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Abstract. In the first part, the theory of bounded symmetric domains is pre-
sented along two main approaches: as special cases of Riemannian sym-
metric spaces of the noncompact type on one hand, as unit balls in positive
Hermitian Jordan triple systems on the other hand. In the second part, an
invariant for triples in the Shilov boundary of such a domain is constructed.
It generalizes an invariant constructed by E. Cartan for the unit sphere in C?
and also the triple Maslov index on the Lagrangian manifold.
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1. Introduction

The present paper is an outgrowth of the cycle of conferences delivered by the
author at the Tenth International Conference on Geometry, Integrability and Quan-
tization, held in Varna in June 2008. The first part (Sections 2-5) is a survey of
the theory of bounded symmetric domains. Since their introduction by E. Car-
tan, bounded symmetric domains have been intensively studied. There are two
main trends to present them. The usual approach first studies Hermitian symmet-
ric spaces as special cases of Riemannian symmetric spaces, namely those which
admit a compatible complex structure. For the noncompact type, the theory culmi-
nates with the Harish Chandra embedding theorem, which realizes the space as a
bounded symmetric domain in B, where BT is the holomorphic tangent space at
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some (any) point of the space. The bounded domain thus obtained in 3™ is circled
and can be characterized by a norm condition (see Theorem 1).

The second approach starts with a bounded circled symmetric domain D in some
complex vector space V and shows that the Lie algebra of vector fields generated
by the group of holomorphic diffeomorphisms of D has a very specific realization,
which induces on V a rich algebraic structure (positive Hermitian Jordan triple
system, PHJTS for short). Conversely, for each positive Hermitian Jordan triple
system V, it is possible to develop a spectral theory for the elements of V and
in particular to define a certain complex Banach norm on V called the spectral
norm. The unit ball for the spectral norm can be shown to be a bounded symmet-
ric domain. The Bergman metric (which exists for any bounded domain) realizes
the bounded symmetric domain as a Hermitian symmetric space of the noncom-
pact type. This approach shows a one to one correspondence between PHJTS and
bounded symmetric domains, which in a sense, shows that the concept of PHJITS
is exactly fitted for the study of bounded symmetric domains.

The characterization of the Shilov boundary of a bounded symmetric domain is
specially nice in the approach through PHJTS, as the elements of the Shilov bound-
ary can be characterized by an algebraic property (they are the maximal tripotents).

There is an important difference inside bounded symmetric domains: some of them
are said to be of tube-type, the others being not of tube-type. The Cayley transform
(a generalization of the classical Cayley transform mapping the open unit disc in
C into the upper half-plane Iz > 0) transforms a domain of tube type in a Siegel
domains of type I, which is a generalized half-space over a convex cone, whereas
a non tube type domain is transformed into a Siegel domain of type II. Tube-type
domains correspond to a special class of PHJTS, namely those which are obtained
from a Euclidean Jordan algebra by the process of Hermitification (a variant of the
complexification). The interplay between the two notions (tube type vs non-tube
type, PHJTS vs Euclidean Jordan algebra) is an important tool in studying fine
properties of bounded symmetric domains.

The second part (Sections 6—8) is a presentation of some of the new results ob-
tained during the last years by the author, partially in collaboration with B. @rsted,
K-H. Neeb and K. Koufany (see [4-11]). The main theme is the group of diffeo-
morphisms G of a bounded symmetric domain D on triplets in the Shilov boundary
S of D. An invariant is constructed for this action. This invariant coincides with
known invariants in specific cases. The classical triple Maslov index, a Z-valued
invariant (for the symplectic group) on triples of Lagrangians is the most famous.
For tube type domains, this triple invariant is the main ingredient in the classifica-
tion of orbits of G'into S x § x S.

To help the reader, an example (the unit ball in the space of complex rectangular
matrices) is followed through the paper (see Sections 2.5, 3.4 and 4.6), and most of
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the concepts that are introduced in a general setting are explicitly determined for
this example. Some other examples appear occasionally.

The paper contains no proof (except for a few proofs that are sketched) but I tried
to give appropriate references. In preparing these notes, I used three main sources:
the classical treatise by S. Helgason [17] and specially chapter VIII, the book by
Satake [30] which combines the classical approach and the use of Jordan triple
system, and the notes by O. Loos [25], where Jordan triple systems are the main
tool for studying bounded symmetric domains. The books [17] and [30] contain
many references to the literature on the subject.

2. Hermitian Symmetric Spaces
2.1. Riemannian Symmetric Spaces

The basic reference for this section is Helgason’s book [17]. For a different point
of view, see [24].

Definition 1. A connected Riemannian manifold (M, g) is a Riemannian symmet-
ric space if, for each point m € M, there exists an involutive isometry ., of (M, g)
such that m is an isolated fixed point of sp,.

The differential Ds,,(m) of s,,, at m is an involution of the tangent space T, M,
and, because m is an isolated fixed point, 1 can not be an eigenvalue of Ds,,(m).
Hence Ds,,(m) = —idr, ., so that s,, has to coincide with the geodesic symme-
try around m (a priori only locally defined, and not necessarily locally isometric).
If there is an isometry s,, satisfying the requirements of the definition, then it is
unique and called the geodesic symmetry centered at m.

For a general Riemannian manifold M, the group Is(M) of isometries of (M, g)
with the compact-open topology has a unique compatible structure of Lie group
(Myers-Steenrod theorem, see [28]). When M is a Riemannian symmetric space,
composition of symmetries centered at various points of M produces enough iso-
metries of M to prove that the group Is(M) is transitive on M. A refinement says
that the same statement is true for the neutral component of Is(AM'). We will denote
by G the neutral component of Is(M).

Fix an origin o in M. Let K be the isotropy subgroup of o in G. Then K is a
closed compact subgroup of G, and M is isomorphic to the quotient space G/ K.

Let g = Lie(G) be the Lie algebra of G, and £ the Lie algebra of K viewed as a
Lie subalgebra of g. The tangent space T, M of M at o can be identified with g/¢.

The map

OZG—>G, g 58,0005,
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is an involutive automorphism of G. Let G? = {g € G; 0(g) = g} be the fixed
points set of 8. Then G? is a compact subgroup of G, and

Gy c K cG°.

The differential of § at the identity is an involutive automorphism of the Lie algebra
g, still denoted by 6. There is a corresponding decomposition

g=tap
where
t={Xeg;0X =X}, p={Xeg; X =-X}.
Moreover,

€, CE [&,p] C b, [b,p] CE.

The projection from g to p along € yields an isomorphism of g/€ with p, and hence
a natural identification T, M ~ p. Moreover, the map

K — Hom(7T,M), k — Dk(o)

defines an action of K on 1,M, whereas K acts on p by the adjoint action. The
isomorphism 7, M ~ p is equivariant with respect to these actions of K.

The vector space p is naturally equipped with a Lie triple product (LTS) defined
by

[XaY’Z]:[[X’Y]aZ]' (D
Proposition 1. The Lie triple product on p satisfies the following identities

(X,Y,Z] = -V, X, Z]

(X, Y, Z|+[Y,Z,X|+[Z,X,Y] =0
[U.V[X,Y,Z]] =[[U,V,X],Y, Z] + [ X,[U, VY], Z] + [X,Y,[U, V, Z]]
forall XY, Z, U,V inp.
This Lie triple product has a nice geometric interpretation, namely
R,(X,Y)Z = —-[[X,Y],Z] = —[X,Y, Z] (2)

where R, is the curvature tensor of M at o (see [17, p. 215]).

The Ricci curvature (also called the Ricci form) is the symmetric bilinear form on
T,M given by
ro(X,Y) = —Tr(Z — R,(X,2)Y). 3)

Proposition 2. The Ricci curvature at o is invariant under the action of K on T, M
and satisfies, for all X, Y inp

1
TO(XaY) = _§B(Xa Y) (4)
where B(X,Y) = Trg(ad X adY') is the Killing form of the Lie algebra g.
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See [30, p. 75] for a proof.

A Riemannian symmetric space M ~ G/K is said to be of Euclidean type if
[p,p] = 0. The space M is said to be irreducible if it is not Euclidean and the
representation of K on the tangent space T, M =~ p is irreducible (admits no K-
invariant subspace except {0} and p).

If M is irreducible, then there exists a unique (up to a positive real number) K-
invariant inner product on p, and hence the Ricci form 7, has to be proportional to
it.

Definition 2. An irreducible Riemannian symmetric space is said to be

e of the compact type if r, is positive definite
e of the noncompact type if r,, is negative definite.

The definition does not depend of the choice of the origin, as the group G is tran-
sitive on M.

Any simply connected Riemannian symmetric space M is a product of a Euclidean
space and of irreducible symmetric spaces (see [17, Chapter V, Proposition 4.2 and
Chapter VIII, Proposition 5.5]). If all factors are of the compact (respectively
noncompact) type, then M is said to be of the compact (respectively noncompact)

type.

If M is of compact type, then G is a compact semisimple Lie group. If M is of the
noncompact type, then G is a semisimple Lie group (with no compact factors) and
f is a Cartan involution of GG (see [17, Chapter V]).

For a Riemannian symmetric space of the noncompact type, the infinitesimal data
characterize the space. More precisely, given a semisimple Lie algebra g with no
compact factors, let G be any connected Lie group with Lie algebra Lie(G) = g
and assume that GG has a finite center (there always exists such a group). Let f be a
Cartan involution of g (notice that two Cartan involutions of g are conjugate under
the adjoint action of 7). Let g = € & p be the corresponding Cartan decomposition
of g. The Killing form B of g is negative definite on € and positive definite on p.
The involution @ can be lifted to an involutive automorphism of G, still denoted
by #. Then K = G? is a connected compact Lie subgroup of G. Let M =
G/K, and set 0 = eK. The tangent space at o is naturally isomorphic to p and
Bjyxp 18 a K-invariant inner product on p. Hence M can be equipped with a
structure of Riemannian manifold, on which G acts by isometries. The space M
is a Riemannian symmetric space of the noncompact type. Up to isomorphism, M
does not depend on the choice of GG, but only on g (see [17, Chapter VI]).
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2.2, Hermitian Symmetric Spaces

The main reference for this section is [17, Chapter VIII]). Other relevant sources
are [30], [20, Section VII.9], and [14, Sections 1-4].

Definition 3. A (connected) complex manifold M with a Hermitian metric h is
said to be a Hermitian symmetric space if, for each point m in M there exists an
involutive holomorphic isometry s,, of M such that m is an isolated fixed point

of Sm.

Hermitian symmetric spaces are special cases of Riemannian symmetric spaces
(the corresponding Riemannian metric being ¢ = Rh), but we demand that the
symmetries be holomorphic. As a consequence, one can show that the group G (the
neutral component of the group of Is(M, g)) acts by holomorphic transformations
on M. Notice that G is a real Lie group (and not a complex Lie group).

Using same notation as in previous sections, the tangent space T, M (which is
naturally isomorphic to p) admits a complex structure, i.e., there exists a (R-linear)
operator J = J, on p which satisfies J? = —Id.

Lemma 1. The complex structure operator J satisfies
J(T,X]) =T, JX]
B(JX,JY)=B(X,Y)
forall X, Y inp andT in L.

The first property corresponds to the fact that the action of K on T,,M is by com-
plex linear transforms. The second property is a consequence of the fact that J is
an isometry of the tangent space for the Riemannian metric g.

Lemma 2. Assume that g is semisimple. Then there exists a unique element H in
the center of € such that J = ady, H.

Sketch of the proof. The endomorphism D of g which is 0 on € and coincides with
J on p is easily seen to be a derivation of g (use Lemma 1). If g is semisimple, then
any derivation is inner, hence D = ad H for some element H in g. Decomposing
H along g = € @ p shows that H has to be in the center of €.

The fact that € has a non trivial center essentially characterizes the Hermitian sym-
metric spaces among the Riemannian symmetric spaces. In the noncompact type
case, a precise statement is the following.

Proposition 3. Let g be a simple Lie algebra of the noncompact type, with Cartan
decomposition g = €D p. The associated Riemannian symmetric space M = G /K
admits a structure of Hermitian symmetric space if and only if the center of € is
non trivial. If true, there exists a unique (up to £1) element H in the center of ¢
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such that ad H induces a complex structure operator on p, and the corresponding
symmetric space M ~ G /K is, in a natural way a Hermitian symmetric space of
the noncompact type.

2.3. The Harish Chandra Embedding

Proposition 3 gives an abstract description of the Hermitian symmetric space asso-
ciated to a simple algebra of the noncompact type. A more explicit realization is
obtained through the Harish Chandra embedding.

Let g be a semi-simple Lie algebra of the noncompact type, with Cartan decom-
position g = € & p wrt. some Cartan involution €, and assume that there ex-
ists an element H in the center of € such that the restriction of ad H to p is a
complex structure operator .J. Let & be the complexification of g and denote by
X —— X the conjugation of & with respect to the real form g. For Z in &, let
RZ = 3(Z +Z). Extend 0 to & in a C-linear way, and observe that X — 60X is
a Cartan involution of &. Let & = & @ ‘P be the complexification of the Cartan
decomposition. Extend in a C-linear way the action of J to 3. Then P splits as
B =P+ @ P_, where P+ = {X € P; JX = +iX}. One can think of P as
the holomorphic tangent space of M = G/ K at the origin o = eK.

Lemma 3. The space P (respectively 3_) is an Abelian Lie subalgebra of ®.
Moreover [R,P+]| C P.

Let G be a complex Lie group with Lie algebra Lie(G) = &, and define K (respec-
tively P, P_) to be the analytic subgroup of G with Lie algebra K (respectively
P, PB-). Let G (respectively K) be the real analytic subgroup of G with Lie
algebra g (respectively £).

Proposition 4.
1) The exponential map exp : P+ —— P is an isomorphism of complex

Abelian Lie groups.

il) K normalizes P_, KNP_ = {e} and the semidirect product Q_ = KP_ is
a parabolic subgroup of G.

iii) P, N Q_ = {e}, and the map
Py xQ- — G, (p+,9) — p+q
is an injective regular map onto an open subset of G.

iv) GCP,Q_and GNQ_- =K.

Let g be in G. Then, as a consequence of Proposition 4, g can be written in a
unique way as g = exp ¥(g) gq—, with g_ in Q_ and ¥(g) in P+. Moreover, for
any k in K, ¥(gk) = ¥U(g), and hence ¥ induces amap { : G/K — P..
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Define a norm on & by
IX| = (-B(X,6X))"?, Xe&
and the corresponding operator norm
lad X|| = sup{[[ad X (Y)[|; Y € &, |[Y]| < 1}.

Theorem 1 (Harish Chandra embedding). The map ¢ : G/K — P is a biholo-
morphic diffeomorphism of G| K onto the domain D, where

D={ZeP;|adR2)[ <1} .

For a proof, see [17, Chapter VIII], and [30, Section I1.4].

2.4. Jordan Triple System

The role of Jordan algebra and Jordan triple system in the theory of Hermitian sym-
metric spaces is originally due to M. Koecher (see [21]). The notes by O. Loos [25]
offer a systematic presentation of the material to be discussed. See also [30]
and [14].

Let M ~ (G/K be a Hermitian symmetric space of the noncompact type. Then,
considering M has a Riemannian symmetric space, p ~ T, M is equipped with its
natural structure of Lie triple system, which coincides (up to a sign) with the cur-
vature tensor at o (see (2)). The behaviour of the curvature tensor under the action
of the complex structure .J is rather intricate. It leads to the following definition.

For X,Y, Z in p, let
1
(X7, 2} = S (X, Y], 2] + J[[X, JY], Z]) (5)

Theorem 2. The triple product defined by (5) satisfies the following identities
JITH J{X,Y, Z}={JX,Y,.Z} = —{X,JY, Z} ={X,Y,JZ}
IT2) {X,Y,Z} ={Z,Y, X}
JT3) {Ua‘/a{XaYaZ}} = {{Ua‘/aX}’Y’Z} - {Xa {Vva UaY}’Z}
+{X, Y AUV, Z}}
forall XY, Z, U,V inp.

Moreover it satisfies

([X,Y],Z] ={X.,Y,Z} - {Y, X, Z}. ©6)

A complex vector space V with a triple product { X, Y, Z} which is C-linear in X
and Z, conjugate linear in Y, and satisfies JT2) and JT3) is called a Jordan triple
system (JTS).
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Let V be a Jordan triple system. For X and Y in V let L(X,Y") be the C-linear
operator on V defined by

L(X,)Y)Z =4{X,Y,Z}
and consider the sesquilinear form
(X,Y)=Tr L(X,Y). @)
If the form 7 is nondegenerate, then 7 is Hermitian (i.e., 7(X,Y) = 7(Y, X) for
X,Y in V). Moreover
LX,Y)" = L(Y, X) (®)
for X, Y in'V, where A* stands for the adjoint of the operator A w.r.t. 7. The triple

system is said to be a positive Hermitian Jordan triple system (PHJTS) if the
form 7 defined by (7) is positive definite.

Theorem 3. Let M ~ G /K be a Hermitian symmetric space of the noncompact
type. Then (p,J) (considered as a complex vector space) with its Jordan triple
product defined by (5) is a PHJTS.

2.5. An Example: the Hermitian Symmetric Space of Type I, ,

Among the bounded symmetric domains, there the so-called classical ones as op-
posed to the exceptional ones. The classical ones are studied systematically in
[29]. See also [18], and the Appendix of [30]. We present here (to be continued
in Sections 3.4 and 4.6) the classical domain of type I, 4, i.e., the unit ball in the
space of p X g matrices with complex entries.

Let E be a complex vector space of dimension n, and let p, g two integers, p,q > 1
with p + ¢ = n. Let G(q,E) be the Grassmannian of all g-dimensional vector
subspaces of E. It is in a natural way a complex manifold.

Two vector subspaces W of dimension g and W’ of dimension p are said to be
transverse if W N'W = {0}. This relation will be denoted by W T W’. Choose
such a transverse pair (Wg, Wp) so that E = Wj & Wy. Let

Ow == {W € G(¢,E); WT Wg}.

This is an open subset of G(g, E). Let L be in Hom(Wy, W), an define its graph
Wi as
Wi ={€+ L&; € € Wo}.
Clearly, Wy, is a subspace of E of dimension g, and W, is transverse to W(J, hence
belongs to OWB' The map
Hom(WO,Wf)) 5 L— W, € OW6

is a chart onto OWB' The operator L = 0 corresponds to the “origin” W in OWB'
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The group GL(E) ~ GL(n,C) operates transitively on G(q,E) by (¢, W) —
g(W). Of course, this is really an action of the projective group G = PGL(E) ~
GL(n,C)/C*.

Let h be a Hermitian form on E of signature (p, q), and let
M = M, :={W € G(¢,E); hyw < 0}.

Let W be in M. Then the restriction of h to W+ is positive-definite and W+ is a
canonical transverse space to W. It allows to identify the tangent space of M at W
with Hom (W, W+).

Let G = PU(E, h) be the (projective) group of (pseudo-)isometries w.r.t h. If g is
in GG, and W is in M, then g(W) is still in M, so that this defines an action of G
on M. By Witt’s theorem, this action is transitive.

Let W be in M and g in U(E, k). Then g maps W to g(W), and at the same time,
g(WL) = (g(W))*, as g preserves h.

On M there is a natural structure of Hermitian manifold. The tangent space at a
point W has been identified with Hom(W, W+). If ' : W — W+, define 7"* to

be the unique complex linear operator from W+ into W such that, for all £ € W
and n € W+

h(T&,m) = (&, T™n).

Then for T, S in Hom(W, W) set hw (S, T') = Tr ST*. This is a positive definite
Hermitian form on the tangent space at W, and hyw depends smoothly on W, thus
turning M into a Hermitian manifold. Moreover, the stabilizer of W in U(E, h) is
U(W, hyw) X U(W-, hyw ), and hyy is easily seen to be invariant by this stabilizer.
Thus the metric defined by hyy is invariant by G'.

Fix a point W in M. Then E = Wy & W&, and let oy = ow, be the symmeitry
with respect to this decomposition, defined by o¢(§ + 1) = £ —nfor £ € Wy
and n € W(J)-. This symmetry belongs to U(E, h) and hence operates on M. Let
W in M be a fixed point of og. Thus W is stable by o, hence decomposes as
W = WnNnWyo Wn Wg. As the restriction of  to W has to be negative
definite, this forces W = Wj. Thus o acts on M by an involutive holomorphic
transformation, preserving the Hermitian metric and having W as isolated (even
unique) fixed point. This shows that M is a Hermitian symmetric space.

The Lie algebra of PU(E, k) is the same as the Lie algebra of SU(E, h) as both
groups are locally isomorphic, and it is given by

g = su(E,h) = {X € End(E); h(X&,n) + h(¢. Xn) = 0,6,y € E,Tr X = 0},

Choose a basis (€1,...,€p,€p11,...,6p), of Esuchthat hie;,e;) =1forl <i <
p, h{ei,e;) = —1forp+1 < i < nand h(e;,e;) =0for1 < i # j < n,so that
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the form A is represented by the matrix

1 \

K Ty

The Lie algebra g of G is then given by

Y* D
The Lie algebra £ of K ~ P(U(q) x U(p)) is

£ = s(u(p) x u(q)) = {X: (61 g) ,A:—A*,D*:—D,TrA—I—TrD:O}

g =su(p,q) = {X: (A Y) ; A*=—A, D" = -D, Tr(A+D)=O}.

whereas p is given by

p= {X: (;,)* 1(;) : YGMat(pxq,(C)}

which allows to identify p with Mat(p x ¢, C).

The element A which is in the center of € such that ad, H is the complex structure
operator on p is

p .
“pral/
The Lie triple system on p is given by

(X, Y, Z| =X, Y], Z|=XY"Z-YX"Z - ZX'Y + ZY*X

where X, Y, Z are p x g matrices.

The complexified Lie algebra & of g can be realized as sl(n, C), the Lie algebra of
n X n matrices with trace 0. Then

{3 5)maema w-{(37)
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#={(00)}

The corresponding Jordan triple product is given by
{X,Y,Z}y=XY*"Z +ZY*X.

and

3. Bounded Symmetric Domains

3.1. Bergman Metric

The reference for this section is [17, Chapter VIII].

Let D be a domain (i.e., a open connected subset) in some complex finite-dimen-
sional vector space E. Choose a Lebesgue measure d\ on E.

Definition 4. Let
H(D) ={f :D — C; f holomorphic, / | f(2)]?d\(2) < oo}.
D

The Bergman space H(D) is the Hilbert space equipped with the norm || f|| =
(fplf(2)]? dA(z))l/Q, as it is a closed subspace of L?(D). Let w be in D. Then
the linear functional

H(D) > f +— f(w)
is continuous (the proof uses the Cauchy formula and Schwarz inequality). Hence
there exists K, in H(D) such that

/ F()Ku(2) dN(z) = / F(2)R(zw) dA(2) )

where k(z, w) = Ky (=) is called the Bergman Kernel of the domain D.

Proposition 5. The Bergman kernel satisfies the following properties:
i) k(z,w) is holomorphic in z and conjugate holomorphic in w
i) k(z,w) =k(w, z)
iii) for any biholomorphic diffeomorphism ® of D
k(z,w) = jo (2)k(2(2), ®(w))js(w) (10)

where jg(z) is the Jacobian of ® at z.

Assume that D is a bounded domain. Then H (D) is not equal to {0}, as it contains
the restrictions to D of all holomorphic polynomials on E. As a consequence,
for any z in D, k(z,z) > 0, and the Bergman kernel can be used to construct a
Hermitian metric on D given by

hz(fﬂ?) = aﬁa_nlog k(uaw)uzz,w=z (11)
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called the Bergman metric. The Bergman metric is invariant under any holomor-
phic diffeomorphism of D (a consequence of (10)).

Remark. Suppose D is a homogeneous domain, i.e., its group of biholomor-
phic diffeomorphisms G is transitive on D. Fix an origin o in D. Then, by (10),
k(z,z) = k(o,0)|j,(2)| 2, where g is any element of G such that z = g(0). Now
k(z,w), being holomorphic in z and conjugate holomorphic in w is determined by
its restriction to the diagonal. In practice, this gives, for a homogeneous bounded
domain, a way of computing explicitly the Bergman kernel (up to a positive con-
stant) and the corresponding Bergman metric.

3.2. Bounded Symmetric Domains
In this section we mainly follow [25, Section 2].

Definition 5. A bounded domain D is said to be symmetric (D is also called a
Cartan domain) if, for every z in D, there exists an involutive biholomorphic dif-
feomorphism s, such that z is an isolated fixed point of s.,.

The use of Bergman metric of D implies that D is a Hermitian symmetric space of
the noncompact type. Let GG be the neutral component of the group of holomorphic
diffeomorphisms of D, and let K be the stabilizer in G of some fixed origin o in
D. Then G is a semisimple Lie group, K is a maximal compact subgroup and D is
isomorphic to G/ K.

A domain D is said to be circled if 0 belongs to D and D is stable by the maps
re : z — €92, for § € R/2nZ.

Theorem 4. A bounded symmetric domain is holomorphically equivalent to a
bounded symmetric and circled domain.

See [33] for a proof (the result is valid even in infinite dimension).

Let D be a bounded circled symmetric domain. Choose 0 as origin in D. Then the
stabilizer K of 0 in G acts by (restrictions to D of) linear transformations. The
Hermitian form hg on 7pD ~ E given by the Bergman metric at 0 is invariant under
K, so that K can be viewed as a closed subgroup of the unitary group U(E, hg).
The symmetry sq is given by

Sgiz— —2=¢e"z

and belongs to K, as D is circled. The map 6 : g — sg 0 g o sg is a Cartan
involution of (G, with K as fixed points.

Let g = € @ p be the Cartan decomposition of the Lie algebra g of G with respect
to 0.
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A holomorphic vector field on D can be regarded as a holomorphic map £y
D — E. In this setting, the bracket of two holomorphic vector fields £ and 7 is
the holomorphic vector field [&, 7] defined by

€, nl(2) = Dn(2)é(z) — D&(2)n(z). (12)
Any X in g induces a holomorphic vector field in D denoted by {x. The map
X —— &x(0) yields a real isomorphism of p with E, which is K -equivariant.
For X and Y in g, one has the relation

§ixy1 = —x, &yl (13)

For u in E, abusing notation, denote by &, the unique holomorphic vector field
induced by an element of p such that £,(0) = u.

Proposition 6. Let v be in E. Then, for any z in D
§o(2) = v —Q(2)v (14)

where Q(z) is a conjugate linear map of E, and z — Q(z) is a homogeneous
quadratic map of degree two.

For u, v in E, set

Qu,v) = Qu+v) — Qu) — Q(v) (15)
(polarized symmetric form of (), except for a factor two), and for x,y, z in E

Theorem S. Formula (16) defines on E a structure of positive Hermitian Jordan
triple system (PHJTS) which coincides with the structure on p defined by (5).

3.3. The Spectral Norm on E

The main reference for this section is [25, Sections 3 and 5]. Let E be a PHJTS.
Definition 6. A real subspace W of E is said to be flat if
{WW Wy W 17
foranyz,y € W, {z,y,2} = {y,z,2}. (18)

Let W be a flat subspace of E. For z,y in W, denote by L(z, y) the restriction to
W of L(z,y). For z,y, u arbitrary elements of E, rewrite JT3) as

[L(z,y), L(u, u)] = L{z,y, u},u) — L(u, {y, z, u}).

Now, if z,y, u are in W, then, by (17) and (18), L({z, y,u},u)=L(u, {z, y,u})=
L(u, {y, z,u}), so that L(z, y) commutes to L(u, ), and hence, by polarization,
to L(u,v) for arbitrary v and v in W.
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The restriction to W of the real part of the Hermitian form 7 is a real inner product
on W, and as a consequence of (8), L(z,y)! = L(y,z) = L(x,y).

Hence the family { L(z, ), ¢,y € W} is a family of mutually commuting symmet-
ric operators on W, so that there is a simultaneous diagonalization of the family.
This result allows a spectral analysis in E.

An element c of [ is said to be a tripotent if it satisfies

{¢,¢,c} = 2c. (19)
Two tripotents ¢ and d are said to be orthogonal if L(c,d) = 0. If this is the case,
then ¢ + d is a tripotent.

Let ¢ be a tripotent. One can show that L(c, ¢) (which is selfadjoint) admits eigen-
values in the set {2, 1,0}. There is a corresponding decomposition of E, called the
Peirce decomposition with respect to ¢

E = EQ(C) @D El(C) <P Eo(c) 20)
where E;(c) = {x € E; L(c,c)x = ja},for j =0,1,2.

Proposition 7. Let c be a tripotent in E. Then the Peirce decomposition (20) has
the following properties:

{Ei(c), Ej{c), Ex(c)} C Ei_jrr(c)
{E2(c),Eo(c),E} =0,  {Eo(c),E2(c),E} =0
where i, j, k belong to {0, 1,2} and with the convention that E;(c) = {0} if | does
not belong t0 {0, 1,2}.

Theorem 6. Let ¢, ca, ..., cs be a family of mutually orthogonal nonzero tripo-
tents. Then

W =Rc; ®Rea & --- P Reg 21D

is a flat subspace of E. Conversely, let W be a flat subspace of W. Then there exists
a family (c1,ca, ..., cs) of mutually orthogonal tripotents such that (21) yields.
Moreover, the family is unique, up to order and signs.

If z is any element of E, its odd powers are defined by the induction formula
2P+ = (g 221 2} (22)

The real vector space R[x] generated by the odd powers of z is a flat subspace. The
previous result implies the following spectral theorem.

Theorem 7. Let x be an element of E. Then there exists a unique family of
mutually orthogonal tripotents c1,ca, . .., cs, and such positive real numbers 0 <
A1 < Ag < -0 < Ag that

T = A1c1 + Aocg + -+ Agscs. (23)
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The A;’s are called the spectral values of z. The spectral norm is, by definition
the largest eigenvalue of = and is denoted by |z|. It can be shown that x — |z is
actually a (complex Banach) norm on E.

Theorem 8. Let D be a bounded circled domain in some complex vector space E.
Let{-,-,-} be the induced structure of PHITS on E, and let | - | be the correspond-
ing spectral norm. Then

D={ze€E;|z| < 1}. (24)

Conversely, let E be a PHITS. The open unit ball for the spectral norm is a bounded
symmetric domain.

3.4. An Example (Continued from Section 2.5)

We continue to use notation introduced in Section 2.5 for the Hermitian symmetric
space M, ;. Recall that we chose an orthogonal decomposition E = W= & Wy,
with thOJ_ > 0 and hjw, < 0. The restriction of A to Wy yields an inner

product on Wyt, and similarly for the restriction of (—h) to Wy. We denote
the corresponding Hilbert norm on both of them by || - ||, and we also define the
corresponding operator norm on Hom(Wg, Wyt) by

|1 Z]] = sup{|| Z&]|; € € W, [I]] < 1}.
Let W be in M, so that hjwy < 0. Then W N VVOL = {0}, and W belongs to
OWO 1. Hence there is amap Z : Wg — \WOL such that
W = Wy = {€ + Z&; § € Wo}.

Conversely, let Z be in Hom(Wg, Wo) and let W be its graph. Then the condi-
tion Ay, < 0 reads

h(Zfa ZE) < _h(€a£)a for any 5 7£ 0€ WO

which is equivalent to the condition || Z|| < 1.

Denote by D,,, the unit ball in Hom (W, Wo™) ~ Mat(p x ¢, C) for the operator
norm. We just proved the following result, which describes the Harish Chandra
embedding for the Hermitian symmetric space M, ,.

Proposition 8. The map Z —— Wy is a 1-1 correspondence between Dy, , and
Mp.q-

Next we want to make explicit the action of G = PU(p,q) on D,,. Let g be
in U(p, q). Its block matrix expression with respect to the decomposition of E as
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E = Wo* & W, is of the form

* ko
(a*a—c'c=1,

g:(iZ), iwa—&czo
b — d*d = —1,.

Let Z be in Hom (W, Wg-). Then for any ¢ in Wy

(Zg) _ ((aZ + b)g)
I\ ¢ (cZ +d)¢)"
If || Z|| < 1, then ¢Z + d is invertible, and letting n = (¢Z + d)&, we obtain that
g(Wz) = W7y where

9(Z) = (aZ +b)(cZ +d)™ . (25)
Now let Y be in p ~ Hom(Wy, Wo™). Then, for ¢ in R close to 0

exptY = (éf* ?:) + O(t?)

and hence
exp(tY)Z) = (Z +tY)tY*Z + 1)1 +0(t*) = Z + (Y — ZY*Z) + O(t?)
so that the holomorphic vector field induced by Y is given by
&(Z)=Y -ZY*Z.
Hence the Jordan triple product on V = Hom(Wg, Wy 1) reads
QZ)Y =2Y*Z, {X,)Y,Z} =XY*Z +ZY*X.

Tripotents for this Jordan triple system are obtained as follows. Let ' ¢ Wy
and F C Wy be two subspaces of the same dimension, say s with 0 < s < r =
inf(p, q). Denote by F+ (respectively F’ L) the orthogonal of F (respectively F’) in
Wy (respectively Wob). Letc : F — F' be an isometry. Associate to ¢ the map
C: Wy — Wy as the following composed map

C: Wy BF ST L wyt

where p is the orthogonal projection on F and 7 is the canonical injection in W(J]-.
Then C' is a tripotent, and any tripotent is obtained in this manner. Observe that
F = (ker C)* and F/ = im C.

The Peirce decomposition V = Vo (C) @ V1 (C) © Vo(C) w.rt. C is described in
terms of block matrices w.r.t. the orthogonal decompositions W = F @ F+ and
Wz = F' @ F'* by the following symbolic scheme

F F+

F’ (Vz(c) V1(0)>
F+ \V(C) Vo(C)) "
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Two tripotents C, Cy associated to the subspaces (F1,F]) and (Fa, FY) respec-
tively are orthogonal if and only if F; | Fy and F} L F5.

Let X be any element in Hom(W,, Wyb). Let F = (ker X)* and F' = im X. On
F, consider the Hermitian form defined by

ax (£ €) = h(XE XE)

which is a positive definite form on I, and can be compared to the positive definite
form —hp. Hence there exists an orthonormal basis (&1,&,...,&) of F such
that the matrix of the form ¢x in this basis is diagonal with positive entries (say)
)\%, A%, . ,/\g,wherewe assumethat 0 < Ay < A < --- < Ag. Forl <5 < s, let
n; = X&;/Aj. Then ny,na, ..., ns is an orthonormal basis of F/. For 1 < j < s,
let C'; be the tripotent (of rank one) associated to the isometry c¢; : C&; — Cn;
which maps §; to 7);. Then the C; are orthogonal tripotents, and X = 37%_; A;C.
This is essentially the spectral decomposition of X in the sense of Theorem 7. The
A;’s are usually called the singular spectral values of X. The largest eigenvalue
Amaz 18 given
Max = sup{ax(€,€): € € F, Jl¢]l < 1}
= sup{|| X[)*5 € € W, [l¢]l < 13 = || X5,

so that the spectral norm on the PHITS Hom(Wy, W) coincides with the operator
norm.

The Bergman kernel of the domain D is given by
K(Z, W) = cpqdet(l, — ZW*)™"

with ¢, 4 a positive real number (see [18]).

4. The Shilov Boundary of a Bounded Symmetric Domain

The presentation of this section follows [25, Section 6].

4.1. The Shilov Boundary of a Bounded Domain

Let D be a bounded domain in some complex finite-dimensional vector space V.
Let f be a function defined and holomorphic in a neighbourhood of D. Then the
classical maximum principle asserts that sup__z | f(z)| is reached on the boundary
0D of D. It is a typical phenomenon of the theory of holomorphic functions in
several complex variables that this result may not be optimal. A closed subset F'
of 0D is said to satisfy the maximum principle for holomorphic functions if, for
any function f defined and holomorphic in a neighbourhood of D

su2|f(z)| = sup | f(2)]
) zeF
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in other words if the maximum of | f| over D is reached in F. One can show that
there exists a (unique) smallest closed set which satisfies the maximum principle,
called the Shilov boundary of the bounded domain D.

Example 1. Let D = {(z1, 22) € C?; |z1] < 1,|22| < 1} be the product of two
copies of the complex unit disc. Its topological boundary is

0D = {(z1,22) € C?%; |z1|,|22| < 1,|21| = 1 or |22 = 1}
whereas its Shilov boundary is
S = {(21,22) € CQ; |Zl| = |Z2| = 1}.

The last statement is obtained by applying twice the maximum principle with re-
spect to each complex variable.

Example 2. Let D = D, , be the unit ball (for the standard operator norm) in
Mat(p x q,C), and assume p > ¢q. A matrix A is in the topological boundary of
D if and only if ||A||,p = 1. Equivalently, A*A has all its eigenvalues less than or
equal to 1, and 1 is an eigenvalue of A*A. Now A is in the Shilov boundary of D if
and only if A*A = id, (see Section 4.6 for a proof of this result). The topological
boundary and the Shilov boundary of D coincide if and only if ¢ = 1, i.e., if the
domain D is the unit ball in CP.

Next, we will characterize the Shilov boundary of the unit ball of a PHJTS.

4.2. More on Tripotents

Let V be a PHITS, and let D be its unit ball for the spectral norm. More generally,
we use freely of the notation introduced in Sections 2 and 3. Recall that a tripotent
is an element ¢ of V which satisfies {c, ¢, c} = 2.

There is a partial order on tripotents: if ¢ and d are two tripotents, then say that
¢ < d if there exists a tripotent f # 0 orthogonal to ¢ and such thatd = ¢+ f. A
nonzero tripotent c is said to be primitive if it can not be written as a sum of two
nonzero orthogonal tripotents. In other words, a primitive tripotent is a minimal
element among the nonzero tripotents.

A Peirce frame is, by definition, a maximal set of mutually orthogonal primitive
tripotents.

Proposition 9. Let c be a tripotent of V. Then the following are equivalent:
i) c=c1 +co+ -+ ¢, where (c1, ¢, ..., ¢, ) is a Peirce frame
ii) cis a maximal tripotent

iii) in the Peirce decomposition of V with respect to ¢, the factor Vy(c) is
equal 1o {0} and hence V = Va(c) @ Vi(c).
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In this context, the spectral theorem (cf Theorem 7) can be written slightly differ-
ently.

Theorem 9. Let x be an element in V. Then there exists such a Peirce frame
(c1,co,...,¢.) and nonnegative real numbers 0 < Ay < --- < A, that © =

Z;::l )\jCj.

Let V; and V4 be two PHITS. Then the direct sum V = V; & V5 has a natural
structure of PHJTS, simply by setting

{z1 4+ 22,1 + Y2, 21 + 22} = {x1,y1, 21 }1 + {z2, Y2, 22 }o2.

The spectral norm on V is given
(1 + z2)| = sup(|z1 ]y, [22],).

A PHJTS V is said to be simple if it can not be written as a sum of two PHJTS.
The simplicity of V is equivalent to the fact that the unit ball D is irreducible as
Hermitian symmetric space.

Proposition 10. Let V be a PHITS. Then

1) two Peirce frames are conjugate under K.
il) two maximal tripotents are conjugate under K.

ii1) Assume that'V is a simple PHITS. Then two minimal tripotents are con-
jugate under K.

From now on, we will assume, mostly for convenience, that V is a simple PHJTS,
although many statements are true generally or could be reformulated to be valid
in full generality.

The number of elements of a Peirce frame is the same for all frames, and is called
the rank of V, denoted by r. It is the rank of a maximal tripotent. It is also equal
to the rank of D as Hermitian symmetric space.

Let ¢ be a tripotent. Then c can be written as a sum of primitive tripotents, and
the number of tripotents is the same for all expressions of ¢ as a sum of primitive
tripotents, and is called the rank of the tripotent c.

4.3. Geometry of the Convex Set D

Recall that the Bergman metric at the origin 0 yields a positive definite Hermitian
form hg on V, for which we also use, for convenience, the notation Ird. The
associated Hilbert norm is denoted by || - ||, not to be confused with the spectral
norm | - |. It is invariant under the action of K. Two orthogonal tripotents are
orthogonal for this inner product, and two primitive idempotents have the same
Hilbert norm (here it is necessary to assume that V is simple).
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Let ¢ be a non zero tripotent. As |c| = 1, ¢ is in the topological boundary of D.
The following proposition gives a rather precise description of the boundary of D
near c.

Proposition 11. Let ¢ be a non-zero tripotent in V. Let
H. ={z e V,(x,¢c) = (c,c)}, H.={z eV, R(z,c) = (c,c)}.
Then,

|{(x,c)| < {e,c) forallx € D (26)
DNH.=DNH, =c+ (DN V(). 27

If ¢ is a maximal tripotent, then
DNH.=DnNH, = {c}. (28)

The convex set D can be further studied by looking at its faces.

Definition 7. Let C be a closed convex set in a real vector space E. A closed
convex set F' is said to be a face of C if

e,d e C, 0<t<ljtc+(l1—t)de F = c,deF. (29)

For example, a singleton {z}, where x is in C, is a face if and only if z is an
extremal point of C. A face is said to be proper if it is neither equal to C nor to .
A proper face is contained in the topological boundary of C.

The intersection of any family of faces is a face. Given a subset A in C, the face
generated by A is the smallest face containing A, namely the instersection of all
faces containing A.

Proposition 12. Let F' be a proper face of D.

i) The real affine span (F') of a proper face is automatically a complex
affine subspace of V.

i1) There exists a unique non zero tripotent c, such that

F=F(c):=c+(DNVy(c)) = (F)ND.

For ¢ a non zero tripotent, the space Vy(c) is a PHITS (see Proposition 20), and
D N Vo(c) is its unit ball for the spectral norm. Hence the interior of the face F'(c)
relative to (F'), which is equal to ¢ + (D N Vy(c)), has a structure of bounded
symmetric domain on its own. Its rank, which is also the rank of the PHITS Vj(c)
is called the rank of the face F'(c).

Recall that GG is the neutral component of the group of holomorphic diffeomor-
phisms of D. Let g be in G. Then the action of g on D extends to some neigh-
bourhood of D (depending on g). Hence the action of the group G extends to
D.
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Proposition 13. The group G acts on the set of faces of D, preserving the rank of
a face. The group G acts transitively on the set of faces of a given rank.

4.4. The Shilov Boundary of D
Denote by S be the Shilov boundary of D.

Theorem 10. Let x be in V. Then the following assertions are equivalent:

1) x belongs to S

ii) x is an extremal point of the convex set D
iii) = is maximal tripotent of the PHITS V
iv) ||z]| = sup{||z||; = € D}.

Sketch of the Proof of i) <= iii): If z is in D, then by Theorem 9, there exists
a Peirce frame (c1,c9,...,¢,) and 0 < A; < .-+ < A, < 1 such that z =
Z;-:l Ajci. Let W be the complex vector space generated by the ¢;,1 < j < 7,
and let P be the polydisc in W defined by

P = {w :ijcj; w; €C, |wj| <1, 1< Sfr} =WnD.
( =1 )
The Shilov boundary of the polydisk P (as a bounded domain in W) is the torus

( r )

T = iazzajcj; loj =1, 1< Sr}
j=1

(cf Example 1 in Section 4.1). Observe that any element of 7" is a maximal tripotent

of V. Now, if f is a holomorphic function in a neighbourhood ¢/ of D, then apply

the maximum principle to the restriction of f to W N/ (which is a neighbourhood

of P), to get

[f(2)] <supf[f(o)]; o € T} <sup{|f(o)]; o € 2}

where X is the set of all maximal tripotents of V. This shows that the maximum
principle holds for ¥, and hence S C X. Conversely, let ¢ be a maximal tripotent.
Consider the holomorphic function f. defined by f.(z) = (2 — (z,¢))~%. The
function ¢ — (2 — ¢)~! is holomorphic in a neighbourhood of the closed unit disc
D in C and its modulus has a strict maximum in D at { = 1. Hence the modulus
of f. has a strict maximum on D at z = ¢ (use (28)). Hence ¢ must be in the Shilov
boundary of D, showing that 3 C S. a

As seen earlier, the action of G extends to D, and in particular G acts on S. The
action of G is transitive on S, and even the action of K is transitive, a consequence
of Proposition 10.
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4.5. The Arithmetic Distance and the G-orbitsin § X S

Let x,y be two points in S. Then consider the face F(x,y) generated by {z, y}.
The rank of F(x,y) is called the arithmetic distance and denoted by d(x, y). By
Proposition 13, the arithmetic distance is preserved by the action of G.

Forany k£,0 < k < r, let
Ok == {(z,y) € S x S; 6(z,y) = k}. (30)

Theorem 11. For any k, 0 < k < r, Oy, is an orbit under G. Any orbit of GG in
S x S equals Oy, for some k. Moreover,

Agys=0g=0,CcO,C---Cc O, =D. 31)

The orbit O, is an open dense subset of S x S. There are useful characterizations
of pairs in O,.
Proposition 14. Let x,y € S. The following propositions are equivalent
i) (z,y) belongs to O,.
ii) There is a geodesic line v(t), t € R in D such that
lim ~(t) = =, lim ~(t) = y.
t——o0

t——4+o0

iii) The Bergman kernel k(z,w) defined on D x D can be extended by con-
tinuity to (x,y).

A pair (z,y) in S x S is said to be transverse (and we then write £ Ty) if any one
of these equivalent properties is satisfied.

4.6. Example (Continued from Sections 2.5 and 3.4)

We continue notation introduced earlier in the study of M, , (or D, 4).

Assume p > ¢. Notice that this is not really a restriction, as by duality, D, , ~
D, p- But the description of the Shilov boundary is easier in this case. The rank of
M, 4 is then equal to g. Let s be an integer, such that 1 < s < q. By an appropriate
choice of basis of Wy and Wy+, a tripotent of rank s can be written as

1
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with s times 1 on the main diagonal. The corresponding face is:
1
Fo={z=| (32)
¢

where there are s times 1 on the main diagonal and ( is an arbitrary element in
Mat((p — s) x (¢ — ), C) with |C]| < L.

From the determination of tripotents in Section 3.4, we know that a maximal tripo-
tent Z is obtained for s = ¢, which forces ' = Wj. Hence Z is an isometric em-
bedding from Wy into Wo~. This is equivalent to saying that Z*Z = I,. Hence,
the Shilov boundary S of the domain D, , is given by

S=8,,={Z eMat(pxq,C); Z°Z = I,}. (33)

The space S, 4 is called the Stiefel manifold (it can also be considered as the space
of all g-frames in CP). If p = ¢, S, can be identified with the unitary group
U(p, C).

Let Z be in S, i.e., Z is an isometric embedding. Then its graph W ; is a totally
isotropic susbspace (i.e., hyw, = 0) of E. Since W7 has dimension g, it is a max-
imally totally isotropic subspace of E. Conversely, any maximally totally isotropic
subspace of E is of dimension ¢ and can be realized has W for an appropriate Z
in S. So in the original realization of M, ,, the Shilov boundary is realized as the
set of all maximally totally isotropic subspaces of E.

Proposition 15. The arithmetic distance on S is given by

8(Z,2') = rank(Z — Z'). (34)

Proof: First consider the realization of S as the space of maximally totally isotro-
pic subspaces of E. There is an obvious invariant for the action of G on § x S,
namely the dimension of the intersection of the two spaces of the pair. Conversely,
let W and W’ be two maximally isotropic subspaces of E, and let dim(W NW’) =
s, with 0 < s < q. Then the signature of the restriction of » on W + W’ has to be
(¢ — s,q — s). Hence by Witt’s theorem, two such pairs (W1, W}) and (W, W5)
are conjugate under U(FE, h) if and only if dim(W; N W) = dim(Wy N W5).
This gives a description of the orbits of G in S x S (cf Theorem 11).

If W (respectively W) is realized as the graph of some isometric imbedding Z
(respectively Z’), then dim(W N'W’) = dim ker(Z — Z’). Hence this last quantity
is invariant under the action of G on S x S.
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Now, consider the following pairs Z, Z’ of tripotents (one pair in each orbit)
namely

1 1
1 1
1 —1
Z: N Z/:
1 —1
0 0 0 0
0 ... ... 0 0 ... ... 0

where there are s times 1 (and hence (¢ — s) times —1) on the main diagonal of
Z'. Then, the face generated by {Z, Z'} is equal to F; (see (32)), which is of rank
q — s. Hence the arithmetic distance §(Z, Z’) is equal to ¢ — s = rank(Z — Z') =
q — dimker(Z — Z’). By the invariance of the latter quantity under the action of
G, we can conclude that the formula is true for all pairs (Z, Z'). O

Another expression for the arithmetic distance is 6(Z, Z') = rank(l, — Z*Z’).
In fact, Z — Z' and I, — Z*Z’ have the same kernel. To see it, first, by left
multiplication by Z*

(Z-2)e=0=(I,—- Z*Z)¢ =0
and hence, ker(Z — Z") C ker(I, — Z*Z'"). Conversely,
(I = Z"Z2) = 0= (I, - Z"Z')¢,£) = 0 = (Z'¢, Z¢) = (£,€).

But | Z¢|| = || Z¢|| = ||£]| and hence, by Cauchy-Schwartz inequality, Z'§ = Z¢&.
Hence ker(Z — Z') D ker(I, — Z*Z").

5. Euclidean Jordan Algebras and Tube-Type Domains

For the theory of Euclidean Jordan algebras, the reader is referred to [13]. A differ-
ent point of view is presented in [32]. For the rest of this section, we follow mainly
[25, Sections 3 and 5].

5.1. Euclidean Jordan Algebra
Definition 8. A Euclidean Jordan algebra is a real Euclidean vector space
(W, (-, -)) with a bilinear product (x,y) — x.y and a unit element e such that

1) .y = y.x (commutativity)

ii) 22.(z.y) = x.(x2.y) (weak associativity)
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i) ez =xe==x
iv) (z.y,2) = (z,y.2) (symmetry property)
forallz,y,zinW.

Example. Let W = Symm(r, R) be the space of r x r real symmetric matrices
and set

Ty = %(xy + yx), e = Id, (z,y) = Tr(zy). (35)
Then W is a Euclidean Jordan algebra.
Let W be a Jordan Euclidean algebra. For x in W, let P(x) be the operator on W
defined by

P(z)y = 2z.(z.y) — z°.y. (36)

The map P is called the quadratic representation of the Jordan algebra W. For
W = Symm(r,R), P(z)y = zyz.
An element z of W is said to be invertible if P(x) is an invertible operator. Invert-
ible elements form a dense open subset of W. If z is an invertible element of W,
then define its inverse tobe z 1 := P(z) 'x.
Let Q := {x € W;y € W,z = y?} be the cone of squares in ¥/, and let {2 be the
interior of (). It coincides with the set of squares of invertible elements.

A cone ' in a Euclidean vector space F is said to be proper if it does not contain
any (affine) line. The dual cone C"* is defined by

Ct={reE;yecC, (z,y) >0}

A cone C is said to be symmetric (or self dual) if its dual C* is equal to its closure
C'. The automorphism group of the cone is the subgroup L = L(C) of GL(E)
defined by

L(C) :={g € GL(E); g(C) = C}.
A cone C'is said to be homogeneous if its group of automorphisms is transitive on

C.

Proposition 16. Let W be a Euclidean Jordan algebra. The cone §) is convex,
proper, symmetric and homogeneous. It is called the symmetric cone of W. Con-
versely, any convex proper, symmetric and homogeneous cone in a Euclidean space
E can be realized as the symmetric cone 2 for some structure of Euclidean Jordan
algebra on W.

Example. For W = Symm(r, R), the symmetric cone ) is the cone of positive
definite symmetric matrices. The automorphism group of the cone is isomorphic to
GL(r,R)/+£1d acting by (g, ) — gzg' for g in GL(r, R) and z in Symm(r, R).
Going back to the general case, an element c in a Euclidean algebra W is said to
be an idempotent if ¢ = c. Two idempotents c and d are said to be orthogonal
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if c.d = 0. Then ¢ + d is an idempotent. A non zero idempotent is said to be
primitive if it cannot be written as a sum of two orthogonal nonzero idempotents.
Any idempotent can be written as a sum of mutually orthogonal primitive idem-
potents. A Jordan frame is a set (c1,co, ..., c,) of mutually orthogonal primitive
idempotents such that e = ¢; + co + - - - 4+ ¢,. Two Jordan frames are conjugate
under an automorphism of the Jordan algebra W. The number of elements in a
Jordan frame is called the rank of the Euclidean Jordan algebra W.

Let  be an element in V. Then there exists a Jordan frame (cy, o, . .., ¢,) and real
numbers A\ < Ay < --- < A, such that x = Z§=1 Aje; (spectral decomposition
of x). The A;’s are unique and called the spectral values of x.

There exists a linear form tr (respectively a homogeneous polynomial det of de-
gree r) on V, called the trace (respectively determinant), such that tr x (respec-
tively det x) is the sum (respectively the product) of its spectral values (counted
with multiplicity). An element z is invertible if and only if det z # 0.

Example. Let W = Symm(r, R). Then an idempotent is an orthogonal projector.
It is minimal if it is of rank one. A Jordan frame is a complete family of mutually
orthogonal projectors of rank one (i.e., associated to an orthonormal basis of R").
Spectral values, trace and determinant coincide with the usual notions.

5.2. Hermitification of a Euclidean Jordan Algebra

Euclidean Jordan algebras are intimately connected with PHJTS. First, Euclidean
Jordan algebras provide examples of PHITS through the process of Hermitifica-
tion. Let W be a Euclidean Jordan algebra. Let W be its complexification. Extend
the Jordan product to W in a C-linear way. On W, define the following triple
product

{z,y,2} = 2(x.(7.2) + 2.(g.x) — 7.(x.2)). (37)

Proposition 17. The complex vector space W with the triple product define by (37)
is a PHITS (called the Hermitification of W).

An idempotent of W is a tripotent of W, a primitive idempotent of W is a primitive
tripotent in W, and a Jordan frame of W is a Peirce frame in W.

Proposition 18. Let ¢ be a maximal tripotent in W. Then there exists a Jordan
frame (c1,c2,...,¢) of W and complex numbers (A1, A1, ..., Ar) of modulus 1
such that ¢ = 377 _ Ajc;.

Extend the quadratic representation P from W to W in a holomorphic way. Simi-
larly, extend the inversion (x — 2~ ') from W to W in a meromorphic way.

Proposition 19. An element z of W is a maximal tripotent if and only if z is in-
vertible and satisfies z~' = Z. The Shilov boundary S of the unit ball D in W is
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given by
S = {z € W; zinvertible, z~! = 7}.

In particular, this gives equations for the Shilov boundary S of the unit ball D in
W. The Shilov boundary is a totally real submanifold of W and
dimR S = dim(c D.

5.3. Euclidean Jordan Algebra Associated to a Tripotent

We have the following statement, which (loosely speaking) goes in the opposite
direction. Let V be a PHJTS.

Proposition 20. Let ¢ be a tripotent in 'V, and let V = Vy(c) ® Vi (c) ® Vy(c) be
the Peirce decomposition of V w.r.t. c. Then:

i) themap z — 2* := %{c, z, c} is a conjugate linear involution of Va(c).
il) its set of fixed points W(c) = {z € Va(c); z* = z} is a Euclidean
Jordan algebra for the following data:

Ty = %{x, c,yt, wnite, {(x,y) = Rr(z,y). (33)

This result (applied for a maximal tripotent) helps to describe the domain D and
its Shilov boundary S near a point c in S.

Proposition 21. Let ¢ be a maximal tripotent in V. Let V = Vy(c) @ V1 (c) be the
corresponding Peirce decomposition, and let W (¢) be the corresponding real form
of Vo(c), with its structure of Euclidean Jordan algebra. Let Q)(c) be the symmetric

cone of W{(c). Then:
i) the (affine) tangent space TS of S at c is equal to
1.5 = c+iW(c) ® Vi(c) (39)
i) the following inclusion holds:

D C (c— Q) +iW(c)) ® Vi(c). (40)

See [7] for a proof.

5.4. Euclidean Jordan Algebras vs PHJTS

Let W be a Euclidean Jordan algebra, with unit element e, and let W be its Her-
mitification. Then L(e,e) = 2 Id and Q(e) is the conjugation of W with respect
to W. Hence e is a (maximal) tripotent, the Peirce decomposition with respect to
e is trivial (i.e., Wa(e) = W), the fixed points set of Q(e) is W and the structure
of Euclidean Jordan algebra on W is the initial one.
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These properties essentially characterize those PHJTS which can be obtained from
a Euclidean Jordan algebra by Hermitification.

Proposition 22. Let'V be a PHITS. Let D be its unit ball for the spectral norm of
V, and let S be its Shilov boundary. Then the following equivalent properties are
equivalent:
1) V is the Hermitification of some Euclidean Jordan algebra.
ii) If ¢ is a maximal tripotent of V, then the corresponding Peirce decompo-
sition is trivial, i.e., V = Va(c).
iii) S is a totally real submanifold of V.
iv) dimg S = dim¢ V.

Example. The PHITS V = Mat(p x ¢, C) is the Hermitification of a Euclidean
Jordan algebra if and only if p = ¢q. If p = ¢, then V is the Hermitification of
the Euclidean Jordan algebra Herm(p, C), where the Jordan product is given by

xy = 3(zy + yx).

5.5. The Cayley Transform

Main reference for this section is [25, Section 10]. For a presentation of the Cayley
transform from the point of view of semisimple Lie groups, see the original paper
[34] or [30, Chapter 3].

Let us first give a complement to Proposition 20. We keep the notation from pre-
vious sections.

Let ¢ be a tripotent in V. For a be in V3(c), let R, be the endomorphism of V;(c)
defined by

R.(z) = {a,c,z}. 41)
Further, define ® : Vi (c) x Vi(c) — Va(c) by
D (u,v) = {u,v, c}. (42)

Proposition 23. Let c be a tripotent in a PHITS V. Let R and ® be defined by (41)
and respectively (42). Then:

i) for a,binVa(c)
1
g(Bao Ry + ByoRa) = Rop,  Re=1d
RZ = Ra~;
it) for a is in Q(c)
Ri=R, and R,>0.
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iii) ® is Hermitian and Q)(c)-positive definite in the sense that, for all u, v in

Vl (C)

O(u,v) = P(v,u)*
®(u,u) € Q(c) and ®(u,u) =0 ifand only if u = 0.

Recall the notion of Siegel domain of type I and of type Il. First, suppose we are
given a Euclidean vector space F and a proper open convex cone ) in F. Let
E = E + iFE be the complexification of E. Define 7 = T (E, ) as

T=Q+iF:={z=u+iwek;uecuvekFE}

In other terms, the set 7 is the tube over (), or the generalized right half-space in
E. In our context, it is called the Siegel domain of type I associated to (F, ().

For a Siegel domain of type II, the data are:

1) a Euclidean vector space F/ with a proper open convex symmetric cone
Qin B
ii) a complex vector space F
iii) a Hermitian and 2-positive definite map ® : F x F — E, where, as
usual E is the complexification of F.

Define S = S(E,Q,F, @)
S :={(u,w) € ExF; R(u) — ®(w,w) € Q}. (43)

Then S is called the Siegel domain of type 1I associated to (E, 2, F, ®).

Observe that a Siegel domain of type I is a degenerate case of a Siegel domain of
type II (take F = {0}).

We can now define the Cayley transform.
Proposition 24. Let ¢ be a maximal tripotent in V. Let V = Va(c) @ Vi(c) be the

Peirce decomposition w.r.t. c. For x an arbitrary element of V, let x = x5 + x1 be
the corresponding decomposition of .

1) Let x be in D. Then ¢ — xo is invertible in the complex Jordan algebra
VQ(C).
it) Set, for x in D
Ye(x) = (e + m2) (e — 22) ™ + Riegyy-1(z1).

Then ~. is a biholomorphic diffeomorphism of D onto the Siegel domain
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S(W(C)’ Q(C)aVI (C)’ (I))-

When the PHJTS V is the Hermitification of a Euclidean Jordan algebra, then,
in our notation Vi{e) = 0, and the image of D by the Cayley map is a Siegel
domain of type I. The bounded domains corresponding to the PHJTS obtained by
Hermitification of a Euclidean Jordan algebra (cf Proposition 22) are called tube
type domains.

6. The Triple Invariant

The general reference for this section is [11].

Finding invariants is a good tool to study orbits. In this section, we will construct
an invariant for the action of G on S x S x 5. We first construct an invariant on
D x D x D, then “pass to the limit” to construct an invariant on S x S x S. The
invariant behaves quite differently wether D is of tube-type or not.

6.1. The Symplectic Area of a Geodesic Triangle

The Kaehler form on D is the real differential two-form w defined on D by the
formula

w:(&,m) = g.(&,J.m) (44)

where £ and 7 are in the tangent space at z. The definition as stated is valid on any
complex Hermitian manifold. The form w is clearly G-invariant, and it is a closed
form (more generally, this is true for the Kaehler form associated to the Bergman
metric of any bounded domain).

Given two points z, w in D, there is a unique geodesic segment starting from z
and ending at w. This fact is true for any Riemannian symmetric space of the
noncompact type. Given three points z1, 22, 23 in D, one can form the oriented
geodesic triangle T(z1, zo, z3), joining z1 to zo, then z to z3 and finally from
23 to 21, each time by using the unique geodesic segment between two summits.
Choose a piece of smooth surface ¥ in D such that its boundary is the triangle,
and orientate 3 such that its oriented boundary is T'(z1, z2, z3). Then define the
symplectic area of T'(z1, 22, z3) by the formula

A(zl,ZQ,z;),):/w. (45)

b3
As the form w is closed, this integral does not depend on the choice of 3 and
defines a real valued function on D x D x D.

It turns out that this function can be explicitly computed. For convenience, we
slightly change the normalization of the metric. We will use the metric (propor-
tional to the Bergman metric) which has minimal sectional holomorphic curva-
ture equals to —1. It amounts to replace, in the definition of the metric on D the
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Bergman kernel kp by the kernel k(z, w) = kp(z, w)?/P, where p is some integer
related to the roots structure of the symmetric space D (see [11] for details).

Theorem 12. Let z1, zo, 23 be three points in D. Then
A(z1, 22, 23) = —(arg k(z1, z2) + arg k(zg, z3) + arg k(z3, 21)). (46)

Observe that D is simply connected, and for any z,w in D, k(z,w) # 0 and
k(z,z) > 0, so that there is a unique continuous determination of the argument of
k(z,w) over D x D which takes value 0 on the diagonal.

For (most of) the classical domains, the result is due to Domic and Toledo (see
[12]). The computation in the general framework is in [11].

For the unique disc in C, this formula is essentially equivalent to the classical
Gauss formula for the area of a geodesic triangle in the unit disc (with the Poincaré
metric) A = © — (a + 3 + ), where a, (3, v are the angles of the triangle.

Proposition 25. The symplectic area satisfies the following properties:

i) A(g(z1),9(22), 9(z3)) = A(z1, 22, 23), forallginG.
i) A(zr1), 2r(2)s 2r(3)) = sign(7)A(z1, 22, 23) for T any permutation of
{1,2,3).
iii) (cocycle property)

A(Zl, 29, Z3) = A(Zl, 29, Z4) —+ A(ZQ, 23, 2’4) —+ A(Zg, 21, Z4). “47)
iv) (bounds for the area)
—rw < Az, z9,23) < T7W (48)

where z1, 29, 23, 24 are arbitrary points in D.

Property 1) is a consequence of the fact that the definition of the area uses notions
(geodesic triangle, Kaehler form) which are invariant under G, ii) reflects the fact
that permuting two summits of a triangle changes its orientation, and iii) is a direct
consequence of the fact that the Kaehler form is closed (it can also be seen on the
formula (46)). The proof of iv) is more subtle and uses the explicit expression
given by (46). The bounds are sharp.

6.2. The Limit Process

Having constructed this invariant function on D x D x D, one can “pass to the
limit” to construct an invariant on S x S x S. A triple (01,02,03)in S x S x S'is
said to be mutually transverse if 0; T o for i # j. For mutually transverse triples,
the approach to a point of the Shilov boundary is unrestricted.
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Theorem 13. Let 01, 09, 03 be mutually transverse points in S. Then the limit

.
(o1,02,03) = ;ZII_I)ICIT_A(ZLZ%Z?,) (49)
7 J

exists as z; in D tends 10 0 (j = 1,2, 3).

The proof uses the explicit formula for the symplectic area (46), and the character-
ization of transverse pairs given in Proposition 14.

For the singular case (at least one pair (0;,0;) with ¢ # j is not transverse), the
approach to the Shilov boundary has to be restricted.

Let ¢ be any point in S. Then c is a maximal tripotent of V, and the Peirce decom-
position of V with respect to c reads V = Va(c) ® Vi(c). Let W(c) be the real
from of Vy(c) with its structure of Euclidean Jordan algebra and let ©2(c) be the
symmetric cone of W {c) (cf Proposition 20). Let v : [0,1] — V be a smooth
curve such that y(0) = ¢ and y(t) € D for 0 < t < 1. By (21), the tangent vector
4(0) to the curve at c satisfies

4(0) € —=Q(c) +iW(c) @ Vi{c).
Definition 9. The curve vy is said to be Q)-radial at c if
4(0) € —Q{c) ® Vi{c).

In other words, there is no restriction on the V; component of the tangent vector
to the curve at c (it allows tangential approach to the Shilov boundary in these
directions), but there is a strong condition on its component in Vy(c). For instance,
when ID is the unit disc in C a Q-radial curve ~ at the point ¢ = ~(0) has to be
radial in the usual sense (its derivative at c is perpendicular to the unit circle).

Proposition 26. Let ¢ be in S and let vy be a Q)-radial curve at c. Let g be in G.
Then g o 7y is a Q-radial curve at g(c).

We can now complete Theorem 13 to include non transverse triples.

Theorem 14. Let 01, 09,03 be in S. Then the limit
1
L(O’1,0'2,0'3) = — lim A(Zl,ZQ,Zg) (50)
i Z;,—)CTJ

exists as zj in D tends to o; along any Q-radial curve at o (j = 1,2,3). The limit
does not depend on the curves used to approach the points o ;.

For the proof, see [6,7].
The function ¢ will be called the triple invariant on S.

Proposition 27. The triple invariant v : S X S x S — R has the following prop-
erties:
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1) t(g(c1), 9(02),9(03)) = t(o1,02,03) forall gin G
ii) L(0r1), Or(2), Or(3)) = sign(7)i(o1,02,03) for any permutation T of

{1,2,3}
iii) (cocycle property)
t(o1,02,03) = {01,02,04) + t(02,03,04) + t(03, 01, 04)

iv) —r < i(o1,02,03) <71 forall 61,09,03,04in S.

These results are immediate consequences of Proposition 25. The bounds in iv) can
be shown to be sharp. There is even a characterization of those triples (o1, 02, 03)
in S x S x S for which |t(o1, 09, 03)| = r (see [11]).

6.3. Example: Elie Cartan’s Invariant

Consider the special case of the unit ball in C?
D={(z,y) €C% 2z +y7 < 1}.
On C3, consider the Hermitian form A given by
o7

h((z,z,y), (', 2',y")) = 22/ —z2” — yv/.

The map (x,y) — C(1,z,y) yields an isomorphism of D with the open set D of
the projective space P2(C) = (C3 \ {0})/C* defined by

D := {[v] € P*C); h(v,v) > 0}
where we have set [v] = Cwv for any v # 0 in C2.
The Shilov boundary of D (which coincides with its topological boundary in this
case) is the unit sphere S in C2. The corresponding boundary of D is the S of
isotropic lines (for the form h) in C3 .
The group PU(R) ~ PU(1,2) acts naturally on D and on S. These actions can be
transferred to D and S respectively.

In 1932 Elie Cartan (cf. [3]) constructed an invariant for triples of distinct' points
in S. First observe that if v and w are non proportional isotropic vectors in C3, then
h{v,w) # 0, because otherwise the complex plane generated by v and w would be
totally isotropic, which is impossible. Now let v, v, v3 be three isotropic vectors
in C? \ {0} mutually non proportional, and consider the complex number

J(v1,v2,v3) = h{vy,v2)h(ve, v3)h(vs, v1)

which is different from 0 by the previous observation. Now, if we change v; to
Ajvj (j = 1,2,3), then J is multiplied by the factor |A1|*|A2|?|A3]. Hence the ar-
gument of J depends only on the triple of complex isotropic lines ([v1], [v2], [v3])-

1Observe that two points on S are transverse in the sense of 4.5 if and only if they are distinct.
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Moreover the principal determination of the argument belongs to [—%, —l—%} In
fact, two distinct points of S are conjugate by an element of SU(1, 2) to (say) the
points (0, —1) and (0, 1) respectively. If (z, y) is a third point on S, then

J((1,-1,0),(1,1,0), (1,2,)) = 2(ly|* + (z — 7))

proving the claim. Hence arg J gives a well defined invariant on triples of distinct
points in S, taking values in [— 5 +%} . Up to a factor %, it coincides with the triple
invariant ¢« we have defined on S x S x S. For more properties of this invariant,
see [15]. For a generalization to the Stiefel manifold, see [4].

6.4. Example: the Triple Maslov Index

For a presentation of the classical triple Maslov index, see [23].

Another important example is the celebrated triple Maslov index on the Lagrangian
manifold. Let (E,w) be a real symplectic vector space of dimension 2r. By defi-
nition a Lagrangian is a maximal totally isotropic subspace of F/. The dimension
of a Lagrangian is necessarily r and a vector subspace L of dimension r is a La-
grangian if and only if the restriction of w to L x L is identically 0. The symplectic
group G = Sp(2r, R) transforms a Lagrangian into another Lagrangian.

The set of all Lagrangians is easily seen to be a closed submanifold of the Grass-
mannian of r-dimensional spaces in F/, which is called the Lagrangian manifold,
denoted by A,. It turns out that it can be realized as the Shilov boundary of a
bounded symmetric domain.

Let W = Symm(r,R) be the Euclidean Jordan algebra of real » x r symmetric
matrices, with Jordan and scalar products

1
vy = gley +yz),  (zy) = Tray.

On its Hermitification W ~ Symm(r, C), the spectral norm coincides with the
usual operator norm on (symmetric) matrices. Hence the associated bounded sym-

metric domain is the unit ball D (called the Siegel disc), which can equivalently be
defined by

D :={z € Symm(r,C); 1 — zz* > 0}.

Let E be the complexification of F, and let o be the conjugation of E with respect
to F. Extend w as a C-bilinear symplectic form on E. Let A be the Hermitian form
on E x E defined by

i
hE€) = 5 (€ 00)
Let (€1,...,€r, ¢1,...,¢) be a symplectic basis, i.e., a basis of E such that

w(ej, qu) = —w(qu,ej) =1
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for 1 < 7 < 7, and 0 for all other pairs of vectors in the basis. Let e; = €; + i¢;.
Then
hlejej) =1, h(o(e;), 0(ej)) = -1
for 1 < j < r and O for all other pairs. Let V_ be the complex vector space
generated by the ¢;, 1 < j < randlet V_ = o(V_) be the complex vector space
generated by the o(e;), 1 < j < r. Then V_ and V_ are complex Lagrangian
subspaces, and
b, xv, >0, by, xv_ =0, hyy_xv_ < 0.

Using the basis {ey,...,e,} (respectively {o(e1),...,0(e,)}), identify V_ (re-
spectively V_) with C", and hence E ~ V. x V_ with C" x C". In these setting,
o(€,m) = (7, €) and the forms w and h are given by

R((Em), (€)= €T~ w((&n). (€)= ~20 (" - 1'€)
for £,&,n,n € C". Let D be the set of complex vector subspaces L of E, of
dimension r, which satisfy

wiLxL = 0, hjLxi < 0.

The set D is an open set in the complex Lagrangian manifold, which contains V_.
Let z be in Mat(r, C). We regard z as an operator from V_ into V_ and let

L: ={(zn,n);neV_} CE
be its graph. Observe that O is mapped to V_.

Proposition 28. The map z — L, is a holomorphic isomorphism of D onto D.

The condition wyp,_,, = 0 is a consequence of the symmetry of z, whereas the
condition A 1., < 01is a consequence of ||z|| < 1.

Extend in a C-linear way the action of the symplectic group G to E, and observe
that GG preserves both w and h. Hence the group G acts on D, and on D by trans-
ferring the action.

Thanks to Proposition 19, the Shilov boundary S of D is given by

S ={z € Symm(r,C); zz* = 1}.
If zisin S, then its graph L, satisfies both wy, ;. = 0 and hy, g, = 0. Such a space
L is stable by o, and hence has to be the complexification of some Lagrangian
subspace L of E. Conversely, the complexification of any Lagrangian L of E can
be obtained as the graph of some element in S. Hence the Shilov boundary of D is
identified with the Lagrangian manifold A,, in a G-equivariant way.

Let L1, Lo, L3 be three Lagrangians in F. Then, following Kashiwara (see [23]),
consider the quadratic form Q) = Qr,, 1,1, on L1 x Ly X L3 defined by

Q(&1,82,83) = w(&1,&2) + w(€2,&3) + w(€3,&1) (51
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where &1 € L1, & € Lo, &3 € L3. If gis in G, then

Qg(Ll),g(Lz),g(Lg) = QLy,Ly,Ls © 9’_1

so that the signature of () is an invariant under the action of (G. Define the triple
Maslov index of the triple (L1, Lo, L3) by

L(Lla Lo, L3) = sign QLLLQ,L:-;'

This defines an invariant (under the action of the symplectic group) for triples
of Lagrangians. Through the identification of the Lagrangian manifold with the
Shilov boundary of the Siegel disc, the triple Maslov index coincides with the
triple invariant on S x S x S which we have defined in Theorem 14.

For all classical domains of tube-type, there is an analog of Kashiwara’s formula
for the triple invariant (see [5]). The situation is specially interesting for the domain
corresponding to the Euclidean Jordan algebras of rank two (type IV).

7. G-Orbitsin S X § X S (Tube-Type Case)

The reference for this section is [9].

There is a great difference between our two examples. In the case of the unit sphere
in C? (which is the Shilov boundary a non tube-type domain of rank 1), the triple
index takes all values in the interval [—1, 1]. In the case of the Lagrangian manifold
A, (which is the Shilov boundary of a tube-type domain of rank ), the triple index
has values in the set of integers {—r, —r + 1,...,r — 1,r}. This is characteristic
of the difference between tube-type domains and non-tube type domains. This
reflects a qualitative difference in the orbit picture of G in § x S x S. In the non-
tube-type case, there is a continuous family of G-orbits, whereas in the tube-type
case, there is only a finite number of GG-orbits. In the latter case, one can even give
a classification of the orbits. Let us present some more details for the tube type
case.

So, let D be a bounded symmetric domain of tube-type, realized as the unit ball
in a PHJTS W which is the Hermitification of some Euclidean Jordan algebra 1.
Let S be its Shilov boundary.

Proposition 29. The Shilov boundary S has a natural structure of compact Rie-
mannian symmetric space, for which the group K acts by isometries.

Sketch of the proof (see [25]): Let ¢ be a point in .S, i.e., ¢ is a maximal tripo-
tent in W. The Peirce decomposition w.r.t. ¢ is just W = Wy (c), and Q(c) is a
(conjugate-linear) involution of W. Its set of fixed points W {c¢) has a structure of
Euclidean Jordan algebra, isomorphic to W. The tangent space 7.5 of S at ¢ can
be identified with iW¥/(c), and one can transport the invariant inner product on the
Euclidean Jordan algebra W ({c) to define an inner product on 7,.S. As c varies,
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this defines a Riemannian structure on S, which is invariant under K. Moreover,
Q(c) maps S into itself, yielding an involutive isometry of S. But Q(c) acts on
T.S ~ iW{c) by —1, and hence coincides with the geodesic symmetry at c. [

Define a torus to be a maximal flat submanifold in S. One way of obtaining a torus
is to use a Jordan frame (¢, ca, ..., ¢, ) in W. Then

T
T:={z= Zewﬂ'cj; 0, € R/2rZ}
J=1
isatorusin S.
Let T be a torus in S. Then, given any couple (z,y) in S x S, there exists an

element k in K such that kx and ky belong to 1" (an important result in the theory
of compact Riemannian symmetric spaces, see [17, Chapter VII]).

Theorem 15. Let T be a torus in S. Let x, y, z be three points in S. There exists
an element g of G such that g(x), g(y), g(z) belong to T

In other words, any G-orbitin S x S x S meets T' x T" x T'. This result is very
helpful towards the classification of G-orbits.

To give the classification result, we need one last invarianton S x S x S. Let z, v,
x be three points in S. Form the face 7, , . generated by the subset {z.y, z}, and
define 6(z, y, z) to be the rank of 7 , .. Then clearly, §(x,y, z) is invariant under
the action of G. Notice that this invariant is symmetric with respect to permutations
of the three points.

Theorem 16. Let x, vy, z (respectively ', 1), 2') be in S x S x S. Then there exists
an element g of G such that ¥’ = g(z),y’ = g(y), 2z’ = g(2) if and only if

0zy)=6("y),  Oy,2)=0(.7),  d(z2)=0(,2)
6(:1:3 y’ Z) = 6(x/’y/”z/)? L(x?y’ Z) = L(:L.l’ ylﬁzl)'

In other words, the five invariants (the three mutual arithmetic distances, the rank
d of the face generated by the three points and the triple index ¢) characterize the
G-orbits. Notice in particular that it implies that there is only a finite number of
G-orbits in S x § x S. Fixing a torus 7" in S (or a Jordan frame in W), it is
possible to give a representative in 1" x 1" x I" of each G-orbit in § x S x S.
The five invariants are not quite independent (for instance, an obvious inequality
is (z,y) < d(z,y, z)), but one can give precisely the conditions on the values of
these invariants in order to have a corresponding G-orbit (see [9] for details). For
the case of the Lagrangian manifold, the classification of the orbits of Sp(2r, R)
imto A, x A, x A, is1in[19].
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8. The Maslov Index for Paths

The main reference for this section is [8].

In symplectic geometry, the theory of the triple Maslov index is only one aspect
of the theory of the Maslov index. There are other indices, more or less related to
the triple Maslov index. Each of them can be generalized in the context of Shilov
boundaries of bounded symmetric domains of tube-type. We will concentrate on
the generalization of the Maslov index for a path of Lagrangians. From our point of
view (which does not follow the historical development of these notions), it arises
naturally in relation to the cocycle property of the triple invariant, when addressing
the question of the existence of a primitive for this cocycle.

Use notation of Section 7. Let m be a Z-valued function on S x S which has the
following properties:

m(g(x),g(y)) = m(z,y),  my,z) = —my, z) (52)
forz,yin S x S and g in G.
Then it is easily verified that the function
p(z,y, 2) = m(z,y) + m(y, z) + m(z, z) (53)
on S x § x S'is Z-valued and has the following properties:
) u(g(x), 9(), 9(2)) = (., 2) for z,y, 2 in S and g in G
ii) p is skew-symetric with respect to permutations of {z,y, z}
i) p(z,y,2,t) = ple,y, t) + ply, 2,t) + p(z,2,t) forall z, y, z, ¢t in S.
The function m is called a primitive of 1. The attentive reader will observe that this
has a cohomological flavor, which will not be discussed here (for more information,
see [16] and [27]).
There exists no primitive for the triple invariant : on S x S x S, i.e., no function m
on S x § satisfying the assumptions (52), and which would satisfy (53) for p = «.

But there is in some sense a substitute, by going to the universal cover of S. In fact
S 18 not simply connected.

Proposition 30. Let D be an irreducible bounded symmetric domain of tube-type,
and let S be its Shilov boundary. Then w(S), the first homotopy group of S, is
isomorphic to 7.

Recall that the Shilov boundary of the unit ball of W is
S={zeW;z=2z1}

If z is in S, then (det z)~! = det(z7!) = detZz = det 2, so that |det z| = 1.
Let S = {z € §; detz = 1}. Then S, is simply connected and the universal
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covering of S can be realized as S, where
S:={(z,0) € S; x R; detz = e},

Then there exists a Z-valued function 7 on S x S which is a primitive of the triple
Maslov index ¢, in the sense that:
i) m is invariant by the diagonal action of (some covering of) G
i) m is invariant by the diagonal action of 7 ((S), i.e., m(TZ,Ty) =
m(Z,y) for any 7" in 7 (.5)
iii) m is skew-symmetric, i.e., m(Z,y) = —m(y, T)
iv) for any three points z1, To, Z3 in §, the sum
’ﬁ’l(fl, 52) + ’I’T’L(ff’g, 53) + ﬁ’l(fg, 5’51)
depends only on the projections z1, 2, 3 of Z1, T2, T3 on S and is equal
to t(x1, x2, x3).
The construction of m follows the original construction proposed by Souriau for
the Lagrangian manifold (see [31] or [16]).
Notice that a function on S x S, which is invariant by the diagonal action of 71 (S)
is nothing but a function defined for paths in .S, which is invariant under a homo-
topy of the path (with fixed extremities). This is the point of view in the original
and more geometric approach, due to Maslov, Arnold and Leray for the Lagrangian
manifold, leading to the notion of the Maslov index for a path of Lagrangians. We
sketch a presentation of the generalization of this approach (see [8] for details).
Fix zg a point in S, and define the Maslov cycle based at x( as the set ¥(xg)
defined by
Y(zo) =S\ {z € S; 2Tz}
As the point xq is supposed to be fixed, we drop the index z. The set 3 = 3(xg)
is a (real) algebraic hypersurface, as

Y ={z e S; det(z — zy) = 0}.

It admits the following stratification:

T
Y= |_|E(j), W ={ze8; 8z z)=r—j}
j=1
By computing the codimension of each stratum X() in S, it can be shown that the
singular set of 3 (which is equal to |_|;7:22(j )) has codimension at least three in S,
the regular stratum (D being an (open) hypersurface in S.

Let x be a point in > The tangent space 1,S of S at x has a natural structure of
Euclidean Jordan algebra, and in particular, there is a symmetric cone {2, in it. It
turns out that H,, the tangent hyperplane to ©(1) at 2 does not meet the cone 2,,.
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Hence, as the cone (2, is convex, it lies entirely inside one open half-space limited
by H,. A transverse orientation of the Maslov cycle is obtained at each regular
point z of ¥ (i.e., z € £(1) by declaring positive the half-space of T3, S limited by
H, that contains the cone (2.

These two geometric properties of X (the singular set of 3 is of codimension

greater than or equal to 3, ¥ admits a transverse orientation) are the key ingre-
dients in the construction of a Z-valued index for paths, due to Arnold (see [1]).

Definition 10 (admissible path). Letv(t),0 < ¢t < 1 be apath in S, with endpoints
x = ~(0) and y = (1) not in 3. The path is said to be admissible if the following
conditions are satisfied:
1) 7 is a smooth map
ii) v(t) does not belong to 3. except for a finite number of values of t, say
t1,te, ..., 1] in the increasing order
iii) foreach j, 1 < j <1, x; = ~(t;) belongs to 1) and the tangent vector
#(t;) of the path at x; is transverse 10 (1),

Let v be an admissible path. For each j, 1 < j < [, let ¢; be +1 if the tangent
vector ¥(t;) belongs to the positive half-space limited by H, and ¢; = —1 if not.
Now define the Maslov index of the path ~y (relative to xg) to be

I
Masgz, (v) = Z €.
Jj=1

Theorem 17. Let x and y be two points in S, not belonging to the Maslov cycle
Y (xq). Then:

1) any homotopy class of paths with origin x and end y contains an admis-
sible path

il) two admissible paths with origin x and end y which are homotopic have
the same Maslov index.

The theorem allows to extend the definition of the Maslov index to arbitrary paths,
provided their extremities do not belong to the Maslov cycle based at .

The Maslov index of a path depends on the point xg. It is however possible to
construct from it a function on S x S, which has a simple relation to the primitive
constructed a la Souriau (see again [8] for details).

The Maslov index has many applications in mathematics and in mathematical
physics (metaplectic representation, geometrical optics, semiclassical approxima-
tion to quantum mechanics). See [2,16,22,23,26].
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9. Appendix: List of Bounded Symmetric Domains and their Shilov
Boundaries

We give the list of the simple bounded symmetric domains (Table 1) and the list
of the Shilov boundaries of the simple tube type domains (Table 2). Notation for
Lie groups and Lie algebras are those of [17]. The classification can be obtained
either by first classifying the simple Riemannian symmetric spaces, then looking
for those cases where € has a nontrivial center (this is the approach in [17]) or one
can classify the PHJTS (see [25, Section 4]).

Table 1. List of simple bounded symmetric domains.

A% g Tube type Rank
I | Mat(p x ¢,C) | su(p,q) yesifp = ¢ | inf(p, q)
IT | Skew(n,C) s0*(2n,C) | yes if n even (2]
I | Symm(n,C) |sp(2n,R) yes n
IV |CxC ! s0(2,n) yes 2
\'% Mat(l X 2,@) 86’(_14) no 2
VI Herm(3, @) 67’(_25) yes 3

N.B. V stands for the corresponding PHJTS, and g is the Lie algebra of the group
of holomorphic diffeomorphisms of the domain.

Table 2. List of Shilov boundaries of bounded symmetric domains of

tube type.

W G S
Symm(n, R) |Sp(2n,R) |A,, = U(n,C)/O(n,R)
Herm(n,C) |SU(n,n) |U(n,C)

Herm(n,H) |SO*(4n) |U(2n,C)/SU(n,H)
RIA—T 800(2, ’I”L) ST x Sn_l/ZQ
Herm(3, @) E7’(_25) U(l)EG/F4

NB. W stands for the Euclidean Jordan algebra in the complexification of which
the tube type domain is realized, G is (up to a finite covering) the neutral com-
ponent of the group of holomorphic diffeomorphisms of the domain, and S is its
Shilov boundary.
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