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1. Introduction and summary

The general problem treated in this paper is a very old and common one. In its
simplest form it may be stated as follows. In a sample of moderate size taken
from a certain population, it appears that one or two values are surprisingly
far away from the main group. The experimenter is tempted to throw away the
apparently erroneous values, and not because he is certain that the values are
spurious. On the contrary, he will undoubtedly admit that even if the population
has a normal distribution there is a positive although extremely small probability
that such values will occur in an experiment. It is rather because he feels that
other explanations are more plausible, and that the loss in the accuracy of the
experiment caused by throwing away a couple of good values is small compared
to the loss caused by keeping even one bad value. The problem, then, is to intro-
duce some degree of objectivity into the rejection of the outlying observations.
There is no need to give here a historical outline of progress in the subject.

Good accounts of the historical aspect, interesting because this subject was one
of the first problems to receive a statistical treatment, may be found in recent
papers by Grubbs [4], Murphy [9], and Anscombe [1]. We shall mention here
only those papers which directly concern us, with particular emphasis placed on
the last ten years.
Two mathematical models have been proposed, implicitly by Grubbs and

explicitly by Dixon [3], to give a structure to the outlier problem. In both models
it is assumed that a sample of n observations, to be denoted by X1, * * ,XX has
been drawn from a normal population with possibly unknown mean and vari-
ance. A few of these values may have been spuriously changed. In model A, this
change is hypothesized as a shift in the mean, and in model B, as an increase in
the variance. The precise formulations will be made clear in the particular
problems we shall consider.

This paper is mainly concerned with the derivation, found in section 2, of the
locally best tests for the existence of spurious observations in several situations
for both models A and B. The tests suggested here by virtue of their local opti-
mality are based on the sample coefficient of skewness for one-sided alternatives,
and on the sample coefficient of kurtosis for two-sided alternatives. Many spuri-
ous observations are allowed under the alternative hypotheses; even in the most
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stringent case, 21% of the observations are allowed to be spurious. It is seen in
section 2.4 that these tests have a very strong locally optimum property.
A very satisfactory optimum property of the rejection rule based on the maxi-

mum Studentized deviation from the mean has been established independently
by Paulson [11], and Murphy [9], and later by A. Kudo [7]. It was shown,
essentially, that under model A assumptions this rule will maximize the probabil-
ity of rejecting the spurious observation when there is only one spurious observa-
tion. In section 3, this rule is seen to have the same optimum property under
model B assumptions. The proof is carried out in many dimensions, as was done
for model A by Karlin and Truax [6].

It is the purpose of section 4 to determine how well the optimum property
discovered by Paulson and Murphy will extend to the situation in which the ob-
servations are from an experiment with a more complicated design, for the re-
jection rule based on the maximum Studentized residual. This rejection rule has
been discussed in recent papers by Anscombe [1] and Daniel [2]. It will be seen
that if one restricts oneself to invariant rules, the proposed rule is admissible.
The last section contains the results of some sampling experiments performed

with the view of giving a better picture of the relative performance of certain of
these rejection rules.

2. Locally best tests for the existence of outliers

We shall deal in this section with the derivation of (1) the one-sided locally
best invariant test, (2) the locally best unbiased invariant test, (3) the locally
best invariant test when the mean is known, and (4) the locally best invariant
test under model B.

2.1 Model A, mean unknown. First, the locally best invariant tests for the
existence of outliers under model A, mean unknown, will be derived. In this
context, model A specifies that Xi, X2, * *, X,,, are independent random variables
having normal distributions with a common unknown variance Cr2 > 0. We assume
that there are known real numbers a,, a2, ***, a., and unknown parameters, j,, A, and
an unknown permutation (vl, V'2, * vn) of the first n positive integers, such that
EXi = ,u + oAa,; for i = 1, * * * n. The variance of the ai is assumed to be positive.
It is usual in outlier problems to assume that most of the ai are zero. We will
make certain restrictions of this sort later in dealing with specific problems. In
particular it will be shown that the locally best invariant tests derived here are
locally best uniformly over certain sets of (ai) satisfying natural conditions.
We shall denote the null hypothesis always by Ho and the alternatives by

H or Hi, H2, and so on. In this case we have

Ho: A=0,
1H: A 0.

We shall also consider the one-sided tests whose alternatives are

(2.2) H1: A > 0.
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The problem is obviously invariant under the following three transformations:
(1) any permutation of the subscripts of X1, X2, * *, X,,; (2) the addition of a
constant to each Xi; (3) multiplication of each Xi by a positive constant.
We would like to consider only those rejection criteria which also are in-

variant under these three transformations. Since the rule is to be invariant
under (1), we need consider only functions of the order statistics X(l),
X(2,, * - *, X(. Since the rule is to be invariant under (2), we need consider
only functions of the differences X(2) - X(l), X(3) - X(l Xn) -X(l).
Since the rule is to be invariant under (3), we need consider only functions
of the ratios, (X(2) -X(l))/(X(n) - X(1), --, (X(.-I) - X(1))/A(n) - X(1)).
We shall now proceed to derive the distribution of these ratios. Since this dis-
tribution does not depend on ,u or a, we shall from the beginning take ,u = 0, and
a = 1 in order to simplify the algebra.
The joint density of X(1), X(2), ... , X(n) under model A, with ,u = 0 and

r-= 1, is
(2.3) fX(') * * X(.) (XI) ..* Xn)

= (2)I~ aexp 2E xi 2 Ea] exp [A E xv1aj]
where x1 < x2 < ... < xn and where F* denotes the summation over all
permutations, (v1, , vn) of the first n positive integers. Now we make the
transformation,

W = X(,

(2.4) Zi = X(i) - X() for i = 2, n,

X(1, = W,

X(i) = W + Zi for i = 2, *,n.

The Jacobian of this transformation is one. After making the transformation,
we integrate W from -oo to oo, to find the joint density of Z2, * * Zn- In the
following formulas the dummy variable z1 denotes zero.
(2.5) fz,,2 .,Z.(Z2, . * Zn)

= cf exp [- (w + Z,)2 - A2 _ a]~ *exp [A (w + z.,)aj] dw

= c exp [-2E (Z, - j)2 - 2 E (a;-a)2] _* exp [A (z, - )ai],

where O= z1 < Z2 < ... < Zn, wherez= (1/n) ,zi and a= (1/n) E ai, and
where c will always denote the constant necessary to make the formula have
total probability one.
Now we shall make the transformation

Y =-Z i = 2, ,n-l, Zi = YiV, i= 2,***, n-i,
(2.6) = Zn =
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The Jacobian of this transformation is Vn-2. After making this transformation
we integrate V from 0 to oo, to find the joint density of Y2, * **, Y,1. In the
following formulas the dummy variables Yi and yn will denote zero and one
respectively, y will denote n- El yi, and S2 will denote n' E (y1 -)2.
(2.7) fY2,.. _Y 2 ... , Yn-1)

= cexp[ 2 E (a a)2] Ef exp[--2 v2ns2 + vAE (yv, - y)aj]vn-2dv

= c exp [-2L (aj- a)2] s-(n-1)g(A),

where

(2.8) g(A) = * exp[2 + tA uaj] t-2dt

where 0 < Y2 < ... < Yn-1 < 1, where ui = (yi- )\/Vns, and where we
have made the change of variable t = Wn sv.
This distribution depends on only one parameter, A, so that we may apply the

method of Neyrran and Pearson [11] in deriving the locally best test of the hy-
pothesis Ho: A = 0 against either of the alternatives 71: A 0 0 or H1: A > 0. In
using this method it is necessary for us to pass a certain number of derivatives
under the integral sign. To justify this we shall use the criterion (see Loeve [8],
p. 126) that whenever for some e > 0

(2.9) f(x, 6) < h(x)

for all 60 - ol < e, where h(x) is integrable, then

(2.10) aAff(X )dl = J df(x, ) dx.da 0=0" da LN0
We first apply this criterion to the integral in the expression for the density
of Y2, , Y1-. Here, for any value of IAI < B,

(2.11) |9 exp - + t A L u,aj] tn-2I

=exp [--2 + t A E uajI t1 u,,ajl

_ exp [ + tIB E uVjajJ] tn-l E u,,ajl,
which is an integrable function. It is apparent that derivatives of any order may
be taken under the integral sign at all finite values of A.
Next we apply this criterion to the power function j3.(A). If w is any rejection

region, that is, a measurable subset of Rn-2, the power function corresponding to
this region is defined by the formula
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(2.12) #-(A) P[(y2, Yn-1) E WIA]

- f -Yn l * X Yn-1jA) dy2 ... dyn-.

We shall need to take several derivatives of #.,(A) at A = 0, and in order to apply
the Neyman-Pears'on theory we shall need to be able to evaluate these deriva-
tives by passing them under the integral sign in (2.12). For all values of A such
that JAI < B, we have

(2.13) fY2. ,Yn-i(Y2, * , yn-l*)
_ cs-<n-1 exp - (aj - a)2 A (aj -a)2g(A)

+ * u, aj exp [-2 + t A uu,iaj] t- I dt

< cs-n-1) exp 2 (aj -a)2]

{B E (aj- d)2 * j exp + tBIE uaj tn-2 dt

+ F* jE uvjaja exp [-2 + tB1_ uv,ajl] tn-' dt}

which is integrable dy2 *dyn- over 0 < Y2 < ... < Yn-. (s2 is bounded from
below by (2n)-1.) Again it is easy to see that derivatives of any order may be
taken under the integral sign (2.12) at all finite values of A and for all measurable
sets w.
We are interested in the behavior of #,,(A) for values of A in a neighborhood

of A = 0. We will first show that the first two derivatives of /3.(A) vanish at the
origin for every (invariant) region w. Since the derivatives may be placed under
the integral sign, it is sufficient to show that

(2.14) 09 lOgfY2 Y.-.(Y2, , ) °

identically in Y2, ., Yn-, and for i = 1 and 2. Note first that
n n

(2.15) Eui = 0, L I=1

and that

(2.16) d logfY,,. ,Y_i(Y2*...* Yn-lIA) = -A E (a3 - a)2 + ¢(A)aA ~~~~~~~~~~~~~g(A)
Let

(2.17) Cn= exp [ t2] tndt = 2(n-)/2 r (n + 1)
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so that

g(0) = Cn-2n!,
(2.18) n n n

g'(0) = C_ _* E_ uv1aj = C"_1 E aj (n-i1)! E = 0,
j=1 j=1

using (2.15). Hence we see from (2.16) that (2.14) is true for i = 1. We take
another derivative of (2.16).

(2.19) -~~~(a~-&)2+g(A)g"(A) -g'A(2.19) d2logf = E(a; - a)' + ()

g,,(O C.
n n n

(2.20) g"(u) = C, * ( E uaj)2 = C,E E aj ak U,ulk
j=1 j=1 k=1

n

= C. (n -2)! [(n - 1) E a -2 aj ak],
j=1 j,'k

(2.21) g(0) (Cn-2 n(n 1)(a)2]
= E_ (a,-ad)2.

Hence it follows from (2.21) and (2.19) that (2.14) is true for i = 2.
We are thus confronted with the fact that if we wish to distinguish between

two rejection regions on the basis of their behavior locally at A = 0, we must
look to derivatives of order higher than two. It is easy to see, following the
Neyman-Pearson theory, that the locally best rejection region for testing Ho
against H1 consists of those points for which

(2.22) lo'3f09fY,,. ,Y(Y2, Y-1*, 1|A) _ K1,a0A3 [1=O
where K1 is chosen so that the probability of rejecting Ho when it is true is a
fixed value a chosen in advance. One easily finds that

(2.23) d3 10gfY2_-,Yn-l(Y2, g
* (0)

aA3 L~~~~~AO g(0)
It is necessary, then, to compute g"'(0).

(2.24) g"'(0) = C,,+, X"* (ju,iaj)1
= Cn+±(n - 3)! E, u' [n2 E a;- 3n(_ aj) + 2(_ aj)3].

Note that the rejection rule depends on V'b, the coefficient of skewness through
the equations

(2.25) UL, = 3/283 [1 E (xi - )2] -

Let li3 (al, * , a,,), to be denoted by p3 (a), be defined by
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(2.26) n3,u3(a) f2 as - 3n(_ a')(_ aj) + 2(E aj).
According to (2.23), (2.24), and (2.25), the rejection criterion (2.22) becomes

(2.27) -,lb- (a) > K1.

We formalize the rejection criterion in
THEOREM 2.1. Under the assumptions of model A, the locally best invariant test

of size a for testing HO against H1 is: if ius(a) > 0, reject HO whenever Vb- > K1;
if A13(a) < 0, reject HO whenever v/bl < K1; where K1 is chosen to make the test
of size a. Suppose a = 0 for j = k + 1, *--, n. Then if n > 2k, the test
which rejects when a/bi > K1 is the locally best invariant test of its size, uniformly in
those (a,, * * * , ak) for which aj > Ofor j = 1, * * *, k.
PROOF. The first assertion follows from the previous discussion. To prove

the last assertion, it will be shown that if a, = 0 for j _ k + 1, if n > 2k, and
if aj > 0 for all j with at least one aj > 0 from the assumptions of model A),
then ,3(a) > 0. Let a denote (l/k) F, aj. Then

(2.28) aj - 2aa2 + a2a, = (a -a)2a > 0.

Summing over j, we have

(2.29) aj > 2a E aj-ka3.
Substituting this inequality into equation (2.26), we find

(2.30) n2MA3(a) _ (2n2 - 3nk)a , aj - (n2k - 2k3)a3
> k(n - k)(n - 2k)a3 > 0.

The proof is complete.
This theorem can be reworded in the terminology of the problem of the re-

jection of outliers. If k is allowed to represent the number of spurious observa-
tions whose means all may have shifted to the right (model A), the theorem
states that the rule which rejects the null hypothesis when the sample coefficient
of skewness \ is too large, is the locally best invariant test uniformly in the
lengths of the shifts of the means, provided that k < n/2, that is, provided that
there are less than 50% outliers.
We shall now proceed to derive the locally best unbiased invariant test.

Using the fact that the first two derivatives with respect to A of the density
of Y2, ..., Yn-i vanish identically, one may follow the steps in the Neyman-
Pearson theory to arrive at the conclusion that the rejection region Xo of the
locally best unbiased test consists of points such that

(2.31) 4 logf _ > K1
as logfL + K2,

where f represents the density of Y2 * , Y-1 and where K, and K2 are con-

stants chosen so that
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(2.32) f| dx = a, J dx = 0.

In order to derive this test we need first to evaluate the fourth derivative of
the logarithm of the density of Y2, * , Y,,-, at A = 0. It is easy to see that

(2.33) dlg (Y2, Y.g1O -3[U 12~~ log!
,Y

Yn-i LO g(0) Lg(0)
It is necessary then to compute g""(0).
(2.34) 9''''(O) = Cn+2 Y,* (Y_ u,aj)4

= C.+2(nl - 4)! F2 u4[(n3 + n2)(2 a>) - 4(nr2 + n)(F, a3)(F, a,)
- 3(n2 - n)(, a2j)2 + 12n(_ aj)(, aj)2 - 6(, aj)4] + cl,

where c, is constant, depending on a,, . .. , an, whose exact value it is not neces-
sary to know since it will be absorbed into the constant K2 of equation (2.31).
Note that the rejection rule depends on b2, the coefficient of kurtosis, through
the equation,

-(Xi - 4

(2.35) b2-
= nn 2(X, *22

Let k4(ai, a2, , a,), denoted simply by k4(a), be defined as the fourth k- statis-
tic,
(2.36) n(n - 1)(n - 2)(n - 3) k4(a)

= [(n3 + n2)(2 a') - 4(n2 + n)(E a3)(E a,)
- 3(n2 - 2)(, a2j)2 + 12n(Z a2)(, aj)2 - 6(, aj)4].

Then, using (2.33), (2.34), and (2.35), the rejection criterion (2.31) becomes

(2.37) b2k4(a) > K1 V_NA3(a) + K2,
where K1 and K2 are chosen so that conditions (2.32) are satisfied. The only
reason A3(a) is not absorbed into the constant K1 is that it might be zero.
We will show now that when k4(a) i 0, and /s3(a) # 0, the second condition

of (2.32) is satisfied if and only if K1 = 0. It is easy to check that this second
condition can be written as

(2.38) E(V'b1 I[b2k4> K1 Vbi3 + K2]JA = 0) = 0,
where I[A] denotes the indicator of the set A. The conditional distribution of
Yb- given b2 is symmetric about Yb, = 0 for each value of b2. In the above
equation, we are taking the expected value of \/b1 over the set of points on one
side of some line in the (Ylb,, b2) plane.
From this it follows that in order for the expected value (2.38) to be zero (yet

leaving some mass on each side of the line so that the first condition of (2.32) may
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be satisfied), it is necessary and sufficient that the line be parallel to the V/i axis.
This occurs if and only if K1 = 0. (If p3(a) happens to be zero, condition (2.38) is
automatically satisfied.) The rejection criterion (2.37) has become
(2.39) b2k4(a) > K2,
where K2 is chosen so that the first condition of (2.32) is satisfied. This rejection
criterion is thus seen to be the unique locally best unbiased invariant test.
THEOREM 2.2. Under the assumptions of model A, the locally best unbiased

invariant test of size a for testing H0 against H7 is: if k4(a) >0 , reject H0 whenever
b2 > K2; if k4(a) < 0, reject H0 whenever b2 < K2; where K2 is chosen so that the
probability of rejecting H0 when true is a. Suppose that a, = Oforj = k + 1, * * *, n.
Then whenever

(2.40) n > 2 [6k - 1 + (12k2 - 12k + 1)1/2],

the test which rejects when b2 is too large is locally best unbiased invariant, uniformly
in (a,, * * * , ak).
PROOF. The first statement in the theorem follows from the previous dis-

cussion. To prove the last, we will show that whenever inequality (2.40) is satis-
fied, then k4(a) > 0. The proof will be based in part on the following lemma.
LEMMA. If ai > 0 for i = 1, * , k, and if inequality (2.40) is satisfied, then

(2.41) (n2 + n)( , 3t) - 6n( a°t)E ai) + 6( Eai), > °-

PROOF OF THE LEMMA. Using inequality (2.29) with as replaced by as, we see
that the left side of (2.41) is greater than or equal to

(2.42) 2n(n + 1 - 3k) &(E, a) - k(n2 + n - 6k2) 3,
where cr represents the average of ai for i = 1, . , k. It is clear from inequality
(2.40) that (n + 1 - 3k) > 0, so that (2.42) is greater than or equal to

(2.43) 2n(n + 1 - 3k) a k -k(n2 + n-6k2) a3
= k(n2 + n - 6nk + 6k2)UY3.

That this expression is always positive follows from the fact that (2.40) is
exactly the inequality which will insure that the middle factor on the right side
of (2.43) is positive. This completes the proof of the lemma.
The first step in the proof of the fact that inequality (2.40) implies that

k4(a) > 0, is to show that in the proof we may restrict all the nonzero a,. to be
positive. We shall show that, subject to the inequality (2.40), k4(a) never in-
creases under the operation of replacing all of the ai by their absolute values. It
is sufficient to show that

(2.44) - 4(n2 + n)(, ai)(E a3) + 12n(, a2)(E a )2 - 6(, a,)4
_ - 4(n2 + n)(Elai|)(la4|3) + 12n(E a)(E|ail)2 - 6(Elasi)4.

If we let ai = Jail, and if we let El and 2 denote the summation over those
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indices i for which ai is positive and negative respectively, inequality (2.44)
becomes

(2.45)
4(n2+ n)[(5oaei + 2ai)(_la3+ZY2a3 - (F_ a,-Y2ai)(l a3-2al

+ 6[(57 ai + 2 ai)4- (Z1 ai-FZ2 ai)4]
_ 12n(_l ai + 72 ai)[(7i ai +± 22a) -( ai-YZ22a)'].

This reduces to showing that

(2.46) (Fi ai)[(n2 + n))(Z2 a) - 6n(f(E22a)(72 ai) + 6(Z2 ai)3]
+ (Z2 ai)[(nl + n))(_l a)- 6n(Zi af)(E7 ai) + 6(Z1 a)3] >-0

which follows immediately from the lemma.
It remains to be shown that whenever the inequality (2.40) is satisfied, then the

minimum of k4(a) over all variation of a such that ai > 0, with i = 1, * * *, k, is
positive. It is sufficient to show this under the restriction that a, = 1, since a
multiplication of all the ai by a constant would then give the result without this
restriction. Taking partial derivatives with respect to a2, . .. , ak, we find that
there can be a minimum of k4(a) in the interior of the region as > 0, for i = ],
... , Ak, only at those values of a for which

(2.47) n(n - 1)(n - 2) (n 3) k4(a)

= (n3+ n2) aj- 3(n2+ n)(, ai) a?'

- 3n[(n - 1) Ei ai - 2(, ai)2]aj
- [(n2 + n) E a3-6n(Y aE)(F ai) + (F ai)I] =0

for j = 2, 3, * , k. Consider now any fixed set of positive numbers ai for
i = 2, * *, k, which form a solution of equations (2.47). Each ai is then a root of
that cubic equation obtained by replacing the symbol aj in equation (2.47) by x.
Since there are at most three roots, there are at most three different values for the
aj in any set of solutions. But note that the signs of the coefficients of the cubic
are +, -, -, -, the first and second being obviously positive and negative,
respectively, the last being negative from the lemma, and the third being neg-
ative since inequality (2.40) implies that

(2.48) (n- 1) a2t-2( ai)2 > 2(k Ea -( a,)2) > 0.

Hence by Descartes' rule of signs there is exactly one positive root, and all
the aj, for j = 2, * * *, k, must be equal to it. Denote that root by b. Substitution
of a, = 1, aj = b, for j = 2, * * *, k, into equation (2.47) yields

(2.49) b3[n - (k - 1)] [n2 + n - 6n(k - 1) + 6(k - 1)2]
-3bh[n2 + n - 6n(k- 1) + 6(k - 1)2]
-3b(n - 3)[n - 2(k- 1)] - (n - 3)(n -2) = 0.
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The particular positive root b of this equation is less than one, since this function
is negative at b = 0, and at b = 1 it is equal to

(2.50) (n-k) [n2+ n-6nk + 6k2] > 0.

The term in square brackets is positive from the lemma with ai = l/k, for
i = 1, *--, k. To prove that the one critical point is a point at which the
function is a minimum, we may introduce the following parametrization for an
arbitrary line through the point (1, b, b, * * *, b) contained in the plane a1 = 1,

(2.51) aj = cj t + b, j = 2, * - , k,
where the cj are real numbers not all zero and a, = 1. We substitute this into the
formula for k4(a), take two derivatives with respect to t, and evaluate at t = 0.
We find that

(2.52) n (n - 1) (n - 2) (n - 3) a2k4(a)at2 1=
k

= 12 F, c2n{b2[n - (k -l )][n + 1 -2(k - 1)]
j=2

-2b[n + 1 -2(k- 1)]- (n-3)}
k

- 24( cj)2{b2[n - (k - 1)][2n - 3(k - 1)]
j=2

- 2b[2n - 3(k - 1)] - (n - 3)}.

This will be positive irrespective of the cj, for j = 2, ** *, k, provided they are not
all zero, if and only if the coefficient of C2 is greater than (k - 1) times the
coefficient of (Cc)2. This inequality becomes

(2.53) b2[n - (k - 1)][n2 + n - 6n(k - 1) + 6(k - 1)21]
- 2b[n2 + n - 6n(k - 1) + 6(k - 1)2] - (n - 3)[n - 2(k - 1)] > 0.

We multiply this inequality by b and substitute the value of b3 found from
equation (2.49), to find that we must show that

(2.54) b2[n2 + n - 6n(k - 1) + 6(k - 1)2]

+ 2b(n - 3)[n - 2(k - 1)] + (n - 3)(n - 2) > 0.

This is true since each term is positive.
Since the only critical point is a point at which the function takes a minimum

value, we need only to evaluate k4(a) at this point to see if it is positive. The
value of n(n - 1)(n - 2)(n - 3)k4(a) at this point is

(2.55) b4(k - 1)(n - k + 1)[n2 + n - 6n(k - 1) + 6(k - 1)2]
- 4b3(k - 1)[n2 + n - 6n(k - 1) + 6(k - 1)2]
- 6b2(k - 1)(n - 3)[n - 2(k - 1)]
- 4b(k - 1)(n - 2)(n - 3) + (n - 1)(n - 2)(n - 3).
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We want to show that this is positive. First, we subtract b(k - 1) times equation
(2.49). We must show that
(2.56) - b3(k - 1)[n2 + n - 6n(k - 1) + 6(k - 1)2]

- 3b2(k- 1)(n- 3)[n - 2(k - 1)]
- 3b(k - 1)(n - 2)(n - 3) + (n - 1)(n - 2)(n - 3)

is positive. It is certainly larger than that value obtained when b is replaced by 1.
This turns out to be exactly equation (2.50). This completes the proof of the
theorem.
Theorem 2.2, reworded in the language of the rejection of outliers, would be as

follows. Let k represent the number of spurious observations whose means may
have shifted to the right or left (model A). The rule which rejects the null hypoth-
esis when the sample coefficient of kurtosis b2 is too large, is the locally best
unbiased invariant test, uniformly in the lengths of the shifts provided that
inequality (2.40) is satisfied. Replacing the +1 under the square root sign in
(2.40) by a +3, we find that inequality (2.40) is satisfied if

(2.57) n _ (3 + -43)k
or if k/n _ 21%. Thus, the rule which rejects Ho when b2 is too large is locally
best unbiased invariant uniformly in the lengths of the shifts, provided there are
at most 21% outliers.

2.2 Model A, mean known. We carry over all the assumptions of model A
made in the previous section except that here the mean is assumed to be known.
We will take the mean to be zero since we are most interested in the application
to factorial designs. In the analysis of a 2n factorial experiment, one may sepa-
rate out the stochastically independent estimates of the 2n - 1 main effects and
interactions. Under the usual assumptions of the analysis of variance, each of
these estimates wMl have a normal distribution with a common unknown variance
and, if the null hypothesis is true, a mean zero. The alternative hypothesis allows
the means of a few of the estimates of the effects to be different from zero. This
problem is seen to be formally identical with the outlier problem when the mean
is known to be zero. In this example we are not interested in one-sided tests.
This influences the choice of the first invariance restriction below.
We shall only consider those rejection rules which are invariant under the

following three transformations: (1) multiplication of any of the Xi by - 1; (2)
permutation of the subscripts; (3) multiplication of each Xi by a positive con-
stant.
Any rejection rule invariant under (1) must be a function of IX1j, IX21, **

IX,,j. If the rejection rule is invariant under (2), it must be a function only of
the order statistics IX! (1), {XI (2), * - * IX (n). If in addition the rejection rule is
invariant under (3), it must be a function only of ratios, !XI(1)/IXI( , ...,
XJ n.._l)/XXI (.) We now proceed to derive the joint distribution of these ratios.
Since the distribution does not depend on a., we shall take a. = 1 from the start
to simplify the algebra.
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The density of the absolute value of a normal variable with mean A and vari-
ance 1 is

(2.58) f(x) = ;= exp [X -2 cosh Ax.

The joint distribution of the order statistics 1XI (, -, lxi) has the density

(2.59) AlXl(, --- XI(f,(XI; * ,Xn)

= (2))'2exp[- 1 i t2 _ a] E coshAa,Xi,

where T_* denotes the summation over all permutations (PI, V2, * Vn) of the
first n positive integers.
We shall make the transformation

Yi =IX1,*i n 1,IXI(n
(2.60) V = lXiX

lXUi) = YiV 1,= .*n- 1,

IXI (n) = V.
The Jacobian of this transformation is Vn-'. After making this transformation,
we integrate V from 0 to oo, to find the joint density of Y1, * * *, Y,_i. In the
following formulas, the dummy variable yn will denote one, s2 will denote
n-, E y2 and ui will denote V'n say'.
(2.61) fY,. .Yn_(yi, * , Yn-i)

= c exp [-2 A2 Ia2] exp [-2 n I2v2] * H cosh (A ajy,iv)v-- dv

= cexp[ IA2 2a>]srlng(A),

where

(2.62) g(A) = * E fexp [-2 t2] cosh [At E aj?u,i(- 1) i]tn' dt,

where 0 < yi < ... < yn-, < 1, where we have made the change of variable
t = \n siv, and where (El,...,n denotes the summation El, = - oE. -O
We shall again apply the Neyman-Pearson method to derive the locally best

test of the hypothesis HoI: A = 0 against the alternative H: A #6 0. As in the
previous section one may justify, using the criterion (2.7), differentiation under
the integral sign of formula (2.61). Similarly one may justify placing derivatives
of any order under the integral sign of the power function, #<(A), as defined
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previously, whatever be the measurable rejection region W. The details are as in
the previous section and need not be presented here.
We will show that the first three derivatives A(A) vanish at the origin for

every invariant rejection region w. Since the derivatives may be placed under the
integral sign, it is sufficient to show that

(2.63) di log Yfi.Yj_Y(Y,, * v = 0

identically in yi, y,l,-, and for i = 1,2, and 3. Since

(2.64) - 9log fy1 ...,y (Ui, * * *, Y. - 11A) = A E a, + 6q)
anid noting that g(O) 28n!Cn_-, and g'(0) = 0, where C(, is defined by (2.17),
(2.63) is true for i = 1. The second derivative of the log of the density is

(2.65)
\2

log fyl,..... ,yq(A)g"(A) - VW(A)2(2.65) ~A logy,. ,,((i ,y-) A 2~a
We need to compute g"(0).
(2.66) g"(0) = CEC,+1[ aju,,( -1)i]2

= Cn,+,2n a;) (n - 1) !j

ZUJ(0).

Thus, (2.63) is true for i 2. Cne iv ore derivative gives
a3

(2.67) d l(, . . y ( .... _ A) .=. g ()
aAl -1 .'.' Y.I (Y ~ Yyl~ O g(0)

But g"'(0)- 0 for the same reason that '(0) =- 0. Thts, equation (2.63) has
been proved for i = 1, 2, and 3.
As in the previous 'cc: 1?, if v (' i1J ply l]e N( in i'n-ic(',Ii n l(11 ly wve can

deduce that the locally best test for testing hypothesis 110: A = () against
the alternative H: A # 0 (or H1: A > 0), has a rejection region consisting of
those points for which

(2.68) 94 log fy,..' ,Y"i(yi, . n - 1 > K,

where K is chosen so that the probability of rejecting Ho, when true, is a fixed
value, a, chosen in advance. One easily finds that

d4 log fy g... , y,,A) - q(O) g 0)

It is necessary tlen to compute ..."(0).

(2.70) g""(0) = C+3m [{,aju,u (- 1)i]}

=C"+32-(n - 2)! Zu4{(n + 2) 57 a4- 3(Z a)2} + b,
v=l
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where the exact value of the constant b does not matter since it will be absorbed
into the constant K of equation (2.68). This rejection rule will depend upon

14

(2.71) b=
n

( x)2(nEX2)

through the equations

1X4
(2.72) UV - - b

n(i1x ')2b2
Let k4(a1,l , a,,), to be denoted by k4(a), be defined by

(2.73) n(n- 1) k4(a) = (n + 2) _ a4-3(_ a' 2.

The rejection criterion (2.68) has become

(2.74) b2k4(a) > K.

We arrive at the following theorem.
THEOREM 2.3. Under the assumptions of model A with the mean ,u = 0, the

locally best invariant test of size a of the hypothesis H0 against the hypothesis
77 (or BI) is: if k4(a) > 0 (respectively < 0), reject H0 whenever b2 > K (resp. <K),
where K is chosen to make the test of size a. Suppose that aj = 0 for j = k + 1, . . .,
n. If n > 3k - 2, then the test which rejects Ho when b2 > K is locally best invariant
uniformly in the ai for j = 1, * * *, k.

PROOF. The first statement follows from the previous discussion. To prove
the second statement, we shall show that n > 3k - 2 implies that k4(a) > 0 for
all values of a.

(2.75) k4'(a) = (n + 2) _ a4-3(_ a2)2
> 3kE (a" -3(F a )2

k
2

\
=3k (aa2 _ 2) > 0,

and the proof is complete.
Using the terminology of the rejection of outliers, this theorem states that,

provided there are at most 33% outliers, the rule which rejects when b2 is too
large is locally best invariant uniformly in the lengths of the shifts of the means.

2.3 Model B. In this section we derive the locally best invariant tests for the
existence of outliers under the assumptions of model B. The precise assumptions
of model B are the following: Xl, X2, - - , X,, are independent random variables
having normal distributions with a common mean pA. We shall assume that there
are known numbers, a,, a2, .*.** an and unknown parameters o- > 0 and A, and an
unknown permutation (vI, V2, * vn) of the first n positive integers such that the
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varXi = o2exp [Aa,,], where i = 1, *--, n. It is also assumed that E (a, - a)2
is positive.
The null hypothesis that the Xi are identically distributed is Ho : A = 0,

while the alternative that some have different variances is that Hi : A> 0. Here
we are not really interested in the two-sided alternative 7 : A $ 0. Ordinarily in
the outlier problem the outliers will have a larger variance than the nonoutliers,
so that the nonzero ai will be positive. Furthermore, the locally best invariant
one-sided test will turn out to be the locally best invariant two-sided test, as we
shall see.
The problem above is invariant under the following three transformations:

(1) permutation of all the subscripts of the Xi; (2) addition of a constant to all
the Xi; (3) multiplication by a positive constant of all the Xi. We shall only con-
cern ourselves with rejection rules which are invariant under these three trans-
formations. Invariance under (1) restricts the rejection rules to functions of the
order statistics X(1), X(2), *. . , X("). Invariance under (2) restricts the rejection
rules to functions of the differences, X(2) - X(), ... , X(n)- X(l), while invari-
ance under (3) restricts further the rejection rules to functions of the ratios,
(X(2) - X(l))/(X(n) - X(1)), --, (X(.-,) - X(l))/(X(f) - X(1)). We shall de-
rive the joint distribution of these ratios. Since this distribution does not depend
on it and a, we shall take from the start A = 0 and a = 1 in order to simplify the
algebra.
The density of the distribution of the order statistics under model B (,u = 0

and af = 1) is,

(2.76) fx(,),. . .x(.,(xI, **, x.)
- (I)nI) exp [- A E ai] * exp [ Xv e

where Z1 < x2 < ... < xn and where F-* denotes the summation over all
permutations (vI, * * *, vn) of the first n positive integers. To compute the
density of the differences, X(2) - X(1), ... , -XX(n))-X, we make the transfor-
mation (2.4), whose Jacobian is one, and integrate W from -ao to X .

From this we may find the distribution of the ratios by making the transfor-
mation (2.6), whose Jacobian is Vn-2, and integrating V from 0 to o. We
obtain

(2.77) fY,, --,Y, (Y2, Yn-1,Yn) = c exp [ 2 as] ( e-Aai)s-((n-1)2g()

where

(2.78) g(A) U e[E u,e a, - (E u,je-'ai)2(F e-Aai)-1]-(n-1)/2
where 0= Y1< y2 < ... < Yn 1 < Y. = 1andwhere

(2.79) y = 1-y, s2 = - F (y 2-U)2U - ,-
n i=I ni= VHs
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In order to apply the Neyman-Pearson theory we need to be able to dif-
ferentiate the integral of the density (2.77) over a measurable set in Rn-2, with
respect to A, and to pass this derivative beneath the integral sign. As in section
2.1 it is a straightforward task to show that it is possible to pass derivatives of
any order under the integral sign for all values of A, and for all measurable sets w.
We shall now show that the first partial derivative of the logarithm of the

density (2.77) with respect to A, evaluated at A = 0, is zero identically in
0 < Y2 < ... < Yn-1 < 1, thus implying that the first derivative of the power
function vanishes at A = 0 whatever be the rejection region .
We have

(2.80) d logfY Y a1 +2In a1e i + (0).0A ~ ~ ~~~~22 ~e-ai g(0)
Since E, uj = 0 and E Uj = 1, it may be seen that g(O) = n! and g'(0) =
[(n - 1)/2](n - 1)! E a1. Hence, from (2.80),

(2.81) a
log fy,,. ..Y_i(y2, * * yn-1f A) 0.

In order to evaluate the second derivative of the logarithm of the density (2.77)
at A = 0, we first find that

_(n + 1)!d)(2.82) g"(0) =
+ ) (a1 - )2- u3 + C(a),

where C(a) represents an arbitrary constant which may depend upon the values
a,, a2, * , an. Thus, using equation (2.35),

(2.83) 2fY,,. Yn-, *--, yn-IJA)

= (n + 1) 1 E (aj-d)2b2 + C(a)
n

As in the previous sections the Neyman-Pearson method may be applied to
derive the locally best invariant test of size a for testing Ho against Hi, which
here consists of points for which

(2.84) -2 log fY,.. .,Y"(y2,Y **, yY2Y )|1 > K,

where K is chosen so that the size of the test be a. We have the following theorem.
THEOREM 2.4. Under the assumptions of model B, the locally best invariant test

of size a for testing H0 against H1 is the following: reject H0 if b2 > K, where K is
chosen so that the size of the test will be a. This test is locally best invariant,
uniformly in the aj.

This theorem states that no matter how many spurious observations there are,
the rule which rejects Ho when b2 is too large is locally best invariant under
model B assumptions. This highlights the possibility of using the coefficient of
kurtosis as a test for homogeneity of variance in a single sample! In practice,
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however, I doubt if one is ever sure enough of the normality assumption to use
this test for that purpose. Still, theorem 2.4 gives an optimum property of the b2
test when used as it usually is, as a test for normality with unknown mean and
variance.

2.4 Strong local optimality. In the previous sections it was seen that the
locally best tests were optimal uniformly in certain configurations of the shifts,
as, supposedly known. In this section we shall prove a stronger type of local
optimality, in which the ai will be allowed to be unknown.
We shall put A = 1 in the preceding statistical hypothesis, and we shall

suppose that for some integer k, ai = 0 for i > k. Corresponding to any critical
region, w, there will be a power function, f3 (a1, . * *, ak), which now is considered
as a function of the ai. We have seen that the locally best tests are unique, so
that corresponding to any (unbiased) invariant test, cl', of size a, nontrivially
distinct from the locally best test, w, of size a, and on any line through the
origin in k-dimensions, there is an open interval containing the origin throughout
which f3,(al, - * *, ak) _ #.(a1, * * *, ak), with equality holding only at the origin.
However, it might be that for a fixed test, co', the length of the interval, being
dependent on the line chosen, is not bounded away from zero. That this is
impossible is the content of the following corollary. Although this strong local
optimality holds for all the locally best tests of the previous section, we shall
give the statement and proof only for the locally best unbiased invariant test.
COROLLARY TO THEOREM 2.2. Let wo be the critical region described in the last

statement of theorem 2.2, let k satisfy inequality (2.40), and let w' be any unbiased
invariant critical region of size a, which is distinct from wo in the sense that the
Lebesgue measure of their symmetric difference is positive. Then there exists a neigh-
borhood, N, of the origin in k-dimensions throughout which O.,(al, , ak) >
O.^,(al, * *, ak) except at the origin, where equality holds.
PROOF. It is easy to check that partial derivatives of all orders of

0>(al, * * *, ak) exist for every invariant critical region, W. If the region is also
unbiased, the expansion
(2.85) 0(.,(A) = a + A4 E ahajajaLy',tV + A55&(aj, * , ak, A)

hijl

is valid, where -y."' is the fourth partial derivative of 3(al, * * *, ak) with respect
to ah, ai, a,, and a,, evaluated at the origin, and where 5,,(al, * * *, ak, A) is a
continuous function. We are to show that there is a number e > 0 such that the
difference

(2.86) :-(A) - #.,(A) = A4 E ahLaiaJal(jajat-y'j- ) + 5(- _
is positive, provided (a,, * , ak) is on the unit sphere in k-dimensions and
0 < AIA < e. However, wo has the property that it is the unique test for which
the fourth derivative of 13(A), evaluated at the origin, is maximized, whatever be
the point (a,, * - *, ak). This implies that the coefficient of A4 in formula (2.86) is
positive for all points (a,, * * *, ak) on the unit sphere, and hence greater than
some number - > 0, on this sphere. The coefficient of A5 in (2.86), being continu-
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ous, is bounded in absolute value by some number B > 0, for points (al, * ak)
is on the unit sphere and JAI < 1. Hence,

(2.87) 0.(A) - 0.,(A) _ A(77 -AB).
The proof is completed by choosing f = B/-.

3. Multidecision rejection in model B

It is the purpose of this section to discover the analogue of the rejection rule
with the optimum multidecision property as proved by Paulson, Murphy, and
Kudo, in the case where alternative hypotheses are of the type specified by
model B. We shall treat model B type hypotheses when there is at most one
outlier, and we shall consider the multidimensional case as was done by Karlin
and Truax for model A alternatives. The model B assumptions which will be
invoked in this section are the following.

Xl, X2, *.*, X,, are independent p-dimensional random vectors, each having a
normal distribution with a common unknown mean vector u. We are interested in
finding a multiple decision procedure for choosing among the following n + I
hypotheses:

Ho: X1, Xn have a common covariance matrix

(3.1) E(Xi - /)(Xi - /L)' =

and,fork=1,---,n,

(3.2) Hk: E(X -/I)(Xi- u)' = for i F$ k and

E(Xk - IA)(Xk - ii)' = X2L'

where s is an unknown p X p nonsingular matrix and where X is a known real
number greater than one.
We shall denote by Di the decision to act as if hypothesis Hi were true, i = 0,

1, * * , u. Ordinarily, Di for i = 1, , n will be the decision to reject the ith
observation as the spurious one.
A decision rule here is a subdivision of the space of possible outcomes of the

experiment into n + 1 regions, wo, wi, * * *, co, with the understanding that we
shall take decision Di if the observed outcome of the experiment (XI, *- , X.)
falls in i.
We shall restrict attention to those decision rules which are (a) invariant

under the addition to each Xi of a constant vector; (b) invariant under the
multiplication of each Xi by a nonsingular matrix.

For any decision rule satisfying the invariance conditions (a) and (b), the
probability of taking decision Dj when hypothesis Hk is true, P(DjlHk), is
independent of the unknown parameters, ,u and Z. We shall further restrict
attention to those decision rules which satisfy the requirements (c) P(DklHk) is
independent of k, for k = 1, 2, * , n; (d) P(DolHo) = 1 - a, where a is a
preassigned number 0 < a < 1.
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Thus although we are confronted in reality with a multiple decision problem,
we single out one hypothesis, Ho, for special consideration as in the Neyman-
Pearson theory. Out of all decision rules which satisfy (a), (b), (c), and (d), we
shall seek that rule which maximizes the probability P(DklHk). This rule turns
out to be the rejection criterion based upon the maximum of the lengths of the
Studentized deviations from the mean, as was found for model A, by Karlin and
Truax. More specifically, let X, S, and R' be the sample mean, the sample covari-
ance matrix, and the jth Studentized square residual, respectively;

i
- E iX=n E Xi

1 n

(3.3) S = E (Xi- )(Xi-X)"n - 1 i=1

Ri = (Xj- X)'S-(Xi-X) .

We shall prove the following theorem.
THEOREM 3.1. Under model B assumptions stated above, the decision rule

which, out of all decision rules satisfying (a), (b), (c), and (d), maximizes the
probability P(DklHk), k 6 0, is: take decision Do whenever maxj R2 < K, where K
is chosen so that condition (d) is satisfied; take decision Dk, for k = 1, * n,
whenever R? = maxi R' > K. This rule is best in the above sense uniformly in X.

PROOF. Since the performance of rejection rules satisfying (a) and (b) does
not depend on the unknown mean, IA, and unknown covariance matrix, Z, we
shall take,u = 0 and s = I in what follows, in order to simplify the algebra.
Under hypothesis Hk, we have

(3.4) fx,.. . (xi,*, **, Xn)

=(2r) xp { 1 2+ 4( }

To satisfy requirement (a) we restrict attention to those rules which are functions
of Z2 = X2- X1, Z3 = X3- XI, * , Z,n = X- Xi. To find the joint distribu-
tion of Z2, * , Z. we make the transformation analogous to (2.4), whose
Jacobian is one, and integrateW over RP. The dummy variable z1 in the following
formulas represents a p-dimensional vector of zeros.

(3.5) fz2, ..,Z.(Z2, . Z) = C (X(n exp (z -e)'(z - Y

+ 2(n (Zk -Z)(Zk -Z)

where y = 1-1/)2, and z = (1/n) Et-l zi. With probability one, the vectors
Zn-p+I, * * Zn are linearly independent, so that the p X p dimensional matrix,
A, comprised of the column vectors (Zn-,+l, . - *, Zn) is nonsingular with probabil-
ity one. To satisfy requirement (b) we restrict attention to those rules which
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are functions of Y2 = A-'Z2, Y3 = A-1Z3, ***, = A-'Z.,_. To find the joint
distribution of Y2, * , Y.-,, we make the transformation

Yj = A-'Zj, forj =2, ** ,n-p

Vi = Zn-pI+j for j =1, * ,p

(3.6) where A = (Zn-+j * Zn)
Zj= AYi, forj=2,***, n-p

Zn-p+j=V, forj = 1,***,n - p
where A = (VI, V,V)

whose Jacobian is JAl n-p-l, where by Al we mean the absolute value of the
determinant of the matrix A. We shall integrate out the variables, V1, * * *, V,.
In the following formulas we shall use the dummy variables y, = 0 = A-lzl, and
yj = ei-n+p = A-'zj for j = n - p + 1, - - *, n, where ej is the p-dimensional
vector with a one in the jth position and zeros elsewhere.

(3.7) fy2,.. .,Y.-(y2, y.-p)

=c( ) f exp { _ (yi- Y)' A'A (yi-Y)

+ 2(ny_) (yk- y)' A'A (yk - y)} JIAIJ--1 dA.

Now define ul, * , up as those column vectors for which A' = (ul, , up) so
that we may write

n p(3.8) _ (yi- Y)' A'A (yi - Y) = ujSouj,
i=1 j=1

where So is the nonsingular matrix
n

(3.9) So = E (yi- Y)(yi-Y
j=1

After the change of variables
(3.10) tj = So/2uj, u = Sdu12tj,luj =j Soj1/2 dt,
for j = 1, * , p, equation (3.7) becomes

(3.11) fY2,s wYn p,(Y2, ''** Yn-p)

CC lSoL-(n-)2 _ ) f exp {-2 ttj

2(n -y) r'B'Brk} IIBIln-P- dB,

where B' = So"2A' = (t,, * , tp) and where rk = S- 1/2(yk-y). We note that
rkrk is the square of the length of the kth Studentized deviation from the mean.

(3.12) Rk = r;rk = (yk - Y)'SO (Yk - Y) =(Xk - )S (xk - X)-
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There exists a rotation, P, such that P'P = I and Prk = Rke,; then Brk =
RkBP'el. We shall make another change of variables
(3.13) Wj = Pt,, tj = P'wj, dtj = dwj,
for i = 1, * , p, and define C' = PB' = (w1, * *, w,). The density (3.11)
becomes

(3. 14) fy,,,*-- y.(y2 *- y.)
1 )p -(n-1)/ r r 1

wi=c I( ) sol ep -2 E wjw

+ 2(n - e1 elf I CIK-' dC.

Following the method of Paulson we shall consider the distribution of Y2,
... Y,,n, only, for which the hypotheses Ho, H1, *-* , Hn are simple. We shall
choose an a priori distribution for the hypotheses Hk, k = 0, 1, * * *, n, and com-
pute the Bayes solution which maximizes the probability of making a correct
decision. This solution will automatically satisfy conditions (a) and (b). If it
turns out that this solution also satisfies conditions (c) and (d) then this solu-
tion will be the optimum one in the sense described in the theorem. We shall
give a priori probabilities po to Ho, and pi to Hk for k = 1, *--, n, where
po + np, = 1. According to the method of Wald, the probability of making a
correct decision will be maximized if we take for wk, where k = 0, 1, ***, n, the
sets

n
(3.15) -k = n {pkfk(X) _ pjfj(x)} ,

j=1

where pj is the prior probability of density fj. Under Hk, for k $ 0, the density
of Y2, * * , Y,n- is given by formula (3.14), and under Ho, it is given by the
formula (3.14) with X replaced by one. Hence

(3.16)
n 1 P 2y~ C '1IICVv-d

W'~O n P { 2i- l w'wi + 11 e_R e'CC'e 1P-1 dC
j=1 2 i=1 ~~~2(n - y) ici

n
= n {RJ < K} = {maxRj <

'Wk = {R2 > K} n n {R} < Rk}
j61

= {max Rj = Rk> K}.

Choosing po between zero and one is equivalent to choosing K between zero and
infinity, so that by a proper choice of po we may satisfy condition (d). It follows
at once from the symmetry of this rule that condition (c) is satisfied. Furthermore
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since this rule does not depend on the value of X, it is optimum uniiformly in X,
and the proof is complete.

4. Outliers in designed experiments

The problem of rejection of outliers in designed experiments is more complex
than for the simple experiments mentioned in the earlier sections of this paper,
mainly because it is more difficult to spot spurious observations from the raw
data. A large value of an observation may be due to a particular set of values of
the unknown parameters, and conversely a spurious observation may appear
normal if the shift in the mean cancels the contributions to the mean by the
unknown parameters. Furthermore, one bad value among the observations will
influence the values of many of the estimates of the parameters, and thus spoil
the test completely.

In two recent papers, Anscombe [1] and Daniel [2], a rejection rule based on
the maximum Studentized square residual has been suggested on intuitive
grounds. Since this is the natural extension of the test based on the maximum
Studentized deviation from the mean for which an optimum property was
discovered by Murphy [9], Paulson [11], and Kudo [7], it is of interest to investi-
gate how well this optimum property will extend for designed experiments.

4.1. Distribution of the Studentized square residuals. Let X represent an
n-dimensional random vector with covariance matrix

(4.1) Coy X =
where cr2 > 0 is an unknown parameter and where I. is used to denote the
n X n identity matrix. The usual assumptions of the general linear hypothesis
are that the mean of X is At where A is an unknown n X r matrix of full rank
r < n, and t is an r-dimensional vector of unknown parameters. The least squares
estimate, Z, of t is that vector t which minimizes the sum of squares
(4.2) S2 = (X - At)'(X - At).
The estimate, {, may be obtained by equating (a/Oa)S2 - 2A'(X - At) to
zero and solving for e, yielding

(4.3) -= (A'A)-'A'X.
The vector of residuals, to be denoted by R, is
(4.4) R = X-Ai = BX,
where
(4.5) B = In - A(A'A)-WA.
It is easy to check directly that B is a projection (that is, B is symmetric and
BB = B) and has rank n - r. Under the above assumptions ER = BAZ = 0,
and Cov R = ERR' = BEXX'B' = 72B. According to the spectral theorem,
there exists an n-dimensional matrix P which is orthogonal (that is, P'P = In)
and for which
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(4.6) P'BP = (In-r 0) = D.

It follows that the residual sum of squares is an unbiased estimate of (n -r)a,
since
(4.7) E min S2 = ER'R = a2 trace B = a2(n- r).

This is the situation which obtains when no spurious values have crept into
the experiment. We make allowance for spurious values with the more general
assumption that the mean of X is
(4.8) EX = At + ca,
where a is a known n-dimensionial vector. We shall derive in this section the
distribution of a form of the Studentized square residuals under (4.8) and the
assumption that X has a multivariate normal distribution. The distribution of
the Studentized residual itself is singular and will not have a density. We shall
derive the distribution of a function of the Studentized residuals, which will
have a density in (n - r -1)-dimensions and from which the joint distribution
of the Studentized square residuals may be computed if desired. To this end we
consider the vector variable,
(4.9) Z = P'R = P'BX = DP'X,
where B, P, and D are as defined previously. The vector Z will have a multivari-
ate normal distribution with mean
(4.10) EZ = P'B(At + aa) = aP'Ba = aDP'a
and covariance matrix

(4.11) CovZ = a2D.

Thus the last r components of Z are degenerate at zero, while the first n - r
components are independent normals with a common variance a2. The first
n - r components of Z have the density

(4.12) fzz,. . *,zy,,(Zi, * * znr) = c exp {- 2 (z - aP'Ba)'(z - a-P'Ba)}}

where z represents the n-dimensional vector with transpose z' = (zi, ,n-r
0, * * *, 0). To get a form of the density of the Studentized variables, we shall
make the transformation

Y1 = Z1/Zn-r Z1 = WY1

(4.13) Yn-r-1 = Zn-r-i/Zn-, Zn-ri1 = WYn_r_1
W = Zn-r Zn_r = W
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The Jacobian of this transformation is IWK-1. If we let y denote the n-dimen-
sional vector with transpose y' = (yi, y* *, , 1, 0, * *, 0), we may calcu-
late the density of Y1, *Y,, as follows.

(4.14) fy.,..,yss_,(y1, * yn-r-1)

= c f {exp - (wy - oP'Ba)'(wy - oP'Ba)} IwIn-r-1 dw

= c exp { a'Ba}s (n-r)f exp {--2} cosh (tu'a)tn-r-l dt,

where we have made the change of variable t = (w/1ojV1y and where

(4.15) so = YY
u = so-BPy.

Strictly speaking we can reconstruct from Y1, *--, Y,,t1 the values of the
Studentized residuals only up to relative signs. We cannot determine the actual
signs because of our division by Zn-,, but what we have computed is sufficient
to determine the Studentized square residuals used in the theorem of the next
section.

4.2. Invariant admissibility of the rejection rule based on the maximum Student-
ized square residual. In the following analysis it will be assumed that there is at
most one spurious observation, since, as noted by Murphy [9], the optimum
property, which we are going to prove, does not extend conveniently to the case
where there are two or more spurious observations. We are concerned here with a
multidecision problem. The hypotheses we wish to consider are: Ho, that there
are no spurious observations and Hi, that the ith observation alone is spurious,
i = 1, * * *, n. Let e; denote the n-dimensional column vector with a one in the
ith position and zeros in all the remaining positions. Using the notation of the
previous section the hypotheses Ho, Hi,- * *, H. may be written

(4.16) Ho: a = 0,
Hi: a = a1e1, i = 1, 2, n,

where the ai are assumed to be nonzero real numbers known only in absolute
value. Allowing the signs of the ai to be unknown will lead us to two-sided tests.
We also make the assumptions that no residual has variance zero, and that
no two residuals have correlation equal to +1, that is,

(4.17)
bi,5# bb, n,

tbU2P bi,bij, i#j

where bij is the (i,j)th element of the matrix B. If bi, were equal to zero for some i,
there would be absolutely no way of telling whether or not the ith observation is
spurious without the use of supplementary information. Especially embarrassing
is the situation in which a few of the residuals have correlations very close or
equal to plus or minus one. A spurious value which occurs at one of these observa-
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tions effects very strongly those residuals which have a very strong positive or
negative correlation with its residual, making it very difficult to judge which of
the observations is the maverick. For a discussion on this point, and an example,
see Anscombe [1].
The problem we are considering is invariant under the two operations: (1)

addition to the vector X of a vector Aa where a is an arbitrary r-dimensional
vector; (2) multiplication of the vector X by an arbitrary nonzero scalar. As a
consequence, we shall only consider rules which are invariant under these two
operations. Invariance under the first operation requires that we consider only
those rules which are functions of the vector of residuals, R. In addition, invari-
anice under the second operation requires that we consider only those rules which
are functions of that form of the Studentized residuals found in the previous
section, Y,, *.. , Yn_rl. Each of the hypotheses, Hi, when applied to the distri-
butions of such invariant rules, is simple, since the distributions are independent
of the actual values of t, U2, and the signs of the as.
As before we shall let Di represent the decision to reject the ith observation

as spurious, and Do to represent the decision to accept all the observations as
valid. The analogue of the condition found in Paulson that P(DiHi) be inde-
pendent of i for i = 1, * * , n, is no longer a reasonable condition to impose on the
decision rule, because the problem is no longer symmetric in the observations,
that is, the residuals do not necessarily have equal variances or correlations.
The optimal property of the rule based on the maximum Studentized deviation

from the mean as found by Paulson for model A, and in section three for model B,
is nothing more nor less than the facts that the rule is (a) symmetric in the
observations, and (b) admissible among all invariant rules, being Bayes with
respect to an a priori distribution giving positive mass to each of the n + 1 simple
hypotheses. Thus, the optimality is admissibility among invariant rules. In what
follows we shall say that a decision rule is invariant admissible for the problem we
are considering, if it is invariant, and if P(DilHi) for fixed i cannot be increased
by using another invariant decision rule without decreasing P(DjlHj) for some
j 5 i. Since we are no longer interested in symmetry, the analogue of the Paulson
optimum property for the problem under consideration will be simply that the
rejection rule based on the maximum Studentized residual is invariant admissi-
ble. This is the content of the following theorem. Let us denote the residual sum
of squares by s2 and jth Studentized square residual by V2, so that

S2= R'R,
(4.18)

So ',
V( = R'(bjjS)-(n - r), j = 1, 2, n.*,

THEOREM 4.1. The decision rule which states, take decision Do when maxj
VJ< K, and for i = 1,- * -, n take decision Di when V1= max3V3> K, is
invariant admissible for the outlier problem when jail = ab1t1/2 where a is a positive
real number, the rule being Bayes with respect to an a priori distribution giving equal
weights to hypotheses H1, * * * , H,n. This optimum property holds uniformly in a.
REMARKS. This theorem can be considered a rather satisfactory extension of
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the Paulson optimum property in the case where all the residuals have equal
variances, that is, all bij are equal. It is this type of design to which Anscombe
restricted his attention; that it still covers a large class of designs is evident in the
list of such designs found in Anscombe's paper. For such designs, the above
theorem tells us that the rejection rule based on the maximum Studentized
square residual is a Bayes solution with respect to the a priori distribution which
assigns equal weights to hypotheses specifying equal shifts in the mean for the
spurious observation.

This may be contrasted with the general statement that the rule based on the
maximum Studentized square residual is a Bayes solution with respect to the
a priori distribution which assigns equal weights to hypotheses specifying a shift
of length -4a(o/\b,kk) in an observation whose residual has variance oa bkk. Essen-
tially, we are guarding equally against shifts in the mean, of length inversely
proportional to the standard deviations of the residuals, so that a small shift is
hypothesized for observations whose residuals have large variances. If the null
hypothesis is true, and we do decide to reject, the various alternative hypotheses
will be accepted with approximately equal probabilities (depending on the
approximate equality of the correlations of the residuals). On the other hand, if
hypothesis Hk is true, k $ 0, the vector of residuals gets shifted by an amount
ia(oa/bkk)Bek = Aa(°a/bkk)bk, where bk is the kth column of B, and repre-
sents the covariance of R and its kth component, Rk. Consequently, the Student-
ized jth residual, V, = R,/sV<., gets shifted by an amount -apjk(a/s), where
Pik represents the correlation between the jth and the kth residuals.
One can deduce from this that when bkk is small relative to the other bjj, a

relatively large shift, of length 4a(o/*kk), in the kth observation will be
required in order to reject Ho, and conversely, when bkk is relatively large, a
relatively small shift in the kth observation will be sufficient to reject Ho. Fur-
thermore, it is easy to conjecture from the above that P(DjlHk) takes on its maxi-
mum value for fixed k when j = k. This statement is the analogue of one of the
unbiasedness properties proved by Kapur [5] for the maximum Studentized
deviation from the mean. Its validity in the present situation is still an open
problem.
Another way of viewing this situation is as follows. When a residual has a

relatively small variance, most of the information provided by the corresponding
observation goes into the estimation of the unknown E, while relatively little is
used to estimate the unknown a2. It is only by that part of the observation used
to estimate a2 that we can hope to judge whether or not the corresponding
observation is spurious. Thus we should require a larger shift for an observation
whose residual has a smaller variance, in order to be able to reject it. This turns
out to be the case with the rejection rule of the above theorem; in fact the length
of shift required is roughly proportional to the inverse of the standard deviation
of the residual. Although these considerations point out the fact that this rejec-
tion rule is not easily justifiable in the case that the bjj are not all equal, still it
cannot be called an unreasonable rule.
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PROOF. First, we shall restrict attention to the invariant decision rules, so
that as far as we are concerned the hypotheses Hi are simple. We will show that
the above decision rule is a Bayes rule with respect to an a priori distribution
giving positive mass to each of the n + 1 hypotheses Hi where i = 0, 1, * * *, n.

Let us denote the a priori probability of Hi by pi, i = 0, 1, * , n, where pi > 0
for all i and ?-o pi = 1. Wald's method may be applied to find that decision rule
which maximizes the probability of making a correct decision, ?t-o piP(D,IHi).
Let us denote by f -,(y ,... , Yn-,r-) the density of Y1, ***,Y,-,-
under hypothesis Hi, for i = 0, 1, ***, n. Then the Bayes decision rule tells us to
take decision Di, whenever the sample point falls in wi, where for i = 0, 1, *.*, n,

(4.19) wi = nl {Pif~R..,y~y=,,Y- * --, Yn-r-1) > P,f(Yl, .y,-,-t(Yi, YX Yn-r-i)}.
a,"

The density of Y1, - , Y,,-,- may be found from equation (4.14) for each
hypothesis. The function,
(4.20) g(x) = f exp {- 2} cosh (tx)tf-r-l dt,

is an even function of x, increasing for 0 < x < o.
We may write

(4.21) f9n....Y.y,(yiY .*, Yn-r-I) =

and, for j =1, 2, * ,n,

(4.22) fr,. - --,y X yn-r-r) = exp {- § eBej} g(aju'e3).
Noting that eBej = bjj, and denoting u'ej by uj, we may write formulas (4.19) as

(4.23) COO = ogpoq(0) > p, exp -2 ajbij g(ajuj)}
.1=1 Lp

and, for i = 1, , n,

(4.24) wi = {Pog(0) < p, exp 2 atbij) g(aiui)}

n {pi exp ( aibi) g(aiui) > pi exp - abjj) g(ajuj)}
j.i

All these rules are invariant admissible in the different problems for which they
are designed, but most of them will lead to difficult computations in practical
situations. However, a great simplification occurs when pi exp {- (1/2)atbii} is
independent of i, for i = 1, 2, , n. Let us choose, therefore,

(4.25) pi co exp {I atbii}i
for i = 1, 2, w*.a where c, > 0 is chosen so that pO = 1 -St= pi is positive.
Then
(4.26) coo = {max (ajuj) < K},

j
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and, for i = 1, ***,n,
(4.27) xs = {(a=U)2=max (ajuj)2 > K},

where K is the positive root of the equation g(K"12) = pog(O)co l. K will exist
if we further restrict co < po, or 0 < co < (1 + E exp {(1/2)a1b;j})-1. A choice
of co in this range is equivalent to a choice of K on the positive axis. The above
formulas define a class of decision rules, one for each choice of nonzero a,, **, an.
The particular decision rule mentioned in the theorem will emerge when ai =
a2b-i I, since then

(4.28) aluj, = (u'e )2_ (ZIP'Be1) = 1 v2.a2 b- - z'zbi1 n - r

We note from equation (4.25) that this particular decision rule is Bayes with
respect to an a priori distribution giving equal weights to the hypotheses Hi,
i = 1, 2, * * *, n. This completes the proof of the theorem.

5. Results of a sampling experiment

In section two the suggestion was made of the use of the coefficient of skew-
ness and the coefficient of kurtosis for the rejection of outliers. These rules were
seen to have a theoretical optimum property and no consideration was given to
practical applicability. There are several points which should be mentioned.

First, there is a lack of tables of the percentage points for both the coefficients
of skewness and the coefficient of kurtosis. For large n (n > 25 for VbI, and
n > 200 for b2), tables may be found in Biometrika Tables for Statisticians [12].
But as far as the author is aware, no accurate tables are in existence for smaller
values of n. As a by-product of the sampling experiment described in more detail
below, certain percentage points for the distributions of Vb, and b2 have been
approximated and may be found in tables I and II. It is hoped that these tables
will prove useful until more accurate tables become available.

TABLE I

ESTIMATED CUTOFF POINTS FOR THIE DISTRIBUTION OF vb1

Based on 2Nn samples. (Advantage was taken of the symmetry of the distribution.) The
entries for n = 25 are the most inaccurate, being based on a sample of size 2000. The 95%
confidence intervals for the 1%, 5%, and 10% cutoff points for n = 25 were respectively
(.94, 1.08), (.66, .72), and (.51, .57). The Biometrika tables [12] for the 1% and 5% cutoff
points, for n = 25, give respectively 1.061 and .711, which fall within the confidence intervals.

\-~~ n 5 10 15 20 25
a

.01 1.34 1.31 1.20 1.11 .98

.05 1.05 .92 .84 .79 .68

.10 .82 .71 .66 .59 .54
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TABLE II

ESTIMATED CUTOFF POINTS FOR THE DISTRIBUTION OF b2

Based on N. samples. The entries for n = 25 are the most inaccurate being based on a
sample of size 1000. The 95% confidence intervals for the 1%, 5%, and 10% cutoff points
for n = 25, were respectively (4.60, 5.60), (3.81, 4.19), (3.48, 3.72).

\ n 5 10 15 20 25

.01 3.11 4.83 5.08 5.23 5.00

.05 2.89 3.85 4.07 4.15 4.00

.10 2.70 3.40 3.54 3.65 3.57

Second, the optimum property proved for the Vb1 and b2 tests is not a very
convincing one. If, for example, we compare v'b1 with the Studentized maximum
deviation from the mean suggested by Grubbs [4], and the statistic Rio suggested
by Dixon [3], on the basis of the power of the tests under model A assumptions
when there is at most one outlier, we are certain that for sufficiently small shifts
in the mean of the spurious observation the rule based on Vb is best. However,
for small shifts in the mean none of these tests will be any good, and for suffi-
ciently large shifts all the tests will have power close to one. It is more impor-
tant to investigate the relative behavior of these tests for "medium-sized" shifts.
This has been done by actually sampling from the normal distribution to obtain
estimates of the behavior.

For this purpose, a tape of 25,000 random normal deviates, which had been
checked with special reference to the behavior at the tails of the distribution was
provided at Bell Telephone Laboratories, Murray Hill, New Jersey, for use on
the IBM 704.

Successive samples of size n were taken from a normal population with mean
zero and variance one, and to a fixed member of each sample was added, succes-
sively, the nonnegative integers X = 0, 1, 2, * - *, 15. The values of n chosen for
this study were n = 5, 10, 15, 20, and 25. For each fixed value of n there is an
upper limit to the number of samples that can be obtained if each of the 25,000
random normal deviates is used at most once for each distribution. If we let Nn
denote the number of samples of size n that we have taken, then N6 = 5,000,
N,, = 2,500, N,, = 1,650, N20 = 1,250, N26 = 1,000. For each fixed value of n,
and each fixed X, the following statistics have been computed for each samplc:

One-sided

b = E, (Xi -X)/n.3
SMD = (X(n) -X)/

Rio = (X(n)- X(n-))/(X(n) - X())
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Two-sided

b2 = E (Xi -X)/ns4
SMD(2) = max [SMD, (X-XMV8s

-12= max [Rlo,(X(2) - X(,))/(X(n) -X(1))]
where X and s2 represent the sample mean and standard deviation of the sample,
Xi, * * *, X., and where X(,) < X(2) < ... < X(n) represent the order statistics.

This study somewhat overlaps the work done by Dixon [3]; however, the
number of samples per distribution is increased here over that of Dixon by a
factor of about 10, and so the results may be considered more accurate. On the
other hand, Dixon's point of view is slightly different from that presented here.
He has tabled and graphed the probability of rejecting the spurious observation.
The result of Paulson says that the statistic SMD is the best invariant with
respect to this criterion for all values of the shift X. Unfortunately, Dixon's
sample sizes were too small for him to be able to detect this fact experimentally.
In this paper we are considering rejection of outliers from the point of view of

hypothesis testing. The power function of the test of the null hypothesis that no
observation is spurious has been computed and tabled as a function of X. It was
found that for small values of n there is no difference to approximately two
decimal places between the power functions of the one-sided tests or between the
power functions of the two-sided tests. For n = 5 these power functions may be
found in tables III and IV.

TABLE III

POWER OF THEF ONE-SIDED TESTS, -\b-, SMD, R,,, n = 5

Based on 5000 samples.

\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.01 .01 .03 .06 .12 .20 .29 .39 .49 .59 .69 .77 .83 .88 .92 .95

.05 .06 .12 .24 .40 .57 .72 .83 .91 .96 .98 .99 1.00

.10 .12 .22 .39 .60 .77 .88 .95 .99 1.00

TABLE IV

POWER OF THE TWO-SIDED TESTS, b2, SMD(2), R,o(2), n = 5

Based on 5000 samples.

\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.01 .01 .02 .03 .06 .11 .17 .24 .32 .40 .48 .56 .64 .71 .77 .82

.05 .05 .07 .13 .24 .37 .50 .63 .74 .83 .90 .94 .97 .98 .99 1.00

.10 .10 .14 .25 .40 .57 .72 .83 .91 .96 .98 .99 1.00
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However, for larger values of n, it was found that there are significant differ-
ences between the power functions of the various tests. The difference seems to
increase slowly with n. For n = 25, these power functions may be found in tables
V and VI. It is seen in table V that for the one-sided tests SMD is significantly

TABLE V

POWER OF TEI ONE-SIDED TESTS, n = 25

Based on 1000 samples.
1% level of Significance

X 1 2 3 4 5 6 7 8

Vs~ .01 .07 .23 .52 .80 .94 .99 1.00
SMD .01 .06 .22 .53 .82 .96 .99 1.00
R10 .01 .05 .18 .45 .75 .92 .98 .99

5% level of significance

1 2 3 4 5 6 7 8

V/b1 .06 .17 .38 .69 .89 .98 1.00
SMD .06 .16 .42 .75 .94 .99 1.00
Ri0 .06 .13 .36 .67 .90 .98 .99 1.00

10% level of significance

X 1 2 3 4 5 6 7 8

-V;b .11 .23 .49 .76 .93 .99 1.00
SMD .10 .24 .55 .83 .97 .99 1.00
Rio .12 .20 .47 .78 .94 .99 1.00

better than Vb1 or Rio at the 5% and 10% significance levels, and that there is
not much difference between -'b- and Rio. At the 1% level -lb, and SMD are
approximately the same and both are better than R1o. In table VI it is seen that
for the two-sided tests b2 and SMD (2) are approximately equivalent at the 1%,
5% and 10% significance levels, SMD(2) being slightly better, and that both are
significantly better than R '2. However, it should be pointed out that for n = 25
the power of Rio can be increased slightly by modifying it according to the sug-
gestions of Dixon, since for large values of n the range is not as efficient as, for
example, X(,t_) - X(2) for use in estimating a.

In table VI the cutoff points for all three statistics had to be estimated by a
sampling procedure, thus yielding an extra source of error of the power tables.
The exact cutoff points for the SMD(2) test and certain generalizations of it
have been computed by Dr. C. Quesenberry at the University of North
Carolina, as part of his Ph.D. thesis.
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TABLE VI

POWER OF THE Two-SIDED TESTS, n = 25

Based on 1000 samples.

1% level of significance

1 2 3 4 5 6 7 8

bz .02 .04 .19 .48 .79 .95 .99 1.00
SMD(2) .01 .04 .18 .47 .78 .94 .99 1.00
R(12) .01 .04 .14 .36 .66 .88 .97 .99

5% level of significance

X 1 2 3 4 5 6 7 8

53 .05 .12 .36 .68 .89 .98 1.00
SMD(2) .05 .13 .35 .69 .91 .99 1.00
R(123 .05 .11 .29 .60 .84 .96 .99 1.00

10% level of significance

X 1 2 3 4 5 6 7 8

b2 .10 .20 .46 .76 .94 .99 1.00
SMD(2) .11 .20 .47 .78 .95 .99 1.00SM(2) .1 .0 .7 .8 .5 .9 10
R(,23 .10 .17 .39 .69 .90 .98 .99 1.00

Because the test based on b2 has an optimum property which is uniform in the
number of spurious observations up to 21% of the total, it should be especially
useful for repeated rejections. For this, the b2 test is applied to the data; if the
null hypothesis is rejected, the observation farthest from the mean is rejected
from the data, and the b2 test is applied again; and so on. Sequential rejection
plans have been suggested by Grubbs [4] and Murphy [9], using modified forms
of SMD, and by Dixon [3], using modified forms of Rio. The advantage of the
sequential plan based on v'b1 or b2, is that no modified forms are necessary and
that, consequently, one set of tables is sufficient for all the rejections.
The use of SMD(2) for repeated rejections is not recommended because of what

Murphy refers to as the masking effect: for small sample sizes and a small level
of significance (n < 15 and a < .05, for example) and for two spurious observa-
tions equally far from the mean, neither will be rejected. It may easily be guessed
that b2 suffers from a slight masking effect also. Thus it is of interest to determine
whether b2 is significantly better than SMD(2) in this respect. A second sampling
experiment was performed, this time with two spurious observations, in the sit-
uation where the masking effect should be the greatest, namely when each spuri-
ous observation is shifted an equal distance in the positive direction.
The effect on the probability of rejecting the null hypothesis may be found in

tables VII and VIII. For n = 5 and n = 10, the masking effect is very strong,
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TABLE VII

POWER OF b2 AND SMD(2) WHEN THERE ARE Two SPURIOUS OBSERVATIONS
BOTH SHIFTED BY A LENGTH + Xa, n = 15

Based on 1650 samples.

1% level of significance

X 1 2 3 4 5 6 7 8 9 10 11 12

b2 .02 .03 .05 .09 .12 .16 .23 .33 .46 .61 .74 .84
SMD(2) .02 .03 .06 .08 .09 .09 .08 .07 .06 .05 .04 .03

5% level of significance

X 1 2 3 4 5 6 7 8 9 10 11 12

b, .06 .09 .17 .32 .54 .75 .91 .98 1.00
SMD(2) .06 .09 .18 .26 .33 .38 .42 .44 .46 .47 .47 .48

10% level of significance

X 1 2 3 4 5 6 7 8 9 10 11 12

b2 .11 .16 .32 .56 .80 .95 .99 1.00
SMD(2) .11 .16 .29 .41 .53 .62 .71 .78 .84 .89 .93 .96

TABLE VIII

POWER OF b2 AND SMD(2) WHEN THERE ARE Two SPURIOUS OBSERVATIONS
BOTH SHIFTED BY A LENGTH + ?)-, n = 25

Based on 1000 samples.

1% level of significance

X 1 2 3 4 5 6 7 8 9 10

b2 .02 .04 .16 .41 .73 .93 1.00
SMD(2) .02 .04 .12 .25 .42 .56 .69 .84 .93 .97

5% level of significance

1 2 3 4 5 6 7 8

b2 .06 .14 .37 .71 .95 1.00
SMD(2) .06 .13 .34 .58 .81 .96 .99 1.00

10% level of significance

1 2 3 4 5 6 7

b2 .11 .22 .50 .84 .97 1.00
SMD(2) .11 .22 .46 .75 .93 .99 1.00
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1)oth for b2 and SMD(2); in fact, for both tests the probability of rejectioln tends to
zero as X tends to infinity (we shall say that the tests are inconsistent) at levels
1%, 5%, and 10%. For n = 15, SMD 2) is inconsistent at levels 1% and 5%; and
even though consistent at the 10% level, it has a poor behavior in comparison to
b2. At n = 25, both tests are consistent at levels 1%, 5%, and 10% but the b2 test
is significantly better. In addition, by comparing table VIII with table VI the
power of the test based on b2 is found to have increased as the number of spurious
observations has increased.
The author is indebted to the Bell Telephone Laboratories at Murray Hill,

New Jersey, for the very generous permission to use their IBM 704 for the com-
putation of the tables in the last section. He would like especially to express his
gratitude to Miss Marilyn Huyett of Bell Telephone Laboratories for her expert
help in programming the problem. Thanks are also due to Drs. J. W. Tukey,
H. A. David, Allan Birnbaum, and Frank Anscombe for many helpful discus-
sions.
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