

are equal in pairs we have a sum of gamma-type random variables whose dis-
tribution can be obtained directly. He uses this observation to obtain the
distribution by the convolution formula and then induction and obtains the
following alternating series.

(1) F, (t) = I (Q, < t} = akIitkIi L
n=O 1, +(+k

where a is the geometric mean of the as and the c,, are constants whose evalua-
tion is made easier by the equal pairs of coefficients development. In a second
paper Robbins and Pitman use the method of mixtures they develop to give
the distribution of Qk as

(2) Fk(t) = E cjFk+2j (

where the cj are probabilities associated with the negative binomial, a is the
minimum ai, and the Fk+2, are cumulative x2 distributions with (k + 2j) degrees
of freedom.

Hotelling [7] writes the probability density of Qk as the product of a chi-square
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variable with a series of Laguerre polynomials. The distribution of Qk is then a
series whose terms can be evaluated with a good chi-square table. The greater
the variance in the ai, the greater the number of terms needed to achieve a
derived accuracy. This method was evaluated in Grad and Solomon [5].

Another exact method is the straightforward one of inverting the character-
istic function of Qk. This textbook method will turn out to be very useful in this
context. The Laplace transform 'Pk(p) of fk(t), where Fk(t) = P{Qk < t) and
fk(t) = dFk(t)/dt, is

k

(3) SOk(p) JJ (1 + 2ajp)- 12
j=1

and inverting the transform we get

(4) fk(t) = 2 . etPk.(p) (1f .

Grad and Solomon used this direct approach to obtain the distribution for the
special cases k = 2, 3 and prepared tables for these values and the following
range of values for t: 0(.1)1(.5)2(1)5, and several sets of values of (a,, a2).
(a,, a2, a3).
These table entries were obtained in the following way. By contour integra-

tion it can be demonstrated (Grad and Solomon, [5]) that

(5) f2k(t) = - E (_...)k-,, J1/2a, ( dp,
WFn=1 -11 /2a__ CtPp2(p

(-1) kr-2 2.(6) flk+1(t) = ]- Ct7<2+1(p) dp

+k k ))-n |k2t2p etPd2k+l(p) dp

Ir~~ n=l-2a2a_,

From (5) we can obtain, putting ci = 1/ai, ai+i > ai

(7) f2(t) = 2 (C, + c2)1/2e-(ci+e2)t/4 fe(el-c2)tx/4 dx

J2k"= (c1.i2 e(1 C2-x 4d

(8) F2(t) = 1- (C + C2) I/2e-(cj+c2)t/4 +x
(c1~~~~~~~~~1(Cl + C2) - Cl- C2)X (1- I/

which can also be written as

(9) f2(t) = (c1 + c2) 12e- (ci+c2)t/4JIo [ (C1-C2)t

2 /(CI+C2)tl4 / \1/2(10) F2(t) (Cl +2 fo C2) e..zIo -K_) x dx,

where Io is the modified Bessel function of order zero. From (6) we get
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(11) f3(t) = !(Clca3)l/2 -(C2+ci)t/4

e- (c2-c)tx/4 dx
J1 [2c3 - (C2 + C1) - (C2 -CI)X]12 (1-X2)1/2 + r3(t)

(12) Fs(t) = 1 (8cIc2c3) 1/2e-(c2+cI)t/4

_______________________________e-_(C2-_l)tx/4 dx + R3(t)
j' [(C2 + cl) + (c2 - cl)x] [2c3 - (C2 + cl) - (C2 - cI)x] 1/2 (1-x2)12 + 3

where
1(1 ~~~1/2e a(13) rs(t) = -! (8CIC2c3) t1/2e-c2

irr e-8d
11cc{[X2+ (c3 - ce_-2Cdx

J2+2(C3-Cl)t] [x2 + 2 C2)t

(14) R3(t) = \81cC2C31) t3/2e-c3t/2
*x~~~~~~~~~e_X2 dx

fJ-°° (2 + C3 t )f[X2 + (C3- Cl)t x2 + 2 (C3 - c2)t]}
The functions r3(t) and R3(t) are usually small and can be ignored unless t is
also small or the two largest coefficients are almost equal.
The integrals over the interval (-1, 1) are readily computed using the quad-

rature formula

(15) ff(x) (1 ..X2)1/2 = lim f(xo),

where xP ) are the zeros of the Tchebycheff polynomials of degree n. Similarly,
the zeros yi(n) and Christoffel numbers a%n) of the Hermite polynomials can be
used in computing rk(t) and Rk(t) with the quadrature formula

2x n

(16) f e-8'f(y) dy = lim E C4)f(y(n)).J_00 n-* i=l

All this seems quite tedious but with electronic digital computers the com-
putations leading to the preparation of reasonable tables become a definite pos-
sibility. Actually the original Grad-Solomon tables contain entries correct to four
decimal places which were obtained by a desk computer. However the prepara-
tion of tables for k = 4 or 5 by strict application of this method becomes quite
formidable.

It would be good to get the distribution of Qk for k _ 4. For one thing
it would be interesting to see what happens to some of the approximations
discussed previously as k increases. Even more important, the tables for k =



QUADRATIC FORMS 649

4, 5, * , 9, 10 would be useful in some practical applications. Recently in some
work on the probability content of regions under spherical normal distributions
Harold Ruben [11] considered the distribution of Qk and derived a recursion
formula to aid in its computation. Ruben found the probability content of a
given ellipsoid when the surfaces of constant density of the normal distribution
are those of homothetic ellipsoids. The intersection of the flat Xk = x with the k-
dimensional ellipsoid Qk = ,k_ 1 aix't _ t is itself an ellipsoid but of dimensional-
ity (k - 1) and with semi-axes of lengths [t - akx2/ai]1/2, for i = 1, 2, * - *, k - 1.
The amount of probability within the ellipsoid intercepted by two parallel and
adjoining flats Xk = x and Xk = x + dx is therefore

(17) (27r)-1/2exp (-22) dx [Fk1l(ka1; k-1 k1

where Fk = P{Qk < t}; therefore the probability content of the ellipsoid is

(18) Fk(t; a,, a2, * * * , ak)

= 2 J (2Tft1I2 exp 2 x2) Fk_l (k-icx ;_1a a** .4) dk.

This can also be written as

(19) Fk(t; ala2, , ak) = 2 (t )1/2

|(2,,)/2 exp (Y) Fk- [t(l - y2). a, a2 ak-1 dy.
/2ak 1 -ak 1-ak i-ak 1-ak]

The recursion formula developed by Ruben presents an approach to compute
the distribution of Qk for k > 4 since we do have a table for k = 3. However,
before any exploitation of the previously developed tables was attempted, it was
felt that a check of the recursion formula as a computing aid should be made.
This could be done because tables existed for k = 2 and 3 and thus the recur-
sion formula could be used to get values for k = 3 from the existing values for
k = 2. These values could then be checked against the previously computed
values for k = 3 which were derived from the inversion of the Laplace transform.
However to accomplish this we require a very extensive table of the distribu-

tion of Q2 since we will establish the distribution of Q3 by numerical integration
with F2 = P {Q2 5 t} as a factor in the integrand. There is still another reason
for obtaining a more extensive table of F2.

3. F2(t) as a function of t and (al, a2)
Examination of the Grad-Solomon table of F2 shows that, as (a,, a2) depart

from (1/2, 1/2) to (1, O), F2 is strictly increasing for fixed t when 0 < t _ 1,
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strictly decreasiiig for fixed t when t > 2, and has a maximum for fixed t wlheni
1 < t < 2. It would le good to have more extensive tables of F2 to get a better
picture of this situation. This phenomenon has an interesting application. We
can view (a,, a2) as representing the variation along each coordinate axis. Thus
if we fix the total variation in the system, we can for fixed t manipulate the
probability by suitable allocation of the total variation along each axis. For
small t we get maximum probability by splitting the total variation in half, for
large t by allocating the total variation along one axis. But for 1 < t < 2 there
is a different pair of values (a,, a2) between (1/2, 1/2) and (1, 0) for fixed t
which produces the maximum probability. This has important implications in a
problem we will describe subsequently.
By chance, the original Grad-Solomon tables used intervals for t which sug-

gested this maximum phenomenon; namely, entries for t = 1, 1.5, and 2 were
tabulated. With this hint we can now show analytically that this phenomenon
is true and that the range of t which produces this situation is exactly 1 < t < 2.
Naturally this range for t is a consequence of the fact that the sum of a, and a2
is 1. If the sum had been standardized to another constant, the phenomenon
would occur but for a different range of t.
We can show that aF2/aal = 0 is equivalent to

(20) f exp [ - 2a1)x ] (t- ax2)-1/2(t - x2) dx = 0.

Put y = (a1/t)l 2 x. Then the equation is

(21) exp [ 2(1-2ai) y2] (1- y2)-1/2 (1- -) dy = 0.

Now put z = y2. Then

(22) exp [ 2(7 2ai){z] (1 -_ Z)-/2 (i- 1)ZI
a

2 dz = 0

or

(23) z-1/2(1 Z)-1/2 exp (-Xz) dz = 1/z112(1 - z)-1/2exp (-Xz) dz

where

(24) ~~ ~ ~ ~ =(I - 2a,) t
(24) 2a1(1 - a,)
To solve (23), note first that if the left integral is denoted by G(X), then
by differentiating under the integral sign with respect to X, it follows that the
right integral is -G'(X).
Our equation is then

(25) G(X) = G'(X)a,
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As for G(X) itself, set z = cos2 4). Then
r/2

(26) G(X) = 2 J exp (-X COS2 4)) d&,

(27) G(X) = 2 f exp [ (1 + cos 2Li)] d+t,

(28) G(X) = exp (-2) f exp c-2cos o] dO,

(29) G(X) = exp[- 22]7riQ)
where Io is the modified Bessel function of order zero.
We now have

(30) exp (-[)Io() - a [exp (-2) Io(2)]'

(32) ioQ)~~~2 +2~)(31) exp 12

=-a - exp (-)Io ()+ exp (2 1()

(32) Io (2~) = Ia - Io (2) + I, WI]
since Qoz) =Ij(z).
Thus

(33) a, - 2=-22~~ 2Io)
From (33) we can portray graphically the relationship between (a,, a2) and t

which produces the maximum F2(t). This is done in figure 1. This maximum
relationship becomes important in the following hit probability problem.

4. A hit probability problem
For purposes of exposition let us limit ourselves to errors in two dimensions.

Denote the true position of a target by T, the predicted position, or point of
aim, by A, and the point of impact of a weapon aimed at A by I. Let xi, y, be
the components of the vector TA and x2, Y2 the components of the vector AI.
If we denote the radius of effectiveness of the weapon by R, then the probability
of a hit, P, is the probability that the resultant vector TI has length no greater
than R, or
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(34) P = P{x23+Y R2}
where X3 = X1 + X2, Y3 = Yl + Y2.
Now assume that the random errors in prediction and aim are each sub-

ject to a bivariate normal distribution with zero means and with covariance
matrix j,[aijll and jIavijIl respectively. Then x3 and y3 are components of a
vector having a bivariate normal distribution with zero means and covariance
matrix lipaij + aijll = lXijIll. Assume the components of each error to be inde-
pendent; that is, I,aijl and I.aijl are diagonal. This restriction, which is not es-
sential, implies that x3 and y3 are independently distributed. If x = Xii112X3 and
y = X2-2112y3, then x2 and y2 each have a chi-square distribution with one degree
of freedom. We may then write
(35) P = P{aixi + a2y2 < t} = F2(t)
where a2 = Xll + X22, ai = ;ki/a2 and t = R2/o-2. In the three-dimensional situa-
tion, we get by the same argument
(36) P = P{a1x2 + a2y2 + a3z2 _ t} = F3(t)
where this time a2 = X1l + X22 + X33.
Knowledge of F2(t) and F3(t) is important in weapons analysis, especially in

.4
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.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

t
FIGURE 1

Contour of a2, a, as a function of t
which gives max F2(a2, a,; t)
a2 = b + .5, ai = .5 - b.
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missile system evaluation. Extensive tables of each can be very helpful in
missile design. The tables give the probability of a hit for fixed weapon radius
and for fixed values in the covariance matrix of both aiming and position loca-
tion errors. Another important consequence is that the designer can see how the
probability of a hit changes as design parameters are changed. Thus an achieved
change in performance together with knowledge of the cost required to achieve
the change can help one come to a decision. Knowledge of the maximum phe-
nomenon discussed for F2(t) also has implications for missile design and design
of other weapon systems. It should be noted in this connection that the range
for maximum F2(t), namely 1 < t < 2, is a consequence of the implicit assump-
tion of equal costs for the design parameters. If we vary the costs, the range of t
for max F2(t) will change accordingly. The maximum phenomenon also occurs
in F3(t) but is more complicated and requires exploitation.

Extensive tables of F2(t) and F3(t) have been computed and appear in a re-
port of the Applied Mathematics and Statistics Laboratory, Stanford University.

I would like to thank Professor Harold Ruben for some helpful discussions
in connection with section 3.
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