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Abstract. The Green’s function for 5-dimensional counterpart of the
MIC-Kepler problem (Kepler potential plus SU(2) Yang-Mills instan-
ton plus Zwanziger-like 1/R? centrifugal term) is constructed on the
basis of the Green’s function for the 8-dimensional harmonic oscillator.

1. Introduction

Coulomb Green’s functions in a n-dimensional Euclidean space have been
constructed in [1]. The results for the cases n = 2, 3,5 can be deduced from
the oscillator Green’s functions in N = 2,4, 8 dimensions due to Levi-Civita,
Kustaanheimo-Stiefel [2] and Hurwitz transformations [3], respectively.

Moreover [4], the N = 4 oscillator representation allows to obtain Green’s
function for 3-dimensional MIC-Kepler problem [5] (Kepler—Coulomb poten-
tial plus U(1) Dirac monopole plus Zwanziger’s [6] 1/R? centrifugal term).

In this paper we construct the Green’s function for 5-dimensional counterpart of
the MIC-Kepler problem [7] (Kepler potential plus SU(2) Yang-Mills instan-
ton plus Zwanziger-like 1/R? centrifugal term). We avoid a tedious procedure
of path integration and deduce our result from the well-known expression for
the 8-dimensional oscillator Green’s function by exploiting the Hurwitz corre-
spondence between these 5- and 8-dimensional problems [7-9].
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2. Correspondence Between 5- and 8-Dimensional Problems

Under the certain known conditions [7-9] there appears the correspondence
between the 8-dimensional harmonic oscillator problem

1 2
HY® = By®,  H = —=Dg+ 5 (Juf* + |of?) M
and 5-dimensional SU (2) MIC-Kepler problem
2
Ll ol gl LT W+ a
e = —= - — 2
Mol =gy, W=ty S22 @
where the covariant derivative m, = —id, — A% AZ*" contains SU (2) Yang-
Mills instanton [10] as the gauge potential defined due to
“ 1
Aldr, = RET0) (—radry 4 rodry — eqperpdre) (3)

w=20,....4, a,b,c=1,23,
and A2 are the generators of the (2] + 1)-dimensional representation of
SU (2).
These conditions are the following.

1. The coordinates of 5D Euclidean space are expressed through that of 8D
one by means of the Hurwitz transformation

ro = [u]* — o], 4
r = 2uv, @)
where u = Uy + Ug€q, UV = Vg + Vag€q, T = T4 + Te€, (a =1,2,3) are the

real quaternions.
We recall that quaternion’s algebra

€a€p = _5ab + EapcCe, €0€q = €4€0 = €4

has the involution — quaternionic conjugation — which is an antiautomor-
phism of the algebra: (uT) = v@. One can define the norm |u| = /ui,
scalar (u)g = 1/2 (u + @) = uo and vector (u),, = 1/2 (u — @) = use, =
u parts.

The Hurwitz transformation possesses the property

R=\/r§+r]* = [ul* + [v]*. (6)

To make the change of coordinates (4)-(5) complete, we represent u =
|u|lg (and, therefore, v = |v|Tg/|r|) where g is unimodular quaternion. It
is relevant to note that there is the isomorphism between the unimodular
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quaternions and the group SU (2). We can introduce parameters (following
[11] we shall call them vector parameters)

1+=z u
::I:—, 7z = — 7
g T ” (7

and choose z, = u,/uy as an additional coordinates.
2. The eigenvalues of one problem are expressed through the parameters of
another one and vice versa:

-

E = 4a, w? = —8&; (8)
3. The equivariance condition
K2¢(8) =1(l + 1)¢(8) (9)

is supposed to hold. It allows to establish the correspondence between the
respective Hilbert spaces

U (u,0) = trace(¥' () ¢/ (r,), V' ()= [¥'(g)] . (10)

Here W' (g) is the matrix of the (2] + 1)-dimensional representation of SU (2)

which components are the eigenfunctions of the mutually commuting operators
K2, K3, Ts:

= mW!

mm’

KQ\Ijinm' = l(l + 1)\I]lmm’ 9 - K3l:[jinm’
(11)
T =m'v —1<m,m' <I.

mm’ ?

When written in the vector parametrization, the operators K, and 7, read [11]

i 0 0 0
K, = 5 (Zazba—zb + 0_za +€abczba_zC) ; (12)
i 0 0 0
T, == . - = ) 1
a 2 (Zazb 82[, + 3za Eabcb 0z0> ( 3)

The well-known formula for the SU(2) matrix elements [12]
I —m)! (I —m)! &t
\I/l ) — (
o (9) \/(z +m)! (L + )l By
l | J
< Y L+ )1 (B7)

s U= VG —m)L (G — )l

(14)
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where g = <3é ?) with {«, 3,7,0 € C; ad — By = 1} can be expressed in

terms of vector parameters if we choose

1 ( 1-— iZS —1 (Zl — 12’2)) — 4 1 - iO-aza
Vitze \—i(at+in) 1+im ) 7 /112

(compare with (7). Note that there is the representation for quaternion’s basis
e, = —io,).

g== (15)

In the spherical coordinates
z1 = n; tan y = tan y sinf cos ¢,
Zs = No tan y = tan y sinfsin @, (16)
z3 = nsytany = tan y cos6,
0<xy<m, 0<O0<m, 0<p<2m,

the group element ¢ and its representation W' (g) are parametrized

g = exp(ny) = cosx — io,n, siny

[ cosx —isinxcosf —isinysinfexp (—ip) a7
~ \—isinxsinfexp (i) cosx +isin x cosf

and
W () = (I—m)! (I —m)! (cOSX + isinxc089>m+m/ ei(m—m')cp
y i (14 j)! [—isin x sin 6]” (18)
Jj=max(m,m’) (l - ])’ (] - m)’ (j - m/)' ’
respectively.

Representation W' (g) coincides with that used in [7] up to the complex conju-
gation.
3. Green’s Function

The equation defining the Green’s function of the 8-dimensional harmonic
oscillator is

(H — E)G(u,v,v',v'; B) = =16W (u — ') 6™ (v — ') . (19)
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Its solution is well-known [3]
o0 4
G = /dtexp (idat) (L>
) 27 sin wt

iw (20)

xexp{ ((ul? + [of? + o2 + |o/|?) cos wt

2 sin wt
— 2 (udl + m?’)s)].

Let us express it in (7, z)-coordinates. In this section we now assume v = |u|h
and v’ = |u|h/. The notation g we shall reserve for g = hh'.

First of all, note that

2 (utt + v7), = 2 (|u| [/ |hB + [o] || ﬁhhﬁ)
T T
- 5 (21)
=2 ((Jul |+ ol lo| S ) BB ) = (F)
|| [r] s °
where
rv rr’
F =2 (Julla/| + ol | = ) = 2l o] (14 g )
|| |7 Auf|w]?
 RR'+ Rry+roR + 1,0, + (1), (22)
VB +r0) (R +75)
The norm of the quaternion F’ is
o
|F| = \/2 (RR "’7"#7““) =2V RR' cos PR (23)

cos© =r,r, /RR,
and then we can introduce the unimodular quaternion f which is
= |§| _ RR' + Rro +roR +ryr, + (1), . (24)
\/2 (RE + 71, (R+ 7o) (R + 1)

Then

00 4 .
/ . _ w s E /
G(m,m,g,E) _O/dt<—27rsinwt> exp [14@75—}— 5 (R+ R') cotwt

X exp (— k|| (fg)s) . (25)

2s8in wt
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To obtain the expression for the 5-dimensional Green’s function we make the
following simple manipulations on Eq. (19):

ARV (h) (H' =€) W' (h) G =~ (u— )W (v—v'),  (26)
then
(Hl — 8l) v (hh) G = — ﬁ%w(‘*) (u—u')dW (v—o" )W (hR') . (27)

On the analogy to the symbolic identity d(z)f(z) = é(z)f(0) we can write

5D (1 — u') V! ( ut ) 5 (u— ) U(1) = 6@ (u—u') . (28)

] ||

Integrating (27) over the group we obtain
(Hl 8’ /dT YU (g) G = ——1/d7 V6D (u — ) 6@ (v — ') . (29)
Because the identity proven in [3]

[ ar ()5 (0 - )5 (v~ ') = R0 (r =) G0)

™

we are led to the equation defining the Green’s function for the 5-dimensional
problem

(H' = &) G (rurj; €') = =16 (r, —7.,) . @31)
It can be solved easily by evaluation of the integral
G (ry,7; €') = / dr (9) ¥ (9) G (r,.,7, 6 E) - (32)

Due to the properties of the invariant measure d7 (g) the next expression is
valid

G (ruri €)= ZQ@ (f)/ dr (9) W' (9) G (). fGE) - (33)

To achieve the final result we have to perform the integration over the group
volume in the expression

0

G (i) = T (1) [ e [ ar (9) ¥ (g) o i ), "

w 1w
_ i4 — ! }
X (27rsinwt> exp [1 at + 5 (R+ R')cotwt
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where 1t 1s introduced

w| F|
— . 35
az 2 sin wt (35)

Due to the identity

[ a7 (9w (g)exp (i (9)) = 2 o)

where Jo;,1(z) is the Bessel function, we obtain

2l 3 F|
! ! 0! ( /dt ( w| )
g (ru,ru,5> ) Tomemy 16772]F| Jaia 2sinwt

(36)
exp [14at + ¥ (R+ R')cot wt}
X .
sin® wt
To bring our result to the notations of [1] we introduce ¢ = —iwt, w =

2ik, p’ = —ia/k and finally have

, —i)2 k2 2kvV RR' cos £
G' (m,m;c‘fl) = ‘I’l(f) /qu2l+1 ( : 2 )

RR’ cos £ sinh ¢

. &P [—2p'q + ik (R + R') coth q] (37)
sinh® ¢

For the case of the trivial constraints [ = ( the expression

k
0
= d
g’ (ru,ru,f)) 7T2,/}:{31008%0/ qu( sinh ¢

L &P [—2p'q + ik (R + R’) coth ¢]
sinh® ¢

2k (RR)'"? @)
—————— COS —
(33)

appears to be the same as the respective result in [1] for n = 5.
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