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Abstract, Position uncertainty (delocalization) measures for a particle on 
the sphere are proposed and illustrated on several examples of states. The 
new measures are constructed using suitably the standard multiplication an­
gle operator variances. They are shown to depend solely on the state of the 
particle and to obey uncertainty relations of the Sehrodinger-Robertson type. 
A set of Hermitian operators with continuous spectrum is pointed out the 
variances of which are complementary to the longitudinal angle uncertainty 
measure.

1. Introduction

Recently an interest is shown in the literature to the problem of a quantum particle 
on the circle [3, 4, 5, 7, 8, 9, 13] and on the sphere [4, 6, 10]. In [5, 6, 8, 10] 
overcomplete families of states (coherent states) for these systems are constructed. 
One of the difficulties for these systems is the position (and momentum) uncer­
tainty measures for the particle (or equivalently, the wave function spread mea­
sure). This is a consequence of the issue related the choice of the operator for the 
azimuthal angle ip. For a particle on the sphere there is a second problem, related to 
the non-hermiticity of the operator —id/dt>, where t> is the longitudinal angle. The 
problem of correct definitions of uncertainty measures is (and should be) closely 
related to the construction and justification of the uncertainty relations (UR’s), and 
of coherent and squeezed states as well.
From the Dirac correspondence rule between Poisson bracket { /, g} of two clas­
sical quantities /  and g and the commutator of the corresponding operators /  and
g,

U , g } — (i)
it follows that [pv , 0] =  —i, where ip is the azimuthal angle operator, and pv is 
the angular momentum operator. Formally this commutation relation is satisfied
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by v> p. and fiv = —id/dip. Then one can write the standard Heisenberg- 
Robertson UR (Apv )2(A p )2 > 1/4.
However on the eigenstates of fiv ,

ipm(p) =  exp(im p)f V2TT, m  =  0, ± 1 , . . .  (2)

the above UR breaks down.
The reasons for this contradiction is the fact, that fiv is not Hermitian on the <p- 
transformed state #(</>) =  ipnfi(p), since #(</>) is no more invariant under trans­
lations on 2tt (no more 2tt invariant). Therefore many authors try to adopt some 
2k -invariant position operator [1, 3, 5, 9], or even another definition of the uncer­
tainty on the circle [9]. However almost all of the associated uncertainty measures 
are not in good consistency with the localization of the particle on the circle [13]. 
In the case of a particle on the sphere the situation is even worth since in addition 
to the problems with the p  and pv , one encounters the subtle of non-hermiticity of 
the operator —id/dt), related to the longitudinal angle coordinate t>, 0 < t> < ir.
In this paper we provide an approach to these issues with minimal (in our opinion) 
deviation from the standard commutation relation and standard measure of uncer­
tainty. In the case of a particle on the circle the main idea has been sketched in the 
second paper in [13], and developed in greater detail (providing some proofs and 
examples) in the first paper in [13].
In section 2 a brief review of the properties of main previous position uncertainty 
measures on the circle (based on 2;; -periodic operator ip) is provided. In section 3 
two different position uncertainty measures for a particle on the sphere are con­
structed and discussed. At i) =  tt/ 2 the corresponding states and measures on a 
circle are recovered. The new measures are constructed using suitably the standard 
expressions of the first and second moments of the angle variable, calculated by 
integration over 2tt intervals. They are of the form of positive state functionals, 
the values of which depend solely on the state considered. In section uncertainty 
relations (UR’s) (of the Robertson-Schrodinger type) are established for the posi­
tion delocalization measures and the appropriate complementary measures. The 
latters are of the form of standard variances of fiv and new Hermitian operators
fin-dr FI —  1 ) 2 , . .  . .

2. Uncertainty measures on the circle

For a particle on the real line the standard measure of the position uncertainty 
is given by the second moment (Arc)2 :=  ((x — (x))2) of the position operator 
.r .r. or equivalently by the standard deviation A x.  Mathematically both A.r and 
(x) are one-to-one functionals on state space. The quantity (A x)2 is also called 
variance, or dispersion, of x  and is also denoted as D x  or M ^ x .  The variance of
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x  is regarded as a measure of spread, or delocalization, of the state wave function 
ip(x). More precisely this is a measure of spread of the probability distribution 
p(x) := |#(a:)|2. Here the means (x) and (x2) are calculated by integration with 
respect to x: (x) =  /  x\'tb(x)\2 dx.
However in the case of angle operator ip =  ip it was not clear how to calculate 
and interpret the analogous quantity A ip, since the operator p  p  is not invari­
ant under translation p  —> p  +  2tt (not 2/; -periodic), while the wave functions 
ib (ip) are 2;; -periodic by definition. This trouble seems to be the main reason why 
many authors look for ‘1% -invariant position operators in order to construct relevant 
uncertainty measures on the circle.
The first such operators used probably were sin p  and cos p  [1], The variances of 
these operators satisfy correct inequalities [1]

(Apv )2( A s m p ) 2 > |(cos</>)|2/4 , (Ap,p)2(A sin </>)2 > |(cos</>)|2/4 . (3)

However one easily find states in which the variances (A sin p )2 and (A cos p )2 
take values greater than the corresponding ones in the uniform distribution 
Pum(p) =  1/2tt =  \'ibm(p)\2: in 'tbm(p) one has (A sin </>)2 =  (Acosy?)2 =  
1/2, while in ibcos(p) =  (l/-\/7r) cosp  these variances are (A cos p )2 =  3/4, 
(A sin p )2 =  1 /4. In 'ibsia(p) =  (l/v ^ r) sin p  they are interchanged -  (A cos p )2 
=  1/4, (A sin p )2 =  3/4. The two states ibcos(p) and 'tbSin(p) coincide under 
the shift p  —> p  ±  7t/2 , therefore it is reasonable to have coinciding (or close) 
measures of spread for them, which should be less than those in the eigenstates 
ipm(p). These deficiencies are partially removed by the “uncertainty measure” [1] 
(A p )2 =  (A cos p )2 +  (A sin p )2, which can be written also in the forms

(A</>)2 =  1 — (cosp)2 — (sinp)2 =  1 — \(U(p))\2, U(p) = eiv. (4)

The quantity A p  has been considered also in [5] and [3]. In [3] it was noted that 
A p  has the meaning of radial distance of the centroid of the ring distribution p(p) 
from the circle line (and (cos p )2 +  (sin p )2 is the squared centroid’s distance from 
the center of the circle -  see Fig. 1 in [3]). From (4) and (3) it follows that [1]

(Apv f ( A p f  > i((eos p )2 +  (sin p )2). (5)

This UR is approximately minimized in the canonical coherent states (CS) \a,0) 
of the two dimensional oscillator with large value of If a 2 +  SR/?2 [1],
However if one consider the quantity (A p )2, eq. (4), as a delocalization measure on 
the circle one encounters some unsatisfactory results. For example, it produces the 
same maximal delocalization (i.e. A p  =  1) for the eigenstates ipm(p) of pv and 
for all states ip(p) with the property \'>b(p)\ =  \'ib(p+'n')\. The centroid for those tt- 
periodic distributions \ip(p) |2 is in the center of the ring. In Fig. 1 graphics of three 
7r-periodic distributions are shown: uniform one p,m\(p) =  1/ 2tt =  \'ibm (p)\2,
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Figure 1, tt-periodic, tt/ 2-periodic and uniform distributions on the 
circle: psin(<p) =  (sin^ )2/ tt (dot line), f>sin2(ip) =  (sm(2tp))2J  it 
(solid line) and puni((p) = 1 /‘2tt = \tpm(tp)\2. The functional A(p, 
eq. (4), on all these distributions takes the same maximal value of 1, 
while A2(0), eq. (6), takes the values 0.346, oo and oo, respectively.

Psinitp) =  sinCv5)2 =  sin2 ip/ir and Psin2(v’) =  sm(2<p)2/ 7r. It is clear that the 
localization of that distributions is quite different, and it is desirable to have an 
uncertainty measure that distinguishes between them.
A rather nonstandard expressions for position and angular momentum uncertainties 
for a particle on the circle were introduced and discussed in [9]:

A 2(pv ) = i l n ( ( e - 2̂ ) ( e 2̂ ) ) ,  A 2(p) =  -  J i n \ ( U ( p f ) f .  (6)

For large sets of states these quantities obey the inequality A 2(pv ) +  A 2(<p) > 1, 
the equality being reached in the eigenstates |£) of the operator Z  =  exp(—pv +  
1 /2)U(ip). The family of |£) is overcomplete and the states |£) are called coherent 
states (CS) on the circle [8, 5,9].
The functional A 2(ip), based on the 27r-invariant operator U(<p) (U(<p +  2tt) =  
U(ip)) was proposed as a position uncertainty on the circle. However this uncer­
tainty measure was found [13] to be not quite consistent with state localization: 
on CS |£) it equals 1/2, while on the visually worse localized states |£) — | — £) 
(Schrodinger cat states on the circle) it can take rather less value of 0.33 (see [13] 
and Fig. 2 therein). On the above noted states #sm(<p), ^sm2(<p) and # TO(<p) it takes 
values 0.346, oo, oo. Thus it makes distinction between # Sm(<p) and riv,,,■>(>;) and 
'ipm(ip), but identifies riv,,,■>(>;) with the uniform state # TO(<p) (see Fig. 1).
New position uncertainty measures, that are better consistent with the localization 
on the circle are constructed in the next section as particular cases (t> =  tt/ 2) of 
the measures on the sphere.
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3. Uncertainty measures on the sphere

A point on the sphere S2 is determined by the spherical angles ip and t>. The 
Hilbert space of states for a particle on the sphere is defined as the space of square 
integrable functions on S2 with respect to the normalized measure (on the unit 
sphere) d/i(ip,tf) =  sini? dt> dip/Air =  d S /47r. Wave functions ip{d,ip) have to 
be 2/i -periodic in ip (periodicity in t> is not required).
The measure of uncertainty of $ in a state #($ , ip) may be adopted as the ordinary 
variance (At))2 =  (#|i)2|#) — (# |i) |# )2. The uncertainty measure for ip can not 
be taken in a similar way. In view of the nonperiodicity of ip the standard “means” 
(ipk), k  =  1 , . . . ,  are ill defined: their values depend on the limit ipo of integration 
(on the unit sphere: dS  =  sin t> dt> dip),

pTT ppQ + TT
{ip\ipk \tp) = / siniM i) / ipk\ib(ip, i))|2 dip =  M^ip(ipo). (7)

JO JifQ—Tr

Following the scheme of refs [13] for the case of a circle we define the ^-uncertain­
ty measure on the sphere as

(cAy?)2

ATT r iPcJr'K /  / ‘7T ppc+ K  \  2

=  / sini)di) / ip2\tp(ip, i))|2 dip— f / siniM i) / ip\ib(ip, i))|2 dip ) 
JO J i f c —ir \ J 0  J i f c —ir /

(8)

where ipc is the ^-coordinate of the center of the packet |#(</>, i))|2. For pack­
ets \ip{ip, i))| that are not 27r/fc-periodic, k  =  2, . . . ,  in ip the angle <pc can be 
determined as the polar angle of a point in the plane with cartesian coordinates 
x c =  (cos ip), yc =  (sin ip). For packets that are 27r/fc-periodic, k  =  2 , . . . ,  in ip, 
one obtains x c =  0 =  yc, i e. the center of the packet ipc remains undefined in 
this way. To overcome this difficulty suffice it to observe that the packet center ipc, 
when determined from the above x c and yc, satisfies the conditions (as checked on 
several examples)

M<p(<pc) = tpc, [  sin t)\ip(ipc +  7T, i))|2 di) < J — (9)
Jo 2tt

where Mip(ipo) is the limit-dependent “mean” of ip, defined in eq. (7) for k  =  1. 
Therefore it is reasonable to define ^-coordinate ipc of the center of the wave packet 
on the sphere as solution of the system (9). It is straightforward to check that 
conditions (9) ensure the minimum of the limit-dependent variance Aip(ipo) as a 
function of ipo ,

/ ‘7T pif0  + 7 T

(Aip)2(ip0) = / sini)di) / ip2\ib(ip, #)|2 dip — (Mip(ipo))2. (10) 
J o  JpQ — 7T
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One can verify that the function (Aip)2(ipo) is 27r-periodic (i.e. (Aip)2 (ipo +  2 tt)  = 
(Aip)2(ipo)), therefore the minimum always exists.
For 27r/fc-periodic, k  =  2 , . . in ip wave packets the conditions (9) may have 
more than one solutions (in fact k  solutions). We call these 27r/fc-periodic packets 
multi-centered.
The ^-coordinate dc of the packet center on the sphere can be defined as the mean 
of d:

dc = j  d\ib(ip, $ ) |2 d5.

Thus the coordinates of the wave packet center on the sphere are (ipc, dc). The 
uncertainty (or delocalization) measure of a state |ip) on the sphere can be defined 
in two complementary ways: as a sum or as a product of the corresponding ip- and 
^-measures,

M +(ib) := (cA^ip)2 +  (A ^d )2, or M 9(ib) := (cA^ip)2 (A ^ d )2. (11)

Examples. Let us illustrate the relevance of the above constructed position uncer­
tainty measures on two families of states f uvyk (<A $) and d),

fuvjki^p,^) = N(u, v, 7 , k) [2 +  cos (kip -  u) +  cos(3(i? -  v )/2 )]7 (12)
QG

ipuvr(jp, d) =  N (u , v, T) Y ,  e~rl(-l+1)/2 V W T l  Pi(cos 0)  (13)
1=0

where N (u , v ,^ ,k ) ,  N (u , v, r )  are normalization factors, 7 and r  are real positive 
parameters, k  is a positive integer, Pi(x) are Legendre polynomials, and 9 is the 
angle between radii of the current point (ip, ■&) and a fixed point (u, v) on the unit 
sphere.
The function f UVJk(ip, $) is constructed as a &-peak state on the unit sphere (k =  
1 ,2 ,...) , the width of the peaks being decreasing with 7 . Thus 1/7 plays a role 
of a delocalization parameter, and 7  -  a “squeezing” parameter of the states f UVJk 
(see Figs 2 and 3 for the cases of k =  2, u =  tt, v  =  tt/ 2 ,  and 7  =  1 (Fig. 2) 
and 7  =  5 (Fig. 3) (or 1/7 =  1 and 0.2)). In these states the above defined 
position uncertainty measures are calculated as (CA ip)2 =  2.94, (At))2 =  0.329 
and (cAip)2 =  2.57, (A d )2 =  0.146 correspondingly. Both cAip and A d  (and 
M .|_ and as well) are found decreasing when 1/7 —» 0, i.e. 7  indeed appears as
a squeezing parameter (the greater is 7  the stronger is squeezing of the position 
uncertainty measures). The packet centers (ipc, dc) do not depend on 7  and for 
u =  tt, v =  tt/ 2, k =  2 the two centers are (0, tt/ 2) and (tt, tt/ 2).
The function ipUVT is taken from paper [6], where the set {r(Wr} is shown to 
form an overcomplete set of states (for every r ;  and u, v may be complex) on 
the sphere S2, called coherent states on the sphere (CS on the sphere). In [6]
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Figure 2, Plot of the two peak distribution \fuv-,k(<P, t?)|2 with it =  tt, 

v = tt/ 2, k = 2, 7  =  1. In this state the ip- and ^-uncertainties 
are (CA^)2 =  2.94, (Aik)2 = 0.329. The two packet centers are at 
(■ip = 0, t? =  tt/ 2 ) and (ip = tt, t? = tt/ 2 ).

Figure 3, Plot of the two peak distribution \ f uv-,k(<P, t?)|2 with u = tt, 

v = tt/ 2, k = 2, 7  =  5. In this state the ip- and ^-uncertainties 
are (CA ^)2 =  2.57, (At?)2 =  0.146. The two packet centers are at 
(■ip = 0, t? =  tt/ 2 ) and (ip = tt, t? =  tt/ 2 ).

CS are constructed on d-dimensional sphere, and CS on S2 were previously con­
structed in [10]. The shapes of CS wUVT are showninFig. 4 and Fig. 5 for the cases
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Figure 4, Plot of CS distribution on the sphere It-W-rlvT^)!2 with 
u  =  7r, v  =  tt/ 2 ,  r  =  1. In this state the ip- and ^-uncertainties are 
(cAt^)2 =  1.57, (A$)2 = 0.419. The packet center is at (ip = tt, it = 
tt/ 2 ).

Figure 5, Plot of CS distribution on the sphere | p U VT (<f, $) |2 with u = 
r, v = tt/ 2 ,  t =  0.2. In this state the ip- and ^-uncertainties are 
(cA(p)2 = 0.439, (Ait)2 = 0.185. The packet center is at (ip = Tr,it = 
tt/ 2 ).

of u =  7T, v =  -tt/ 2, and r  =  1 (Fig. 4) and r  =  0.2 (Fig. 5). Calculations show 
that the less r  is the less is the area of S2 in which CS are concentrated, confirming
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the suggestion of [6], In these CS the above defined position uncertainty measures 
take the values (cA </>)2 =  1.57, (A il)2 =  0.419 (for r  =  1) and (cA</j)2 =  0.439, 
(A il)2 =  0.185 (for r  =  0.2). Both cA<p and Ail are decreasing (thereby M + and 
M a also are decreasing) when r  —» 0, i.e. 1 / r  appears as a position squeezing pa­
rameter. The packet center (ipc, i!c) does not depend on r ,  and for CS with u = tt, 
v =  tt/ 2 it is (tt, 7t/ 2).
It is worth noting that the shapes of one-peak states f UVJ1(99, il) =  f Uvy(}p, il) with 
7 =  1 /r  and CS i?) are quite similar: the packet centers of both states
are determined by u, v, and the position uncertainties CA 99 and Ail vary with r  
similarly. In particular in f UVJ with u =  tt, v =  tt/ 2 and 1/7 =  r  =  1 , 0.2 one 
finds (cA</j)2 =  1.91, 0.418, (Ail)2 =  0.329, 0.146, respectively, which are to be 
compared with (CA ip)2 =  1.57, 0.439, (Ail)2 =  0.419, 0.185 in the corresponding 
CS 'tpuVT-
Due to the factor sinil in the surface element dS  the most delocalized states 
on the sphere are # 0,(99, il) =  exp(ia(</5, i1) ) /(ttV/2 sinil) (and not the uniform 
one # uni =  l/y/dTr): In iha the 99- and il-uncertainty measures take the values
(CA<p 'f  =  (A99)2 =  tt2/3  ~  3.29, (Ail)2 =  tt2/12 ~  0.82, while in # uni 
(cA</j)2 =  - a (A il)2 =  tt2/4  — 0.2 ~  0.47.
As we have already noted position uncertainty measures are positive maps of states 
(in fact of the corresponding probability distributions), associated with coordinate 
variables. It is then clear that one can construct such measures using other coordi­
nates Xi(ip, il), z =  1 , 2, on the sphere, such as the stereographic projections qi and 
the “wrapping” coordinates (7 ,^) [4],
However when 27(99, il) depend on 99 through cos 99 and/or sin 99 (the case of qi 
and (7 , £)), the standard variance will exhibit deficiencies like those on the circle, 
discussed in previous section. The stereographic coordinates qi,

gi =  2rcot(il/2) COS99, q2 =  2r eot(i!/2) sin 99 (14)

exhibit an extra deficiency (coming from the factor eot(i!/2)) -  their variances 
are infinite in all states # ( 99, il) which do not vanish sufficiently fast when il 
0. Examples of such states are f Uv y k (99, il) and CS # ut)T(99, il) discussed above. 
These states do not vanish at il =  0. Therefore (g2) =  00 . In the most delocalized 
states ipa {il) the averages of qf are also divergent.

4. Uncertainty inequalities on the sphere

The uncertainty relations (HR’s) for the position delocalization measure on the 
sphere encounter two problems. The first one is related to an ill property of the 
multiplication position operator 99: the function 99̂ ( 99, il) is no more 22 -periodic 
in 99. The second subtle comes from the non-hermiticity of the operator — id/dt> 
(h =  1). There is a third problem (compared to the case of a circle) related to
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two position and momentums operators for a particle on the sphere: one has to 
formulate uncertainty relations for several observables.
In order to overcome these difficulties we have to apply the scheme of the Gram- 
Robertson matrix, developed in [14]. For one state |ip) and several observables A',. 
i =  1 , . . . ,  n, the Gram-Robertson matrix G is defined as [14] G =  {Gy },

Gy =  ((X, -  (X tm ( X j  -  (X j))^ )  = G y (# ;X ) .  (15)

It was shown that the characteristic coefficients of the symmetric part S  of G (S  =  
(G +  GT ) / 2) are greater or equal to that of the antisymmetric part A (A =  —i(G — 
Gt )/ 2, Gt  being the transposed G). These inequalities are called (generalized) 
characteristic UR’s for the n observables A'., in a state |ip) [14]. In particular, the 
senior characteristic UR reads

det 5  > det A. (16)

The real and symmetric matrix S  is defined as a (generalized) uncertainty ma­
trix, and A  is regarded as a generalization of the matrix of mean commutators 
—i([Xj, Xk])- When the action of A'., is well defined on Xj\ib) the matrix S  coin­
cide with the standard uncertainty (or covariance) matrix m ( x t -  {x .,))(x:i -  
(Xj))ip)} =  (C ov(X i,X j)} =  {<Ty}, where Cov(X i ,X j )  is the standard co­
variance of A'., and A',. The other notations for the covariance Cov(Aj, X j)  and 
variance Cov (X i ,X i)  are A X iX j  and (A A j)2. In such “smooth” cases the senior 
characteristic inequality (16) reads

det a > det G, where G =  {—i([Xfc, X j]) /2} (17)

and this latter inequality was first obtained by Robertson [11]. It is a generalization 
of the Schrodinger (or Schrodinger-Robertson) UR for two observable X \ ,  X-> 
(first established in [12]),

(AX i )2(AX2)2 > i |( [X i,X 2])|2 +  (Cov(Xi,X2))2. (18)
4

If for some reason the repeated action A'.,A';; | ip) is not correctly defined one has to 
resort to generalized UR (16), which for two operators reads

(9A X i )2(9A X 2)2 > i | s ([X i,X 2])|2 +  (9 Cov(X i ,X 2))2 (19)

where s C ov(X i,X 2) =  U{(Xt -  (X i))# |(X 2 -  {X2))ib), (gA X ) 2 = 
g C ov(X ,X ) ,  and s ([X i,X 2]) =  -2 iIm ((X i -  {A ,))t}(A 2 -  (X2))#) [14], 
The UR (19) is quite similar to (18). Thus we may define the generalized covari­
ance and the generalized mean commutator as g C ov(X i,X 2) and ,;{|A'i. A'_>]). 
respectively [14,2],
Let us note that for two operators the inequality det S  > det A, eq. (16), is equiv­
alent to det G > 0, and UR (18) is equivalent to det(cr +  iG) > 0.
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The two Hermitian operators on the sphere A' i p  and AT =  — id f  dip =  pv
constitute an example in which of AAA'i ib{p. t>) is not properly defined: pv is not 
Hermitian on states ptp{p, #), since tb' =  pp>(p, i?) is not 2/i -periodic. Therefore 
the p-pv UR should resort to eq. (19). However even the generalized covariance of 
p, pv and the generalized variance of p  depend on the limits of integration when 
calculating means like

rvo+ir
(p) = / p\tb\2 d<S.

J pQ—H
Fortunately, the variance of p  is 2tt-periodic function of po, therefore its global 
extrema exist and we may define ^-uncertainty measure on the sphere cA p  as 
explained in the previous section.
Then the p-pp UR on the sphere could be adopted in the form

( c A p f ( A p p ) 2 > \c{{p -  (p))ib\{pp -  (Pp))ip)\2 (20)

where ,.{A") means that the average of X  is calculated by integration from p c—ir to 
p c -)- tr, p c being the wave packet center. Note that the right hand side of (20) may 
vanish (on the eigenstates of pv for example), so that the less precise version of 
the inequality (20) is (cA p ) 2 (App)2 > 0. The variance (Apv )2 should be called 
complementary measure to the position delocalization measure (cA p ) 2.
A  natural definition of a complementary measure is the following: a state mea­
sure M{ib) is a complementary one to a state measure N(yb) if M(yb) tends to its 
global maximum (minimum) when N(yb) tends to its global minimum (maximum). 
The variance of pv =  —id /d p  is a complementary one to the delocalization mea­
sure (cA p )2. For a particle on the real line the variances of the coordinate x  and 
momentum p =  — id/drc are complementary measures. It is clear that a given mea­
sure N  pib) may have many complementary measures. Additional criteria should 
be used to specify the most convenient complementary measure in every special 
case. Let us also note, that measures map states on the positive part of the real line, 
i.e. these are many-to-one maps. Therefore they may reach their extremal values 
on a large subset of states.
Our aim now is to construct measure complementary to the well defined ^-uncer­
tainty measure (the variance) (At))2 on the sphere. The problem with such com­
plementary measure, and the t)-p# UR as well, is in the ill property of the operator 
—id/d-d =  p$: this operator obey formally the relation [$,##] =  i, however it is 
not Hermitian. Therefore the variance (p |) — (p#)2 may be complex.
It is easy to point out Hermitian operator po# with the same commutator as for t) 
and p$. Such is the operator pq§ =  —id/d-d — (i/2) cot(i)). One has [p,po^}=i. 
Then we can write the standard Schrodinger UR (At))2(Apod)2 > 1/4 +  
(Cov(pO0, i)))2.
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However the variance (Ap0,ff)2 could hardly serve as a complementary measure to 
the position measure (At))2 since it is diverged in all states that are not vanishing 
at t) =  0, and t) = ir. Examples of such states are f uvlk(p, $) and CS ipum-(<p, t)), 
treated in section 3. This ill property of poi? stems from the fact that the functions 
Po$'ip((p, t)) are not normalizable (where ip(<p, t)) represent normalized state). 
Fortunately, there are simple Hermitian operators the variances of which could be 
regarded as complementary to (At))2 measures. These are the first order differen­
tial operators pn^ of the form

Pn$ =  — isin” t)—  — i-———cos $ sin”- 1 1), n = 1 , 2, . . . .  (21)
ot) 2

We have [t>,pn^\ =  isin” t), and the transformed states t)) are normaliz­
able for all n > 1. The variances and covariances of t) and pn^ satisfy the Schro- 
dinger UR (18). In view of sin t) > 0 in the interval (0, tt) we have (sinn t)) > 0, 
therefore the right hand side of Schrodinger UR never vanishes, i.e. (At))2(A p n^)2 
> 0. This is a proof that the spectrum of operators pn$ is not discrete.
Finally we have to point out which (from all (Apn^)2) is the best complementary 
measure to the position uncertainty measure (At))2. We have to apply some cri- 
terions. One such criterion could be the demand that the complementary measure 
(Afind)2 be minimal (with respect to n) in the most delocalized state #o($) =  
l/( 'K \/2sm d).  Numerical calculations show that this criterion selects Api$  and 
A p 2$: In#o($) we find (Apn>2,g)2 > (Ap2$)2 ~  (Ap w )2 ~  0.125. Note that 
the variances of pn^ on tba (<p, t)) do depend on the phase a  when the latter is a 
function of angle t).
Another natural criterion is the lower limit of the product (A p n^)2(At))2, for 
which one has the standard UR

(Apn#)2(Ai))2 > I (sin” i)) |2/4 . (22)

It is clear that in any state the inequality | (sinn t)) | >  | (sin t)) | holds. So the second 
criteria picks up from the set {(Apn$)2 : n = 1,2, . . .} the variance (Api$)2 as 
the best complementary measure to the position delocalization measure (At))2. In 
analogy with (At))2 we may denote this t)-complementary measure as (Ap$)2, i.e. 
we put (Api$)2 = (Ap$)2. In the two states f uvlk(p, $) and two CS t))
represented in Figs 2, 3 and 4, 5 the values of (Api$)2 are 0.57, 1.54 and 0.419, 
1.38, respectively. It is remarkable that in CS 'ipww/2r with r  =  1 the t)-position 
uncertainty is approximately equal to the complementary one: (At))2 =  0.419 =  
(Api$)2. This is to be compared with the case of CS on the plane, where the two 
complementary uncertainties (position and momentum uncertainties) are equal (in 
any CS however).
Thus the Hermitian operator pi ,> could be examined as a momentum p,> com­
plementary to the variable t). The four measures on the sphere (cA p ) 2, (At))2,
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(APip)2, and (Ap$)2 satisfy the generalized Robertson UR (16), where the inte­
gration with respect to t> of all matrix elements involving the variable <p should be 
from ipc — -it to ipc + 7r.
Let us note that the means where pi are the two Hermitian opera­
tors [4], “conjugated” to the stereographic coordinates ® (14), are divergent. Thus, 
these operators move the state #o($) (and many other states as well) away from the 
appropriate Hilbert space, and their variances are not convenient as complementary 
to the position uncertainty measures on the sphere.

5. Conclusion

We have constructed two position uncertainty measures (CA ip), (At))2 and two 
related complementary measures (Apv )2, (Ap$)2 for a particle on the sphere. The 
^-complementary measure (Ap$)2 is a variance of the new operator pi$, eq. (21).
The four measures obey the generalized Robertson UR (16), any two of them sat­
isfying the Schrodinger-Robertson type UR (19). The relevance of the constructed 
measures are illustrated on the example of two sets of states: f uvlk{<p, $), eq. (12), 
and coherent states on the sphere [6] tpUVT{ip, $), eq. (13). The relevance of (CA ip)2 
as a position measure should not be considered as a proof that the right position 
operator ip for the azimuthal angle is the multiplication by p.
The presented approach to uncertainty measures on S2 could be easily extended to 
higher dimensional spheres.
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