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Abstract. The problem of describing or determining the image of the expo-
nential map exp : g → G of a Lie group G is important and it has many
applications. If the group G is compact, then it is well-known that the expo-
nential map is surjective, hence the exponential image is G. In this case the
problem is reduced to the computation of the exponential and the formulas
strongly depend on the group G. In this paper we discuss the generalization
of Rodrigues formulas for computing the exponential map of the special or-
thogonal group SO(n), which is compact, and of the special Euclidean group
SE(n), which is not compact but its exponential map is surjective, in the case
n ≥ 4.

1. Introduction. Lie Groups and the Exponential Map

Let G be a Lie group with its Lie algebra g. The exponential map exp : g → G is
defined by exp(X) = γX(1), where X ∈ g and γX is the one-parameter subgroup
of G induced by X . Recall the following general properties of the exponential
map:

1. For every t ∈ R and for every X ∈ g, we have exp(tX) = γX(t)

2. For every s, t ∈ R and for every X ∈ g, we have

exp(sX) exp(tX) = exp(s+ t)X

3. For every t ∈ R and for every X ∈ g, we have exp(−tX) = exp(tX)−1

4. exp: g → G is a smooth mapping, it is a local diffeomorphism at 0 ∈ g and
exp(0) = e, where e is the unity element of the group G

5. The image exp(g) of the exponential map generates the connected compo-
nent Ge of the unity e ∈ G
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6. If f : G1 → G2 is a morphism of Lie groups and f∗ : g1 → g1 is the induced
morphism of Lie algebras, then f ◦ exp1 = exp2 ◦f .

As we can note from the previous Property 5 (see also [2]), the following problems
are of special importance
Problem 1. Find the conditions on the group G such that the exponential is sur-
jective.
Problem 2. Determine the image E(G) of the exponential map.
J. Dixmier has suggested to study Problem 2 for resoluble Lie groups. Concerning
Problem 1, only in few special situations we have G = E(G), i.e., the surjectivity
of the exponential map. A Lie group satisfying this property is called exponential.
Every compact and connected Lie group is exponential (see [1]), but there are
exponential Lie groups which are not compact.
Even if we know that the exponential map is surjective, to get closed formulas
for the exponential map for different Lie groups is an interesting problem. Such
formulas are well-known for the special orthogonal group SO(n) and for the spe-
cial Euclidean group SE(n), when n = 2, 3, as Rodrigues’ formulas. One of the
main goal of our presentation is to discuss the possibility to extend the Rodrigues’
formulas for these two Lie groups in dimensions n ≥ 4.

2. The Rodrigues Formula for the Group SO(n)

The exponential map exp : gl(n,R) = Mn(R) → GL(n,R), where GL(n,R)
denotes the Lie group of real invertible m × n matrices, is defined by (see for
instance Chevalley [6], Marsden and Ratiu [13], or Warner [24])

exp(X) =

∞∑
k=0

1

k!
Xk. (1)

Moler and van Loan [16] discussed in details with numerous numerical examples
the principal methods to compute the exponential of a matrix.
According to the well-known Hamilton-Cayley theorem, it follows that

exp(X) =

n−1∑
k=0

ak(X)Xk (2)

where the real coefficients a0(X), · · · , an−1(X) depend on the matrix X . More
precisely, a0, · · · , an−1 are functions of the eigenvalues λ1, . . . , λn of the matrix
X , i.e., we have aj = aj(λ1, . . . , λn), j = 0, · · · , n− 1. From this formula, it fol-
lows that exp(X) is a polynomial of X . The problem to find a reasonable formula
for exp(X) is reduced to the problem to determinate the coefficients a0, · · · , an−1.
Because the historical argument, we will call these coefficients the Rodrigues co-
efficients of the matrix X .
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The following general result is proved in the paper Andrica and Rohan [3, 4] for
matrices of the general linear group GL(n,R).
Theorem 1. 1) The Rodrigues coefficients of the matrix are solutions to the system

n−1∑
k=0

Sk+jak =

n∑
s=1

λj
se

λs , j = 0, . . . , n− 1 (3)

where λ1, . . . , λn are the eigenvalues of X , and Sj = λj
1 + . . .+ λj

n.
2) If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct, then the Ro-
drigues coefficients a0, . . . , an−1 are perfectly determined by the system and they
are linear combinations of eλ1 , . . . , eλn with some coefficients which are rational
functions of λ1, . . . , λn, i.e., we have

ak = A
(1)
k eλ1 + . . .+A

(n)
k eλn , k = 0, . . . , n− 1.

It is well-known that the Lie algebra so(n) of the special orthogonal group SO(n)
consists in all skew-symmetric matrices in Mn(R) and that the Lie bracket is the
standard commutator [A,B] = AB−BA. Due to geometric reasons, the matrices
in SO(n) are also called rotation matrices.
The exponential map exp : so(n) → SO(n) is defined by the same formula
(1) because it is given by the restriction exp |so(n) of the exponential map exp :
gl(n,R) → GL(n,R). The matrices in so(n) have two essential properties which
simplify the computation of the Rodrigues coefficients

• If n is odd, then they are singular, i.e., they have one eigenvalue equal to 0
(possible with a multiplicity)

• The non-zero eigenvalues are purely imaginary and, of course, conjugated.

According to the well-known Euler formula eiα = cosα + i sinα, we obtain the
following consequence of Theorem 1 which is useful in concrete applications.

Corollary 2. If the eigenvalues λ1, . . . , λn of the matrix X are pairwise distinct,
then the Rodrigues coefficients a0, . . . , an−1 are perfectly determined by the system
and they are linear combinations of cosα1, · · · , cosαm, sinα1, · · · , sinαm hav-
ing as coefficients rational functions of α1, . . . , αm, where ±iα1, . . . ,±iαm,m =
⌊n2 ⌋, are the eigenvalues of matrix X . That is, we have

ak=b
(1)
k cosα1+. . .+b

(m)
k cosαm+c

(1)
k sinα1+. . .+c

(m)
k sinαm, k=0, . . . ,n−1.

3. Illustrating Some Concrete Cases

3.1. The Classical Cases n = 2 and n = 3

Clearly, when X = On, we have exp(X) = In hence, in this situation we have
a0 = 1, a1 = . . . = an−1 = 0.
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When n = 2, a skew-symmetric matrix X ̸= O2 can be written as

X =

(
0 a

−a 0

)
, a ∈ R∗

having the eigenvalues λ1 = ai, λ2 = −ai.
The system (3) in this case is

2a0 + (λ1 + λ2)a1 = eλ1 + eλ2

(λ1 + λ2)a0 + (λ2
1 + λ2

2)a1 = λ1e
λ1 + λ2e

λ2

and hence we immediately obtain

a0 =
1

2

(
eai + e−ai

)
= cos a

a1 =
λ1e

λ1 + λ2e
λ2

λ2
1 + λ2

2

=
eai − e−ai

2a
=

sin a

a

and then

exp(X) = (cos a)I2 +
sin a

a
X. (4)

It follows also that

a0(X) = cos a, a1(X) =
sin a

a
·

When n = 3, a real skew-symmetric matrix X is of the form

X =

 0 −c b
c 0 −a

−b a 0


having the characteristic polynomial pX(t) = t3 + (a2 + b2 + c2)t = t3 + θ2t,
where θ =

√
a2 + b2 + c2. The eigenvalues of X are λ1 = iθ, λ2 = −iθ, λ3 = 0.

It is clear that X = O3 if and only if θ = 0, hence it suffices to consider only the
situation θ ̸= 0. The system (3) is equivalent to

3a0 − 2θ2a2 = 1 + eiθ + e−iθ

−2θ2a1 = iθ(eiθ − e−iθ)

−2θ2a0 + 2θ4a2 = −θ2(eiθ + e−iθ)

Because θ ̸= 0, it follows that

a0 = 1, a1 =
sin θ

θ
, a2 =

1− cos θ

θ2

giving the well-known classical formula due to Rodrigues.

exp(X) = I3 +
sin θ

θ
X +

1− cos θ

θ2
X2. (5)
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The Lie algebra (SO(3), [. , .]) is canonical isomorphic to the Lie algebra (R3,×),
where “×” denotes the classical cross product, and the isomorphism is given by
v ∈ R3 7→ v̂ ∈ SO(3), where

v =

a
b
c

 and v̂ =

 0 −c b
c 0 −a

−b a 0

 .

According to this isomorphism, the Rodrigues formula (5) can be written in the
following equivalent form ([1, Proposition 6.1.6])

exp(v̂) = I3 +
sin ||v||
||v||

v̂ +
1

2

(
sin ||v||

2
||v||
2

)2

v̂2. (6)

3.2. The Case n = 4

The general skew-symmetric matrix X ∈ so(4) is

X =


0 a b c

−a 0 d e
−b −d 0 f
−c −e −f 0


and the corresponding characteristic polynomial is given by

pX(t) = t4 + (a2 + b2 + c2 + d2 + e2 + f2)t2 + (af − be+ cd)2.

Let λ1,2 = ±αi, λ3,4 = ±βi be the eigenvalues of the matrix X , where α, β ∈ R.
After simple algebraic manipulations, the system (3) becomes

2a0 − (α2 + β2)a2 = cosα+ cosβ

−(α2 + β2)a1 + (α4 + β4)a3 = −α sinα− β sinβ

−(α2 + β2)a0 + (α4 + β4)a2 = −α2 sinα− β2 sinβ

(α4 + β4)a1 − (α6 + β6)a3 = α3 sinα+ β3 sinβ

We consider the following three cases
Case 1. If α ̸= β, α, β ∈ R∗, then by grouping the first equation with the third one,
and the second equation with the last one, we obtain the Rodrigues coefficients

a0 =
β2 cosα− α2 cosβ

β2 − α2
, a1 =

β3 sinα− α3 sinβ

αβ(β2 − α2)

a2 =
cosα− cosβ

β2 − α2
, a3 =

β sinα− α sinβ

αβ(β2 − α2)
·
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In this case it follows the corresponding Rodrigues formula in the form

exp(X) =
β2 cosα− α2 cosβ

β2 − α2
I4 +

β3 sinα− α3 sinβ

αβ(β2 − α2)
X

+
cosα− cosβ

β2 − α2
X2 +

β sinα− α sinβ

αβ(β2 − α2)
X3. (7)

Case 2. If α ̸= 0 and β = 0, then we will use the idea of the paper Andrica
and Rohan [4], i.e., we can find the Rodrigues coefficients from the formulas in
Case 1 by considering the limits when β → 0. After easy computations we find
the corresponding Rodrigues formula to this case is

exp(X) = I4 +X +
1− cosα

α2
X2 +

α− sinα

α3
X3. (8)

Case 3. If α = β ̸= 0, then we will use again the same method by considering the
limits β → α, and we obtain the following Rodrigues formula

exp(X) =
α sinα+ 2 cosα

2
I4 +

3 sinα− α cosα

2α
X

+
sinα

2α
X2 +

sinα− α cosα

2α3
X3. (9)

Let us note that in the paper of Andrica and Rohan [3] the results in the singular
situations contained in Cases 2 and 3 are obtained by using the Putzer method
(see the original paper [21]). In the paper of Politi [20] it is obtained, by using
a different method, the same result as in Case 1, but the singular cases are not
considered in a concrete way.
Going back to the classical Rodrigues formula (5), it turns out that it is more con-
venient to normalize X , that is, to write X = θX1 (where X1 = X/θ, assuming
that θ ̸= 0), in which case the formula becomes

exp(θX1) = I3 + sin θX1 + (1− cos θ)X2
1 .

Also, given R ∈ SO(3), we can find cos θ because tr(R) = 1 + 2 cos θ, and we
can find X1 by observing that

1

2
(R−R⊤) = sin θX1.

Actually, the above formula cannot be used when θ = 0 or θ = π, as sin θ = 0 in
these cases. When θ = 0, we have R = I3 and X1 = 0, and when θ = π, we need
to find X1 such that

X2
1 =

1

2
(R− I3).

As X1 is a skew-symmetric 3 × 3 matrix, this amounts to solving some simple
equations with three unknowns. Again, the problem is completely solved.
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What about the cases when n ≥ 4? The reason why Rodrigues’ formula can be
derived is that

X3 = −θ2X

or, equivalently, X3
1 = −X1. Unfortunately, for n ≥ 4, given any non-null skew-

symmetric n×n matrix X , it is generally false that X3 = −θ2X , and the reasoning
used in the three dimentional case does not apply.
In the paper of Gallier and Xu [7], it is shown that there is an implicit generalization
of Rodrigues’ formula for computing the exponential map exp : so(n) → SO(n),
when n ≥ 4.

Theorem 3. Given any non-null skew-symmetric n × n matrix X , where n ≥ 3,
and if

{iθ1,−iθ1, . . . , iθp,−iθp}
is the set of distinct eigenvalues of X , where θj > 0 and each iθj (and −iθj) has
multiplicity kj ≥ 1, there are p unique skew-symmetric matrices X1, . . . , Xp such
that the following relations hold

X = θ1X1 + . . .+ θpXp, XiXj = XjXi = On (i ̸= j), X3
i = −Xi

for all i, j with 1 ≤ i, j ≤ p, and 2p ≤ n. Furthermore, we have

expX = eθ1X1+...+θpXp = In +

p∑
i=1

(
(sin θi)Xi + (1− cos θi)X

2
i

)
and {θ1, . . . , θp} is the set of the distinct positive square roots of the 2m positive
eigenvalues of the symmetric matrix −1/4(X −X⊤)2, where m = k1 + . . .+ kp.

Unfortunately, this result is an implicit one because we are not able to determine
the matrices X1, . . . , Xp.

4. Surjectivity of the Exponential Map on SO(n)

It is well known that for every compact connected Lie group the exponential map
is surjective (see Bröcker and Dieck [5], Andrica and Caşu [1] for the standard
proof, or Rohan [22] for a new idea of the proof given by Tao), that every compact
connected Lie group is exponential (see also the monograph of Wüstner [25] for
details about the exponential groups). Because the group SO(n) is compact it fol-
lows that the exponential map exp : so(n) → SO(n) is surjective. The surjectivity
of exp for the group SO(n) is an important property. Indeed, it implies the exis-
tence of a locally inverse function log : SO(n) → so(n), and this has interesting
applications. Gallier and Xu [7] have mentioned that the functions exp and log for
the group SO(n) can be used for motion interpolation (see Kim et al [11, 12], [14,
15, 17] and Park and Ravani [18, 19]). Motion interpolation and rational motions
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have also been investigated by Jüttler [9, 10]. Also, the surjectivity of the expo-
nential map for the group SO(n) gives the possibility to describe the rotations of
the Euclidean space Rn (see the recent paper of Rohan [22]).
Even if the following result is clear because for every n ≥ 1, the group SO(n) is
compact, we prefer to present the alternative proof because it gives an explicit way
to find solutions to the matrix equation exp(X) = R.

Proposition 4. The exponential map

exp : so(3) → SO(3)

is surjective.

Proof: We show that for any rotation matrix R ∈ SO(3)

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33


there is ω̂ ∈ so(3) so that

exp(ω̂) = R

or, via the Rodrigues formula, equivalent to

I3 +
sin ||ω||
||ω||

ω̂ +
1− cos ||ω||

||ω||2
ω̂2 = R.

From the above relation we obtain that

1 + 2 cos ||ω|| = tr(R).

Because
−1 ≤ tr(R) ≤ 3

we can conclude also that

||ω|| = arccos
tr(R)− 1

2
·

On the other hand we obtain

r32−r23 = 2ω1
sin ||ω||
||ω||

, r13−r31 = 2ω2
sin ||ω||
||ω||

, r21−r12 = 2ω3
sin ||ω||
||ω||

·

So, we can consider

ω =
||ω||

2 sin ||ω||

r32 − r23
r13 − r31
r21 − r12


in order to obtain

exp(ω̂) = R.

�
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Using the surjectivity of the exponential map exp : so(n) → SO(n) and the fact
that if

Ei =

(
0 −θi
θi 0

)
then

exp(Ei) =

(
cos θi − sin θi
sin θi cos θi

)
using Theorem 3, we obtain the following characterization of rotations in SO(n)
for n ≥ 3

Theorem 5. Given any rotation matrix R ∈ SO(n), where n ≥ 3, if{
eiθ1 , e−iθ1 , . . . , eiθp , e−iθp

}
is the set of distinct eigenvalues of R different from 1, where 0 < θi ≤ π, there are
p skew-symmetric matrices X1, . . . , Xp such that

XiXj = XjXi = On, i ̸= j

X3
i = −Xi

for all i, j with 1 < i, j ≤ p, and 2p ≤ n, and furthermore

R = exp(θ1B1 + . . .+ θpBp) = In +

p∑
i=1

(
sin θiXi + (1− cos θi)X

2
i

)
.

5. The Special Euclidean Group SE(n)

The Euclidean group E(n) is the group of all isometries of the Euclidean space
Rn. When n = 2, E(2) consists in all plane translations, rotations and reflections.
The group of isometries of Rn can be represented by the matrix group denoted by
E(n)

E(n) :=

{(
R v
0 1

)
∈ GL(n+ 1,R) ; R ∈ SO (n) , v ∈Rn×1

}
in terms of (n+ 1)× (n+ 1) matrices. The set of affine maps ρ of Rn defined by

ρ(x) = Rx+ u

R ∈ SO (n) is a group under composition, called the group of direct affine isome-
tries, or rigid motions, denotes as SE (n).
The vector space of real (n+ 1)× (n+ 1) matrices of the form

Ω =

(
B u
0 0

)
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where B is a skew-symmetric matrix and u is a vector in Rn is denoted by se (n).
The group SE (n) is a Lie group, called the special Euclidean group, and se (n) is
its Lie algebra. In what follows we will concentrate on some topological properties
of the group SE (n).
It turns out that the group E(n) is not a connected Lie group. The special Euclidean
group SE(n) is in fact the connected component of the identity of E(n). The Lie
subgroup SE(n) corresponds to the group of all orientation-preserving isometries
R with the property, detR = 1.
For n = 2, we have

SE(2) :=

{(
Rθ v
0 1

)
∈ GL(3,R) ; Rθ ∈ SO(2) and v ∈ R2×1

}
where

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
and v =

(
v1
v2

)
.

The group SE(n) is closed in GL(n+1,R), where the topology in GL(n+1,R) is
defined by the Frobenius norm. Indeed, let (Am)m>0 be any sequence of elements
in SE(n), and let Am → A as m → ∞. Since Rn is a complete space we have
that v ∈ Rn. Since SO(n) is a closed subgroup of GL(n,R) it follows that there
are two possible cases: R ∈ SO(n) and R /∈ GL(n,R). In the first case A clearly
satisfies all the properties of being an element of SE(n). If R /∈ GL(n,R) then
detR = 0. If this is the case we have detA = 0. Since detA = 0 it follows that
A /∈ GL(n+ 1,R), which is not possible.
Therefore SE(n) is closed in GL(n+1,R). Hence it is a matrix Lie group (cf also
[8] and [24]).
The group SE(n) is not bounded, hence it is not compact. To see this property, we
have just to consider the sequence of matrices

Am =

(
In vm

0 1

)
where the vector vm ∈ Rn has the first component m and the other components
equal to 0. The Frobenius norm of Am is ||Am|| =

√
m+ 2, hence the sequence

Am is not bounded. Therefore SE(n) is not bounded, hence it is not compact.

5.1. The Rodrigues Formula for SE (n)

Let Ω be a matrix in se (n)

Ω =

(
X u
0 0

)
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where X is a skew–symmetric square matrix with real entries. The following sim-
ple observation is useful in determining a Rodrigues formula for the group SE (n).
The characteristic polynomial pΩ of the matrix Ω satisfies the following relation

pΩ(t) = tpX(t).

Indeed, we have

pΩ(t) = det(tIn+1 − Ω) = det

(
tIn −X −u

0 t

)
= t det(tIn −X) = tpX(t).

When n = 2, consider a skew-symmetric matrix X ̸= O2

X =

(
0 a

−a 0

)
, a ∈ R∗.

According to the observation above, the matrix Ω ∈ se (2) has the eigenvalues
λ1 = ai, λ2 = −ai, λ3 = 0. The Rodrigues formula is of the form

exp(Ω) = A0I3 +A1Ω+A2Ω
2

and from Theorem 1, the Rodrigues coefficients A0, A1, A2 satisfy the system (3)
which simplifies exactly to the system giving the classical Rodrigues coefficients
in Subsection 3.1. We obtain the formula

exp(Ω) = I3 +
sin a

a
Ω+

1− cos a

a2
Ω2. (10)

The formula (10) helps us to prove after easy computations that expA ∈ SE(2)
for all A ∈ se(2).

When n = 3, consider a skew-symmetric matrix X ̸= O3

X =

 0 −c b
c 0 −a

−b a 0


having the characteristic polynomial pX(t) = t3 + (a2 + b2 + c2)t = t3 + θ2t,
where θ =

√
a2 + b2 + c2.

The characteristic polynomial of Ω ∈ se (3) is pΩ(t) = tpX(t) = t4 + θ2t2 and
hence, the eigenvalues of Ω are λ1 = iθ, λ2 = −iθ, λ3 = λ4 = 0. The Rodrigues
formula is of the form

exp(Ω) = A0I4 +A1Ω+A2Ω
2 +A3Ω

3.
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Because we have a double eigenvalue λ3 = λ4 = 0, we will use the Putzer method
(see the original paper [21] or Andrica and Rohan [3]). The Putzer matrix is

C =


0 θ2 0 1
θ2 0 1 0
0 1 0 0
1 0 0 0


and after simple computations (details are given in the paper of Andrica and Rohan
[3]), we obtain the following Rodrigues formula

exp(Ω) = I4 +Ω+
1− cos θ

θ2
Ω2 +

α− sin θ

θ3
Ω3. (11)

This formula is mentioned in the book by Selig [23, Chapter 4, pp 51-83] where
it is obtained by a different method. Note that it has exactly the form as formula
obtained in Case 2 of Subsection 3.2.
According to the isomorphism of Lie algebras R3 → so(3), ω → ω̂, mentioned in
Subsection 3.1, formula (11) can be written in the form ([1, Proposition 7.1.8])

exp

(
ω̂ v
0 0

)
=

(
exp(ω̂) 1

||v||2 ((1 + ω.ωt)I3 − exp(ω̂)ω̂)v

0 1

)
when ω ̸= 0.

Proposition 6. The map exp : se(2) → SE(2) is surjective and it is not injective.

Proof: Let

(v,Rθ) =

(
Rθ v
0 1

)
=

cos θ − sin θ v1
sin θ cos θ v2
0 0 1

 ∈ SE(2).

Using formula (10), the relation exp(Ω) = (v,Rθ), where

Ω =

 0 −θ x1
θ 0 x2
0 0 0

 , θ ̸= 0

is equivalent to

I3 +
sin θ

θ
Ω+

1− cos θ

θ2
Ω2 =

(
Rθ v
0 1

)
.

Then, solving a simple linear system in x1, x2, we obtain that for

x1 =
θ sin θv1

2(1− cos θ)
+

θv2
2

, x2 =
θ sin θv2

2(1− cos θ)
− θv1

2

we have exp(Ω) = (v,Rθ).
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Consider the following two matrices Ω1,Ω2 ∈ se(2), where

Ω1 =

0 0 0
0 0 0
0 0 0

 , Ω2 =

0 0 1
0 0 1
0 0 0

 .

Then, we have
exp(Ω1) = exp(Ω2) = I3

therefore the map exp : se(2) → SE(2) is not injective. �

Following the paper of Gallier and Xu [7], we present a Rodrigues-like formula
showing how to compute the exponential expΩ of an element Ω of the Lie algebra
se(n), where n ≥ 3. We need the following key lemma.

Lemma 7. Given any (n+ 1)× (n+ 1) matrix of the form Ω =

(
X v
0 0

)
then

expΩ =

(
expX Av

0 1

)
where

A = In +
∑
k≥1

Xk

(k + 1)!
·

The proof is immediate by induction on k.
Observing that

A = In +
∑
k≥1

Xk

(k + 1)!
=

1∫
0

exp(tX)dt

we can now prove the following result

Theorem 8. Let Ω be a (n + 1) × (n + 1) matrix in the form given above
where X is a non-null skew-symmetric matrix and v ∈ Rn, with n ≥ 3. If
{iθ1,−iθ1, . . . , iθp,−iθp} is the set of distinct eigenvalues of X , where θi > 0,
there are p unique skew-symmetric matrices X1, . . . , Xp such that the conditions
in Theorem 3 hold. Furthermore we have

exp(Ω) =

(
exp(X) Av

0 1

)
where

exp(X) = In +

p∑
i=1

(
sin θiXi + (1− cos θi)X

2
i

)
and

A = In +

p∑
i=1

(
1− cos θi

θi
Xi +

θi − sin θi
θ2i

X2
i

)
.
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Proof: The existence and uniqueness of X1, . . . , Xp and the formula for expB
come from Theorem 3. Since

V = In +
∑
k≥1

Xk

(k + 1)!
=

1∫
0

exp(tX)dt

we have

V =

1∫
0

[
In +

p∑
i=1

(
sin tθiXi + (1− cos tθi)X

2
i

)]
dt

=

[
tIn +

p∑
i=1

(
−cos tθi

θi
Xi +

(
t− sin tθi

θi

)
X2

i

)]1
0

= In +

p∑
i=1

(
1− cos θi

θi
Xi +

θi − sin θi
θi

X2
i

)
.

�

Remark 9. Given Ω =

(
X v
0 0

)
where X = θ1X1 + . . . + θpXp, if we let Ωi =(

Xi v/θi
0 0

)
using the fact that X3

i = −Xi and the relation

Ωk
i =

(
Xk

i Xk−1
i v/θi

0 0

)
it is easily verified that

exp(Ω) = In+1 +Ω+

p∑
i=1

(
(1− cos θi)Ω

2
i + (θi − sin θi)Ω

3
i

)
.
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