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1. Introduction
In a recent paper by the author and H. Rubin [1] a thorough analysis was made of

the form of essentially complete classes when the densities p(x w) have monotone likeli-
hood ratios. The form of the Bayes strategies was determined and complete classes of
strategies were characterized. In order to carry out this analysis, very stringent condi-
tions were imposed on the loss functions. For example, in the case of two actions it was
assumed that Lj(w) - L2(W) possesses at most one sign change. This condition of one
sign change is intrinsically connected to the fact that the density p(x W) has a monotone
likelihood ratio. In this paper we deal with the general case of two actions where no as-
sumptions are made concerning the number of sign changes of Lj(w) - L2(w). However,
the class of densities p(x cw) is specialized to that of the exponential family in the first
half of this paper and then the results are extended to a class of distributions which we
call P6lya type distributions. Although the exponential distributions constitute a sub-
family of the P6lya type distributions, we have chosen to treat all the decision theory
associated with this class of distributions separately in order to best illustrate the scope
of the ideas and methods developed below. In section 8 the results for the exponential
family of distributions are then extended to the case when the underlying distributions
are P6lya type.
A thorough study is made of form of complete classes, Bayes strategies and admissi-

bility. Further results are obtained which relate Liapounoff's theorem on the range of a
vector measure to the family of distributions under consideration.

2. Preliminaries and definitions
Let the observed random variable be denoted by x ranging over X and the unknown

state of nature by w in Q. The sets X and Q are one-dimensional and will be identified
with subsets of the real line. To expedite the discussion we take Q to be an interval.

The cumulative distribution of x, when the state of nature is W, is assumed to belong
to the exponential family, that is,
(1) P (x, w) (X)f ekdu (t)
where #(w) > 0 for w in Q2 and ,u is a a-finite measure defined on the real line with the
spectrum of p equal to X. (The spectrum of , is defined to be the set of all x such that for
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any open set W containing x, ,uc{WI > 0.) This family of distributions includes many
well known examples, for instance, Normal with known variance, Poisson, Gamma,
and Binomial.
/ We shall be concerned throughout this study with the general case of two actions.
Let the loss functions be denoted by Li(w) and L2(W) when taking actions 1 and 2, respec-
tively, and the true parameter value is co.

For purposes of presenting the basic requirements on Li(w) we introduce the follow-
ing concepts.

The number of sign changes V(h) of a function h(w) is taken to be sup N[h(wi)],
where N[h(woi)] is the number of changes of sign of the sequence h(cWi), h(co2),*, h(Om),
where coi < wci+. A point coo is called a change point for h(co) if

(2) h (w) h (co') h 0 (co, co' essentially near coo,

whenever w < coo . co' with coX co' and definite inequality occurs for some specific
choice of co and co' or h(coo)h(co)h(w') . 0 for co < coo < co'.
We require that L1-L2 = h changes sign n times with n a fixed finite number.

Furthermore, Li, i = 1, 2, are defined everywhere in Ql and have sufficient smoothness
properties to insure the existence of all integrals involving these quantities. Finally, we
assume that L1- L2 has at most a countable number of points of discontinuity.

The set of change points of Lj(co) - L2(CO) is denoted by SO and arranged in order
consists of coo, co*,..*, con. We allow the possibility that two successive co° may be equal,
but no more than two co° can coincide. If ci = co+1, then we must have

(3) [Li (w) -L2 (CO) I [Li (co') -L2 (co') I >0

for co < co° < co' with co and co' sufficiently close to coA. Of course, [Li(CO) - L2(CO)]
*[Li(co,) -L2(coi)] < 0 for the same choice of co.
This corresponds to the case where one of the two actions is preferred to the other in

an open neighborhood of cow except for co = co° where the reverse preference exists. The
loss functions Li are numbered so that Lj(co) - L2(co) < 0 for o < co1.
Two important special cases are worth exhibiting.
(1) If n = 1, that is, there is only one sign change, then we are dealing with the usual

one-sided decision problem. For co < coo action 1 is preferred (say), and for co> coo ac-
tion 2 is preferred. The complete class theory, Bayes solutions and other aspects of the
decision problem were treated in detail for this special case in [1].

(2) Another important example is the two-sided problem. This corresponds to the
case of n = 2 change points. Heuristically speaking, for small and large parameter values
action 1 is favored while if the parameter values are moderate, action 2 is favored.

3. Basic lemmas
The following lemma is fundamental in all that follows.
LEMMA 1. If h(co) changes sign n times, then

(4) g (x) = f e-8 (o) h (co) dF (co),

where F is a measure, has at most n zeros counting multiplicities or is identically zero. The
function g is identically zero only if the spectrum of F is contained in the union of the set
of change points of h and the zeros of h.
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PROoF. Let co, wC2 S *...* co. denote the change points of h(w). Suppose for definite-

ness (-1)" h(w) . 0 for w < co,. Consider the quantity

d d d
-WZ0j

d
(5) rWx dx e"x+-,P dx * * * d Ie d (e-"lzg (x) ) r,

n

f= eI rl (o - c (c) h (X) dF (X) .
s-1

Since J| (w - cot) and h(w) change signs at the same points in the same direction, the
i-1

integral in (5) is everywhere positive provided F does not concentrate fully at the zeros
of h and the set of change points coi. Thus, in this latter case

d d d d

Hence, by virtue of Rolle's theorem

(7) ee-nznaP1n d -s* d elzg (x)dx dx

has at most one zero. Therefore, the same is true of

d d(8) d-e-"W-'X+%2 *- - d- eu-Ig (x) .

Another application of Rolle's theorem implies that

(9) e-n-,Z+"n-s2 d e-.s+w -±dee1g (x)dx- dx

has at most 2 zeros counting multiplicities. Repeating this reasoning n times leads to the
conclusion of the lemma.

Remark 1. A careful examination of the argument of the lemma also shows that if
g(x) has n changes of sign, then the first region of x values where g is different from zero
has the property that (- 1)"g(x) < 0. In other words, if g and h have the same number
of sign changes then they change signs in the same order.

In an analogous manner, it is shown
LEmmA 2. If r changes sign at most n times then

(10) s (c) = f e- r (x) d, (x), dp (x) > Ofor x in X,

has at most n zeros counting multiplicities.
COROLLARY 1. For any distribution F whose spectrum is not contained in the set con-

sisting ofw1, cW2, ,iw and the zeros of LI - L2, then

(1 1) A (X) = f^ e-0 (co) [Li (co) -L2 (co) I dF (co)
has at most n zeros counting multiplicities.

4. Bayes strategies
A strategy for the statistician can be described by a pair of functions (o = [ko(x),

1 -So(x)J where vi(x) represents the probability of taking action 1 when x is observed.
Two strategies s = (, 1 - VI) and J' = ( ,1I - 4I) are identified if (p, = Vj almost
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everywhere with respect to the measure ,u. The risk corresponding to a given strategy
(p = (,pi, 1 - p1) with nature's state described by w is given by

(12) p (,w, (p) = 9 (w) f e- Jpi (x) Li (X) + 11I- (p (x) I L2 (co) ) di, (x).

Our first task is to characterize the form of the Bayes strategies. In order to avoid minor
technical difficulties we make the assumption that the zeros of L -L2 are contained in
the set of change points SO.

THEopE1m 1. For any F either all strategies are Bayes or the Bayes strategy is uniquely
determined exceptfor at most n points and consists of at most n + 1 disjoint intervals where
either action 1 or 2 is taken.

PROOF. If the spectrum of F does not concentrate fully in SO, then corollary 1 shows
that for any distribution as in (11), A vanishes at most n times. The set of x where
A(x) < 0 requires the optimum procedure to take action 1. The optimum strategy re-
quires the statistician to take action 2 for any observed x for which A(x) > 0. Whenever
A(x) = 0 both actions produce the same expected yield. Since A is continuous and has
at most n zeros, the conclusion of the theorem is evident for this case. If the spectrum of
F is contained in SO and A does not vanish identically, then A is a nonzero exponential
polynomial with at most n terms. It follows that A vanishes at most n - 1 times and the
argument proceeds as before. The proof of theorem 1 is hereby complete.

In view of theorem 1, all Bayes strategies can be described by at most n numbers xi
with xi _ xj+ such that

, X2i<X< X2i+l, i= *X"21
(13) 'p1 (x) Xi x= xi, 0< Xi< 1

00, elsewhere

and (P2(x) = 1 -$0i(x) where always x0 = - c. The fact that Li(w) - L2(w) <0 for
X < wo and the implication of remark 1 enables us to conclude that pl(x) = 1 for
x < xi and thus the representation of the Bayes strategies as in (13) is accurate. The
collection of such strategies shall be denoted by M. The collection of all possible strate-
gies p = (,pi, 1 - (p1) will be denoted by S. In the description of a strategy inM the
possibility that some of the xi are ± o is not excluded.

5. Essential complete classes and admissibility
Using the result of theorem 1, we now establish
THEoREm 2. The set M is an essentially complete class of strategies.
PROOF. Consider a dense set of co enumerated as follows: wi, (W2, C3,-- We include in

this collection any point of discontinuity of L1- L2. Consider the modified statistical
problem where the states of nature are restricted to the finite number co,, W2,* *", COm.-
Since in this modified problem the spaces of strategies for both the statistician and nature
are compact, the Bayes strategies constitute an essentially complete class [2]. By theo-
rem 1 the relevant Bayes strategies are contained in the set AM. This holds for every
finite choice of m. Thus for any strategy so = (91, 1- VI), we can find a strategy * =
(sl 1 - 0) inM such that

(14) p (sp, wi) 2 p (.pm, wci) m,



DECISION THEORY II9

or

(15) [L1 (wi) -L2 (coi) ffei'i [,pi (x) -sop (x) I d4' (x) > 0!.

From the strategies 0pm a limit strategy ro in Mf can be selected. Indeed, as (m are de-
termined by a set of x, and X7j, i = 1,* * *, n, with x, < x'i+, and 0 <_Xm <_ [see (13)],
one selects limit values from these quantities to determine sO. It is an easy matter to
show that for any fixed coi

(16) feai-op- (x) dM,u(x) --feiZxpO (x) du (x) .

Consequently, in (14) we obtain

(17) p (sp, W) 2 p (so°, wi), ior every i

Since wi constitute a dense set and w{ { wi} is a point of continuity of L1 - L2, we ob-
tain by a limiting argument that (17) holds for every w. This completes the proof.
To obtain a more precise result, we need
LEMMA 3. If (pl = (,P1, 1 -(p1) and 2 = (V2, 1 - (P2) are two strategies in Athen

(18) f e- [ P (X) -2 (X) I du (x)

has less than n zeros counting multiplicities.
PROOF. Let the given strategies be described by

1 X2i < X < X2i+1

(19) (Pi= xik X= Xi

0, elsewhere

(I Y2i < X <Y2i+1

(20) V2 = Ai, X = Yi

0, elsewhere

with xi jxi+,, yi 5 yi+i, i = 0 [n 1]

Two cases shall be considered. Suppose xi < yi; then So-l P2 < 0 for x < X2 and
thus the first change point of (PI - 2 can occur only for x _ x2. But, only the values x,
can qualify as change points since elsewhere 91l achieves its maximum and minimum
values, 1 and 0, respectively, while IP2 lies everywhere between 0 and 1. Thus, in this cir-
cumstance (pi - (P2 can only possibly change signs for x = X2, X3,*, x,. and thus (pi - (P2
has at most n - 1 changes of sign. If on the other hand xi > yi, then (pi - IP2 0 for
x < Y2. By a symmetrical argument in terms of (P2, ( - (P2 can only change signs at
the possible points x = Y2, Y3, yi and again we obtain that (p1- (P2 has at most
n - 1 changes of sign. Applying lemma 2 shows that

(21) fek[ °Pl(x) -2(X)I d, (x)

can vanish counting multiplicities at most n - 1 times. Q.E.D.
THoREm 3. For any strategy (p = (,pi, 1- (P1) not in M there exists a unique member

(P0 ofM such that
(22) p (,PO w){ < (apz
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with inequality everywhere except for X in SO. Moreover, the set ff constitutes a minimal
complete system.

PROOF. For any (p not in 1f there exists by theorem 2 a pO° in M such that (22) holds,
that is,
(23) [L1 (w) (X) fe- (sol-sol) d4 (x) 2 0

for all w. Since L1- L2 changes sign at w° and the integral expression is continuous, we
find that
(24) f eol4Z (q,p,- p)(x) dp (x) =0

with i = 1, , n. If two of the wci coincide, then

(25) f c- [,p, (x) -,pl (x) I ds (x)

must have a double root at w°. If there existed two members so and so* of Mf dominat-
ing so, then (24) would hold for both 00, and -i9* which contradicts the conclusion of lem-
ma 3. Moreover, an analysis as in lemma 3 shows that if sp is not in Mand p° is in 1ff,
then S°O1- can have at most n changes of sign. In fact, Y1°- (p1 can change signs only
at x, where O changes from its minimum zero values to its maximum one values. There
are n such points and hence at most n sign changes. Thus the relation (24) cannot hold
for any co excluding wc since the relation (24) has at most n zeros counting multiplicities.
From this we deduce that if Li(w) - L2(w) $ 0, for co 0 wc then p(9'0, co) < p(qo, w).
That Mf forms a minimal complete class is due to the fact that no strategy in A(can be
dominated. Indeed, if so in ff is dominated by some strategy, then on account of theo-
rem 2 there exists a strategy so* in ff which dominates (p. But then

(26) f ewl. [ (,p, -,pl (x) I dju (x) = O, i , ,n

with a double root occurring at co0 if cA =- w+1. This last assertion is impossible by virtue
of lemma 3. The proof of theorem 3 is hereby complete.

6. Liapounoff theorem and its connections
In this section we deduce some interesting consequences from theorem 3. It is well

known and evident that if s varies over all functions such that 0 S s 5 1, then the set
of all n-tuples
(27) f e"ip (x) dp (x) , n

spans a convex closed bounded set in n space. Let us denote this set by e. [In con-
sidering these n-tuples given by (27) we would like to allow the possibility that two con-
secutive co. = wj+I are equal; then in that case, in place of the two components

(28) f ewP.p (x) di (x), feq+i-zo (x) d,u (x)
in (27), the component terms

(29) f ewiz9 (x) d;, (x), f e"9x (x) dA. (x)

are used.] Furthermore, in what follows, a strategy sp = ((P1, 1- VI) shall be referred to
in terms of its first component. That is, for our purposes a strategy shall be identifiable
with a function so where 0 . so . 1.
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In the process of demonstrating theorem 3 we have shown that to each sP not in At'
0 5 so . 1, there exists a unique ps in At such that

(3 0) f ewisop (x) d , (x) = fu ewii5O° (x) dAy (x),i=1,-*, n.

Thus, we obtain the interesting conclusion that the set of all n-tuples

(31) f ewiozp (x) dt, (x)
spans a convex closed bounded set identical withe as s varies overA. Moreover, each
point in e corresponds to a unique (p0 of M. This last fact is a consequence of lemma 3.
This conclusion represents a generalization of the Liapounoff theorem on the range of a
vector measure for a special collection of measures. We now proceed to characterize the
boundary of e.
LEMA 4. If (a,) = (f exp (wix),p0(x)dx) is a boundary point of e, then sp belongs

to A/ and jO0 is determined by (xi), i = O, - * *, n, such that for some i either xi = X;i+ or
X*1 = ± co. Conversely, any such member of A/ is a boundary point of 6.

PROOF. A point a in the convex set 6 is a boundary point if and only if a belongs to a
supporting hyperplane to 6. Supposing this is the case, then there exist constants as,
i= 1,*, n, and ao such that

(32) JI a,ewi-oO (x) dM (x) = aO

while for any other so

(33) f a;ewi-y (x) d,u (x) _ aO.

Forming the difference of (32) and (33), we obtain for any (p

(34) f[ aiew] (.p-p0) (x) d,u (x) 2 0.

Suppose the zeros of a(x) z aiexp(wix) occur at xi, x, .1. (It is well known
t-i

that S aiexp(cog) has at most n - 1 zeros counting multiplicities.) By choosing je

identical to Po° except for xi < x < xi+,, we deduce that so is either identically zero or 1 for
xi < x < xi+, depending on whether a(x) > 0 or <0, respectively, in that interval. By
multiplying through by a suitable constant we may, without loss of generality, assume
that a(x) < 0 preceding its first zero. Thus the boundary point jpO is characterized and
evidently is determined as stated in the lemma.

The converse is readily established as follows. We select ai so that ai exp(wvix)
i-1

vanishes at the prescribed xi with the proper multiplicity. This can be accomplished
since there are only at most n - 1 distinct xi counting multiplicity. Define

(35) ao = f( ai eWi) jpo (x) dp. (x) .
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The relation (34) or its negative is now clearly satisfied. From this (32) and (33) can be
deduced in a straightforward manner and these equations together show that the given
[fexp(wix),po d*P(x)] is a boundary point.

Combining all the previous discussion in the form of a theorem, we obtain
THEoREm 4. If wi, CW2,' * * are any n distinct numbers, then the set of all n-tuples

(36) feqzSO (x, d,u (x)
obtained by allowing p = (p, 1 - p) to vary overM constitutes a closed bounded convex
set. Moreover, distinct members of At yield distinct n-tuples. The boundary of this set is
characterized in lemma 4.

Another method of proof can be given involving the use of the fixed point theorem of
Brouwer and lemma 3. We now proceed to this second approach.

Suppose for simplicity du(x) = r(x)dx (that is, u is absolutely continuous) and, hence,
in dealing with strategies in M no randomization is required. A strategy is now fully
defined in terms of the critical xi. We consider the mapping of the simplex Aa in n space
defined by

(37) Xi< X2< x3< ... < X.

with

(38) xi+1-xi , x, -M,x._M,
into the n-tuple fexp(wjx)po(x) r(x)dx, i = 1, *-, n, where

(39) soo (x) = {~~l x2i <_ x < X2i+1
3o

0, elsewhere.

The boundaries of As are described by xi+,-xi = 5, xi = -M or x, = M. This con-
tinuous transformation maps As into ea, a subset of e. Let the boundary of As be de-
noted by Ba, and the image of the boundary Ba in e. by Da. Since the mapping of Bs to
Da is 1.1 by virtue of lemma 3, a modified form of Brouwer's fixed point theorem implies
that the full interior of ea is covered by Aa. In other words, every point in the set bound-
ed by Da is the image of some point in As. The next step is to show that the boundary of
e is uniformly close to Da if 5 is sufficiently small and M is sufficiently large. Indeed,
this will follow from the fact that the boundary as characterized in lemma 4 corresponds
to points where at least one i has xi = xi+,, or some j has xi = + c, or xi =- . Now
we choose 5 sufficiently small so that

v+5
(40) 1 e" ir(x)dx'_

uniformly for all y and i = 1,**, n and finally M so large that

(41) -M +Jf eir (x) dx fE, n .

It follows readily from (40) and (41) that these choices of 5 and M bring Da uniformly
close to the boundary D of e. Thus as 5 -+ 0 and M -* -, Da approaches D, and, hence,
every point interior to e is covered by some point of Aa for suitable B. This provides a
new proof of theorem 4. In this special case where A(x) is absolutely continuous and the
strategies so in M are completely determined by a set of n numbers xi, with xi . xi+l,
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then the set e can be parameterized by the n variables xi. To every interior point of e
there exists a unique set of {xi}, xi < xi+,, such that if (p is determined by {xi) then
(fexp(w,-x),o(x) dM(x)) is equal to the prescribed point.

7. Construction of a distribution for nature with a given Bayes solution in the
class of strategies of M
Let the interval between wQ and wo+1 be denoted by Ii. A special convention is made

where if wi = wQ+1, then Ii is taken to be the point itself. Let so = ((i, 1 - pi) be a
member of M given by

X2i < X< X2i+1

(42) 'p1 (x) = Xi, x = xi

0O , elsewhere .

Suppose to begin with that xi are distinct. Choose any points wi from Ii, i = O,*, n,
and consider the system of equations

n

(43) 1 Xi [Li (ci) -L2 (W) ] e-ixj = o, j= 1, ,n
i o

Consider the determinantal equation
[Li (wo) -L2(WO)I ewCo$, [Li (w1) -L2(wi)Ie(iWI) * * ([Li(wn) -L2(w,)] eonoi

[Li (wo) -L2(IWo)) eolozs,[Li(coi) -L2(WI) * * ,[Li(w,n) -L2(c,)]e(nw

(44) 0= ... ..

[L1 (wo) -L2 (WO) ] e.ozn*

aO , a, ' , an

If one expands by the last row and denotes the cofactor of ai by Ai, then one obtains

(45) E aiAi=°.
i-o

This equation is obviously satisfied for the choices of the vector (ai) = ([L(cWi) -
L2(w1)]exp(wix,)) for each j. A unique solution, except for a constant multiple, of (43)
is obtained by choosing Xi = Ai. It is evident that

n

(46) Ai= (-l)fn+l+irj IL (w,) -L2 (W.) ICi,
i-i

where
ewoxlv, -e&lk, , (- 1) ilewi-,,, (- 1)i+l ex+1z,,.* (-n1)nea nl

(47) Ci= ... ...... ... X .. . .. .

ewozn, - eawi'n. * * X (- 1) $ eW-,,(-1 i+Ie-i+lZn, * - newn"n

It is also clear as the ordinary Vandermonde determinant is positive that Ci alternate
in sign. Thus Ai all have the same sign. Define j.i = kAM/ji(wi) so that p4i > 0 and

1;,gi = 1. Let F(w) be a distribution concentrating at wi with mass yi.
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Equation (43) implies that

(48) X (x) =fJe [Li () -L2 (W) ](w) dF (w)

vanishes at x = xi. By lemma 1 it cannot vanish anywhere else and thus the optimum
strategy for the statistician is to take action 1 when X(x) < 0 and action 2 when X(x) > 0,
so that the unique Bayes solution coincides with that of (42). If two of the xi coincide,
say xj = xi+,, then we replace the equation of (43) involving xj+, by

(49) S Xi [Li (coi) -L2 (coi) I coie-i-Ti= O,
t-O

which represents the derivative with respect to x evaluated at xj of the previous equa-
tion. From here on the proof proceeds as before. If several xi are equal, then one must use
similar linear equations of the form

(50) 'X[i Li (w) -L2 (,wi) I xvi e-ixi =O
i-o

for some suitable r. Finally, to deal with the case where several xi are ± Co, one uses
fewer choices of wi. The details are omitted.

Summing up, we have shown
THEorpm 5. If so denotes any strategy of A, then there exists a distribution for nature

concentrating at most at n + 1 points against which the Bayes strategy is unique and equal
to s° except possibly at the n critical values xi. For xi the Bayes strategy is undetermined.

8. P6lya type distributions
A class of distributions P(x, w) of a real random variable x in X depending on a real

parameter w in Sl is said to belong to class /)P if

(51) P (x,c) ,(w)Jf p (x,c)d,u(x) ,
-co

and whenever xi< x2 < ... < xm, w1< w2 < ... <wm with xi in X andwi in Q, then

(52) P (xc wxr) = detp (x, w,) 2 o,

for every m . n. The measure , is taken to be a-finite and p(x, w) is assumed con-
tinuous in each variable. If strict inequality holds in (52) then we say that P belongs
properly to class p,n. If P belongs to pn for every n, then we say that P E (.. We shall
also frequently use the terminology that the density p(x, w) belongs to pj, in place
of P in pD,.

P6lya had introduced special positive functions g(x) such that if we set p(x, w) =
g(x -c), then p satisfies the set of inequalities in (52) for every m [3]. The context in
which P6lya studied such functions is related to the possibility of approximating con-
tinuous functions by polynomials with real zeros. Later Schoenberg investigated the re-
lationship of such P6lya frequency functions g(x) with the theory of variation diminish-
ing transformation [4]. It is these results that are relevant to the statistical analysis pre-
sented below.

The type of kernel p(x, co) obeying (52) dealt with here represents a generalization of
P61ya frequency functions which retains all the necessary variation diminishing prop-
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erties necessary to enable us to extend the statistical theory developed in connection with
the exponential family to P6lya type distributions. Some examples of P6lya frequency
functions are as follows:

(a) e-', (b) sech x, (c) ex- ,

(d) x"e-, for x _ 0 , n a nonnegative integer

(53)
co

[E (- 1) e-,", x>O
(e) eIlzI (f) f__(

O, x_ 0.

The corresponding densities depending on a real parameter X become

(54) (a') p (x, w) = e-(O)',
(b') p (x, w) = sech (x-w)

(c') p (xI Co) = e---

(d') p (x ) = !(x-) ne-(z), x > coI n a nonnegative integer

(e') p (x, c) = e-1-I,

(f') p (x,w) =
0 I X<@-o

Thus all the densities of a' through f' furnish examples of distributions of class p.
Another very important class of examples of distributions in I),, which are not de-

rived from P6lya frequency functions is obtained by taking p(x, co) = e-. The corre-
sponding distributions constitute the exponential family and belong properly to 1p.

In order to verify that other common densities occurring in statistical theory, such as
the noncentral t and noncentral F, also belong to P.)0 we shall need the following lemma.
LE1MA 5. Let

(55) r (x, co) =Jp (x, t) q (t, )dda(t)

where p(x, t) bdongs to Pm and q(t, co) is in P. with a a positive measure. Then r(x, co)
belongs to prnam n).

This lemma is an immediate consequence of the identity

(5)RXi,"' xD J (X1,.I, Xk) Q ( il, Xtk )d af (ti) ... da (tk),
(aol, , ,X kO =!fT-f tl,.., tk co1 co°k

where T is the subset (t1,"* *, tk) in Euclidean k space where ti 9 t2 S ...*. tk. For a
proof of the identity see P6lya, Szego in [5], p. 48, problem 68.

As an application of this lemma it will now be shown that the noncentral F dis-
tribution belongs to Pa,. To this end, let G = u/v where u and v are independently
distributed according to the noncentral x2 distribution with r degrees of freedom and
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the central x2 distribution with s degrees of freedom, respectively. The probability dis-
tribution of G with X the noncentrality parameter has the form

co _ G (+2.-2)/12 1 (s+2)/2 ><m
(57) P (GI X) = e (1 +G) (1 +G) k (r, s, m)

where k > 0. Letting u = G/(1 + G) which is an increasing function of G for G > 0,
we have

(58) p (GI X) = p* (u I X) = e-X(p (u) um-! k (m)

= e-), (u) All eCelogu e logX d4P (x) = e-'*p (u) f (u, X)

where +'(x) has a jump k(m)/m! for x = m. From lemma 5 as eC log x is in PO., we infer
thatf(u, X) belongs to P.)O. That the same is true of p*(u, X) and hence of p(G, A) readily
follows.
A similar argument can be carried through to show that the noncentral generalized

Hotelling t-distribution also belongs to P,.
The classical noncentral t-distribution is analyzed as follows: If z is distributed N(5, 1),

and y distributed chi-square with k degrees of freedom, then the distribution of x =
z/V/y7k has a density of the form

(59) p (x I 5) = cfJ e-[(v//vk)x-al:/2y(k-l)t.e-v/2dy.

For x > 0, let u = (\y/V\k)x; then we get

(60) p (x 5) = c'e-82x-(k+1)fC eaue(-k/&2)u2da (u) .

Setting t =-k/2x2, which is a monotone increasing function of x for x > 0, we get

(61) p (x 55) = q (t 5) = c'e-5'/12p (t) f e8ueeudo (u)

where (p(t) > 0, which on account of lemma 5 satisfies the determinant criterion (52)
for xi 2 0 and 5, arbitrary. A similar result can be obtained for the case of xi 5 0. A
continuity argument enables us to verify condition (52) for any choice of xi.
The above discussion has shown that the collection of distributions in PCD is quite

large and includes most of the common distributions occurring in statistical applications.
The statement that p(x, w) belongs to P/ is synonymous with the fact that p(x, w)

can qualify as a density function. The condition of (52) for m = 2 is equivalent to the
fact that p(x, w) has a monotone likelihood ratio. The fundamental property of P6lya
type distributions is the following:
LEMMA 6. If p(x, w) belongs properly to p1, and h is continuous and changes sign at

most n times, then

(62) g (x) = fp (x,w) h (co) dF(G )

has at most n distinct zeros or is identically zero. The function g is identically zero if and
only if the spectrum of F is contained in the set of zeros of h.
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PROOF. Suppose h(c) changes sign at c = c , .°,* , wC. Define

(63) Gi (x) = tp (XXw) h (w) dF (w)ji = O, * * n,

where wS =-o and C£n+ = + CO. If xi is chosen arbitrarily but satisfying xl < x2 < ...

< x,1+., then the det [Gi(x,)] equals

(64) ffU°+Ifip (X1 XxH) h (w)I) Ih (w+) dF (w) dF (Wn+1)
and thus det [Gi(xi)] > 0, provided only the spectrum of F is not contained in the zeros
of h(w). Moreover, as g is equal to either + or - the function

(65) G (X) = S~ (-1) i Gi (X)
i-O

and G has at most n distinct zeros (since det [Gi(xj)] > 0 for n + 1 x's), we conclude
that g changes sign at most n times. Q.E.D.
Remark 1. If h is piece-wise continuous, then the conclusion of lemma 6 holds. This can

be seen by approximating to h by continuous functions with the same number of sign
changes.

Remark 2. The result of lemma 6 also is valid for the case when p(x, c) does not neces-
sarily belong properly to P., but we require instead that for any n and any prescribed
w, <... < w3, there exist a set of xl <... < x,, which may depend on (w1,*, wn) such
that
(66) P (Xi1.I.I.xn >0.

To demonstrate this fact we form for a > 0

(67) qe (x, w) =f72 e-(-)2/2u'p (u, W) du.

By lemma 5 and our assumption, q.(x, co) belongs properly to P.. Thus the number of
variation of signs of

(68) g. (x) =f q. (x,) h (w) dF()

is at most n = var (h). But, q.(x, w) - p(x, co) as a -*0 and ge(x) -k g(x) uniformly
in any finite x interval. Consequently, g(x) also has at most n changes of sign.

Remark 3. If the number of sign changes of g is n = V(h), then g and h change signs
in the same order. The proof of this fact is involved and will be omitted.

In view of lemma 6, remarks 1 to 3, and its relationship to lemma 1, it now follows
that all the preceding results established for the exponential class of distribution are valid
for P6lya type distributions which properly belong to P.,. The proofs are essentially un-
altered. Detailed proofs can be found in [6].
We sum up the results in the form of a theorem. The assumptions on the loss functions

are the same as given in section 3.
THEoREom 6. If P(x, c) is a class of distributions of a real variable x and a real parameter

X belonging properly to P,=, then the strategies in Af constitute a minimal complete class.
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Moreover, every member of M is unique Bayes against a distribution F for nature which
has n + 1 points in its spectrum.
A more general class of theorems can be developed for distributions of class f)m, m

finite. In this case it is further necessary to assume that the loss functionsL1- L2 change
signs at most m - 1 times. The form of the complete classes can be characterized; ad-
missibility and the other investigations can be extended requiring only slight changes of
our methods. For example, if P(x, w) belongs to P2, then we must require for our theory
that Li(w) - L2(W) change signs at most once. This is precisely the case of distributions
with a monotone likelihood ratio which is discussed in [1]. This generalized theory and
a further study of the decision problems concerning more than two actions for P6lya
type distributions will be presented elsewhere.
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