
Chapter 5

Combinatorics

5.1 The Orlik-Solomon Algebra

Let $E^{1}=\oplus_{H\in A}\mathbb{C}e_{H}$ and let $E=E(\mathcal{A})=\Lambda(E^{1})$ be the exterior algebra of $E^{1}$ . If
$|\mathcal{A}|=n$ , then $E=\oplus_{p=0}^{n}E^{p}$ , where $E^{0}=\mathbb{C},$ $E^{1}$ agrees with its earlier definition
and $E^{p}$ is spanned over $\mathbb{C}$ by all $e_{H_{1}}\cdots e_{H_{p}}$ with $H_{k}\in \mathcal{A}$ . Define a $\mathbb{C}$-linear map
$\partial_{E}=\partial$ : $E\rightarrow E$ by $\partial 1=0,$ $\partial e_{H}=1$ and for $p\geq 2$

$\partial(e_{H_{1}}\cdots e_{H_{p}})=\sum_{k=1}^{p}(-1)^{k-1}e_{H_{1}}\cdots\overline{e_{H_{k}}}\cdots e_{H_{p}}$

for all $H_{1},$ $\ldots H_{p}\in \mathcal{A}$ . If $S=\{H_{1}, \ldots H_{p}\}$ , write $e_{S}=e_{H_{1}}\cdots e_{H_{p}},$
$\cap S=$

$H_{1}\cap\cdots\cap H_{p}$ and $|S|=p$ . If $p=0$ , we agree that $S=$ $\{\}$ is the empty tuple,
$e_{S}=1$ , and $\cap S=V.$ $If\cap S\neq\emptyset$ , then we call $S$ dependent when $r(\cap S)<|S|$

and independent when $r(\cap S)=|S|$ . This agrees with linear dependence and
independence of the hyperplanes in $S$ .

Definition 5.1.1. Let $\mathcal{A}$ be an affine arrangement. Let $I(\mathcal{A})$ be the ideal of $E(\mathcal{A})$

generated by
$\{e_{S}|\cap S=\emptyset\}\cup$ { $\partial e_{S}|S$ is dependent}.

The Orlik-Solomon algebm $A(\mathcal{A})$ is defined by $A(\mathcal{A})=E(\mathcal{A})/I(\mathcal{A})$ .

The grading of $E$ induces a grading on A. The following basic properties of
$A(\mathcal{A})$ will be needed in the sequel [OT1, 3.56, 3.72]:

Theorem 5.1.2. (1) Let $(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime\prime})$ be a deletion-restriction triple of a nonempty
arrangement. Then there are exact sequences for $q\geq 0$ :

$0\rightarrow A^{q}(\mathcal{A}^{\prime})\rightarrow A^{q}(\mathcal{A})\rightarrow A^{q-1}(\mathcal{A}^{\prime\prime})\rightarrow 0$ .
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(2) For $q\geq 0$

$A^{q}(\mathcal{A})=$

$\bigoplus_{X\in L,r(X)=q}A^{q}(\mathcal{A}_{X})$

.

Let $a_{H}$ be the image of $e_{H}$ under the natural projection. It is clear that these
elements generate A as an algebra. This algebra has a topological interpretation
[OT1, 5.90]:

Theorem 5.1.3. Let $\mathcal{A}$ be an arrangement. The map $a_{H}\rightarrow\omega_{H}$ induces an iso-
morphism of graded algebras:

$\iota:A(\mathcal{A})\rightarrow^{\sim}B(\mathcal{A})$ . $\square $

Definition 5.1.4. Let $a_{\lambda}=\sum_{H\in A}\lambda_{H}a_{H}$ . Since $a_{\lambda}\wedge a_{\lambda}=0$ , exterior product
with $a_{\lambda}$ provides a complex $(A(\mathcal{A}), a_{\lambda}\wedge)$

(1) $0\rightarrow A^{0}(\mathcal{A})\rightarrow A^{1}(\mathcal{A})a_{\lambda}\wedge\rightarrow^{a_{\lambda}\wedge}$ . . . $\rightarrow A^{r}(\mathcal{A})a_{\lambda}\wedge\rightarrow 0$ .

It follows from Theorems 4.2.6 and 5.1.3 that under certain conditions on $\lambda$

$H^{p}(M, \mathcal{L})\simeq H^{p}(A(\mathcal{A}), a_{\lambda}\wedge)$ .

This completes the transformation of the analytic problem into a problem in com-
binatorics. In order to solve this combinatorial problem, we need additional tools.

5.2 The NBC Complex

We introduce a simplicial complex, N $BC(\mathcal{A})$ , called the nbc ( $=$ no-broken-circuit)
complex of $\mathcal{A}$ . This complex depends on a linear order in $\mathcal{A}$ . Different linear
orders may result in different complexes, but it follows from our results that the
number of simplexes in each dimension and the homotopy type of the complex is
independent of the linear order in $\mathcal{A}$ . Thus we may ignore dependence on the linear
order.

Write $\mathcal{A}=\{H_{1}, \ldots H_{n}\}$ and let $I=\{1, \ldots n\}$ be the index set. The standard
linear order is $H_{i}\prec H_{j}$ if $i<j$ . A maximal independent set is called a frame.
(Many authors call such sets bases but we wish to avoid this clash of terminology.)
Every frame has cardinality $r=r(\mathcal{A})$ . An inclusion-minimal dependent set is called
a circuit. A broken circuit is a set $S$ for which there exists $H\prec\min(S)$ such that
$\{H\}\cup S$ is a circuit. The collection of nonempty subsets of $\mathcal{A}$ which have nonempty
intersection and contain no broken circuits is called nbc. Since nbc is closed under
taking subsets, it forms a simplicial complex called the nbc complex of $\mathcal{A}$ , denoted
by NBC. (Many authors call this complex BC.) We agree to include the empty
set in nbc and the empty simplex of dimension $-1$ in $NBC(\mathcal{A})$ , see [ $B$ , p.27]. This
results in reduced homology and cohomology. NBC is a pure $(r-1)$ -dimensional
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complex consisting of independent sets. An $(r-1)$ -dimensional simplex of NBC
is called an nbc frame. A simplex of NBC is ordered if its vertices are linearly
ordered. We agree to write every element of nbc in the standard linear order.

Definition 5.2.1. Let $\hat{L}=L\backslash \{V\}$ . Define a map $\nu$ : $\hat{L}\rightarrow \mathcal{A}$ by

$\nu(X)=\min(\mathcal{A}_{X})$ .

Let $P=(X_{1}>\cdots>X_{q})$ be a flag of elements of $\hat{L}$ . Define
$\nu(P)=\{\nu(X_{1}), \ldots, \nu(X_{q})\}$ .

Let $S=\{H_{i_{1}}, \ldots, H_{i_{q}}\}$ be an independent q-tuple with $H_{i_{1}}\prec\cdots\prec H_{i_{q}}$ . Define a
fla9

$\xi(S)=(X_{1}>\cdots>X_{q})$

of $\hat{L}$ , where $X_{p}=\bigcap_{k=p}^{q}H_{i_{k}}$ for $1\leq p\leq q$ . $A$ flag $P=(X_{1}>\cdots>X_{q})$ is called
$an$ nbc flag if $P=\xi(S)$ for some $ S\in$ nbc. Let $\xi(nbc)$ denote the set of nbc
flags.

Lemma 5.2.2. The maps $\xi$ and $\nu$ induce bijections

$\xi$ : $nbc\rightarrow\xi(nbc)$ , $\nu$ : $\xi(nbc)\rightarrow nbc$

which are inverses of each other.

Proof. Let $ S=\{H_{i_{1}}, \ldots H_{i_{q}}\}\in$ nbc. We show first that $\nu\circ\xi(S)=S$ . Sup-
pose $\xi(S)=(X_{1}> . . . >X_{q})$ . Then $H_{i_{p}}\supseteq X_{p}$ . If $\min \mathcal{A}_{X_{p}}\prec H_{i_{p}}$ , then
$\{\min \mathcal{A}_{X_{p}}, H_{i_{p}}, \ldots H_{i_{q}}\}$ is dependent and must contain a circuit. It follows that
$\{H_{i_{p}}, \ldots H_{i_{q}}\}$ contains a broken circuit. This contradicts $ S\in$ nbc. Therefore
$\min \mathcal{A}_{X_{p}}=H_{i_{p}}$ for 1 $\leq p\leq q$ . This implies that $\nu(\xi(S))=S$ , so the map
$\xi$ : $nbc\rightarrow\xi(nbc)$ is bijective and $\nu\circ\xi$ : $nbc\rightarrow nbc$ is the identity map. Thus
these maps are inverses of each other. $\square $

Lemma 5.2.3. We have

$\xi(nbc)=\{(X_{1}>\cdots>X_{q})|\nu(X_{1})\prec\nu(X_{2})\prec\cdots\prec\nu(X_{q})$ ,
$r(X_{p})=q-p+1(1\leq p\leq q)\}$ .

Proof. By Lemma 5.2.2, the left hand side is contained in the right hand side.
Conversely, let $P=(X_{1}>\cdots>X_{q})$ belong to the right hand side. We will show
that $\nu(P)\in$ nbc. It is sufficient to derive a contradiction assuming that $\nu(P)$

itself is a broken circuit. There exists $H\in \mathcal{A}$ such that (1) $H\prec\nu(X_{1})$ and (2)
$\{H\}\cup\nu(P)$ is a circuit. Since

$X_{1}\subseteq\nu(X_{1})\cap\cdots\cap\nu(X_{q})\subseteq H$ ,

we have $H\in \mathcal{A}_{X_{1}}$ and thus $\nu(X_{1})=\min(\mathcal{A}_{X_{1}})\preceq H$ . This contradicts (1). Thus
$\nu(P)\in nbc$ . Since $X_{p}\subseteq\nu(X_{p})\cap\cdots\cap\nu(X_{q})$ for $1\leq p\leq q$ , and

$r(X_{p})=q-p+1=\square $
$r(\nu(X_{p})\cap\cdots\cap\nu(X_{q}))$ , we have $P=\xi\circ\nu(P)$ so $P\in\xi(nbc)$ .
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It follows from [OT1, Ch.3] that the number of p-simplexes, $c_{p}$ , in NBC is
independent of the linear order and we have

(2) $\sum_{p=-1}^{r-1}c_{p}t^{p+1}=(-t)^{\ell}\chi(\mathcal{A}, -t^{-1})$ .

If $\mathcal{A}$ is areal arrangement, then it follows from Theorem 3.3.9 that the cardinality
of the set of chambers in the real complement equals $\sum_{p=-1}^{r-1}c_{p}$ .

Example 5.2.4. Recall the Selberg arrangement of Figure 3.1. The corresponding
simplicial complex $NBC(\mathcal{A})$ is shown in Figure 5.1, where the l-simplexes are the
ordered nbc frames:

$\{\{1,3\}, \{2,3\}, \{1,4\}, \{2,4\}, \{1,5\}, \{2,5\}\}$ .

We see in Figure 3.1 that the complement of $\mathcal{A}$ has 12 chambers. This agrees with
formula (2) since $c_{-1}=1,$ $c_{0}=5,$ $c_{1}=6$ .

Figure 5.1: The Selberg arrangement, II

It follows from [OT1, 3.55] that the elements of nbc give a basis for A.

Theorem 5.2.5. If $S=\{H_{i_{1}}, \ldots H_{i_{p}}\}$ , write $a_{S}=a_{H_{x_{1}}}\cdots a_{H_{x_{p}}}\in A$ . We agree
that $a_{\emptyset}=1$ . Then the set $\{a_{S}|S\in nbc\}$ is a $\mathbb{C}$ -basis for A.

Example 5.2.6. Recall the Selberg arrangement of Figure 3.1. We write $a_{j}$ in
place of $a_{H}$, and let $a_{i,j}=a_{i}\wedge a_{j}$ . Theorem 5.2.5 and Example 5.2.4 provide the
following basis for $A$ :

$\{1, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{1,3}, a_{2,3}, a_{1,4}, a_{2,4}, a_{1,5}, a_{2,5}\}$ .

We agree to delete the last hyperplane $H_{n}\in \mathcal{A}$ in the deletion-restriction triple
$(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime\prime})$ of Definition 3.1.3. Thus $\mathcal{A}^{\prime}=\mathcal{A}-\{H_{n}\}$ and $\mathcal{A}^{\prime\prime}=\mathcal{A}^{H_{n}}$ . The linear
order in $\mathcal{A}^{\prime}$ is inherited from $\mathcal{A}$ . It is the standard order. The linear order in $\mathcal{A}^{\prime\prime}$

is determined by labeling each hyperplane $K\in \mathcal{A}^{\prime\prime}$ by the smallest hyperplane
$\nu(K)=\min(\mathcal{A}_{K})$ of $\mathcal{A}$ containing it. Clearly $\nu(K)\prec H_{n}$ for all $K\in \mathcal{A}^{\prime\prime}$ . Let
$nbc^{\prime}=nbc(\mathcal{A}^{\prime}),$ $NBC^{\prime}=NBC(\mathcal{A}^{\prime}),$ $nbc^{\prime\prime}=nbc(\mathcal{A}^{\prime\prime})$ , and $NBC^{\prime\prime}=NBC(\mathcal{A}^{\prime\prime})$ .
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Lemma 5.2.7. Let $\{X_{1}, \ldots, X_{p}\}\subseteq \mathcal{A}^{\prime\prime}$ . Then

$\{X_{1}, \ldots, X_{p}\}\in nbc^{\prime\prime}\Leftrightarrow\{\nu(X_{1}), \ldots, \nu(X_{p}), H_{n}\}\in nbc$ .

Proof. $(\Rightarrow)$ : Suppose $\{X_{1}, \ldots, X_{p}\}\in nbc^{\prime\prime}$ . If $\{\nu(X_{1}), \ldots, \nu(X_{p}), H_{n}\}$ contains a
broken circuit, then there exists an integer $k$ with $1\leq k\leq p$ and a hyperplane $ H\in$

$\mathcal{A}^{\prime}$ with $H\prec\nu(X_{k})$ such that $\{H, \nu(X_{k}), \ldots, \nu(X_{p}), H_{n}\}$ is linearly dependent.
Thus $\{H\cap H_{n}, X_{k}, \ldots, X_{p}\}$ is also linearly dependent and $\nu(H\cap H_{n})\preceq H\prec\nu(X_{k})$ .
This implies that $\{X_{k}, \ldots, X_{p}\}$ contains a broken circuit, which is a contradiction.

$(\Leftarrow)$ : Suppose $\{\nu(X_{1}), \ldots, \nu(X_{p}), H_{n}\}\in nbc$ . If $\{X_{1}, \ldots, X_{p}\}$ contains a bro-
ken circuit, then there exists an integer $k$ with 1 $\leq k\leq p$ and a hyperplane
$X\in \mathcal{A}^{\prime\prime}$ with $X\prec X_{k}$ such that {X, $X_{k},$

$\ldots,$
$X_{p}$ } is linearly dependent. Thus

$\{\nu(X), \nu(X_{k}), \ldots, \nu(X_{p}), H_{n}\}$ is also linearly dependent and $\nu(X)\prec\nu(X_{k})$ . This
implies that $\{\nu(X_{k}), \ldots, \nu(X_{p}), H_{n}\}$ contains a broken circuit, which is a contra-
diction. $\square $

Lemma 5.2.8. If $\{H_{i_{1}}, \ldots, H_{i_{p}}, H_{n}\}\in nbc$ , then $\nu(H_{i_{k}}\cap H_{n})=H_{i_{k}}$ for $ 1\leq k\leq$

$p$ .

Proof. We may assume $p=1$ without loss of generality. In general $\nu(H_{i_{1}}\cap H_{n})\preceq$

$H_{i_{1}}$ . If $\nu(H_{i_{1}}\cap H_{n})\prec H_{i_{1}}$ , then $\{\nu(H_{i_{1}}\cap H_{n}), H_{i_{1}}, H_{n}\}$ is linearly dependent.
Thus $\{H_{i_{1}}, H_{n}\}$ contains a broken circuit, which is a contradiction. $\square $

Theorem 5.2.9. Write $\overline{nbc}^{\prime\prime}=\{\{\nu S^{\prime\prime}, H_{n}\}|S^{\prime\prime}\in nbc^{\prime\prime}\}$ . There is a disjoint
union

nbc $=nbc^{\prime}\cup\overline{nbc}^{\prime\prime}$

The next result is well known to experts. We provide an elementary topological
argument based on [OT1, 4.109].

Theorem 5.2.10. Let $\mathcal{A}$ be an $\ell$ -arrangement of rank $r=r(\mathcal{A})\geq 1$ . Then NBC $=$

$NBC(\mathcal{A})$ has the homotopy type of a wedge of spheres, $_{\beta(A)}S^{r-1}$ . If $\beta(\mathcal{A})=0$ ,
then NBC is contractible.

Proof. The assertion holds for $r=1$ since $\beta(\mathcal{A})=|\mathcal{A}|-1$ and NBC consists of $|\mathcal{A}|$

points.
If $\mathcal{A}$ is an arrangement with $r\geq 2$ , then NBC is path connected. It is enough

to show that vertices corresponding to distinct hyperplanes $H_{i},$ $H_{j}\in \mathcal{A},$ $i<j$ , are
connected. If $ X=H_{i}\cap H_{j}\neq\emptyset$ , then $r(X)=2\leq r$ . If $H_{i}=\nu(X)$ , then $\{H_{i}, H_{j}\}$

is a l-simplex in NBC. If $\nu(X)\prec H_{i}$ , then $\{\nu(X), H_{i}\}$ and $\{\nu(X), H_{j}\}$ are both
l-simplexes in NBC. Thus the vertices $H_{i}$ and $H_{j}$ are connected. If $ H_{i}\cap H_{j}=\emptyset$

then there exists $H_{k}$ with $ H_{i}\cap H_{k}\neq\emptyset$ and $ H_{j}\cap H_{k}\neq\emptyset$ so $H_{i}$ and $H_{j}$ are connected
via $H_{k}$ .

If $v$ is a vertex of NBC then its star, st (v), consists of all open simplexes whose
closure contains $v$ . The closure, st(v), is a cone with cone point $v$ . Let $(\mathcal{A}, \mathcal{A}^{\prime}, \mathcal{A}^{\prime\prime})$

be a triple with respect to the last hyperplane $H_{n}$ . Then $\overline{st(H_{n})}$ consists of all
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simplexes belonging to the set { $ S\in$ nbc $|S\cup\{H_{n}\}\in$ nbc}. Also N $BC^{\prime}$ consists
of all simplexes $S$ of NBC with $H_{n}\not\in S$ . Thus we have

(3) N BC $=\overline{st(H_{n})}\cup NBC^{\prime}$ .

By Lemma 5.2.7, $\nu\{X_{1}, \ldots, X_{p}\}\in\overline{st(H_{n})}\cap NBC^{\prime}$ . So the map $\nu$ induces a simplicial
map

$\nu$ : N $BC^{\prime\prime}\rightarrow\overline{st(H_{n})}\cap NBC^{\prime}$ .

This map is obviously injective. It is also surjective by Lemmas 5.2.8 and 5.2.7.
Thus the two simplicial complexes are isomorphic:

(4) N $BC^{\prime\prime}\simeq\overline{st(H_{n})}\cap NBC^{\prime}$ .

If $\mathcal{A}$ is an arrangement with $r\geq 3$ , then NBC is simply connected. We use
induction on $|\mathcal{A}|$ . Since $|\mathcal{A}|\geq r$ , the induction starts with $|\mathcal{A}|=r$ . In this case, $\mathcal{A}$

is isomorphic to the Boolean arrangement. Since any subset of $\mathcal{A}$ is a simplex of
NBC, NBC is contractible. Now $\overline{st(H_{n})}$ is a cone with cone point $H_{n}$ . In particular,
it is simply connected. Since $|\mathcal{A}^{\prime}|<|\mathcal{A}|$ , the induction hypothesis implies that $NBC^{\prime}$

is simply connected. Finally, $r(\mathcal{A}^{\prime\prime})=r-1\geq 2$ , so it follows that $NBC^{\prime\prime}$ is path
connected. Thus, by (3) and (4), van Kampen’s theorem implies that NBC is simply
connected.

Next we want to compute the homology groups of NBC. Integer coefficients
are understood. Consider the Mayer-Vietoris sequence for the excisive couple
$\{\overline{st(H_{n})}, NBC^{\prime}\}$ . Using (3) and (4) we get the long exact sequence

. . . $\rightarrow H_{p}(\overline{st(H_{n})})\oplus H_{p}(NBC^{\prime})\rightarrow H_{p}(NBC)(i_{1},i_{2})_{*}$

$\rightarrow^{\partial_{*}}H_{p-1}(\overline{st(H_{n})}\cap NBC^{\prime})\rightarrow H_{p-1}(\overline{st(H_{n})})(j_{1},-j_{2})_{*}\oplus H_{p-1}(NBC^{\prime})\rightarrow\ldots$

The fact that $\overline{st(H_{n})}$ is contractible, together with (4), gives

(5) . . . $\rightarrow H_{p}(NBC^{\prime})\rightarrow H_{p}(NBC)i_{1*}\rightarrow^{\partial_{*}}H_{p-1}(NBC^{\prime\prime})\rightarrow H_{p-1}(NBC^{\prime})j_{1*}\rightarrow\ldots$

Next we show that

$H_{p}(NBC)=\left\{\begin{array}{ll}0 & if p\neq r-1,\\free of rank \beta(\mathcal{A}) & if p=r-1.\end{array}\right.$

We use induction on $r$ , and for fixed $r$ on $|\mathcal{A}|$ . We have established the assertion for
$r=1$ and arbitrary $|\mathcal{A}|$ . The assertion is also correct for arbitrary $r$ when $|\mathcal{A}|=r$ ,
since in that case $\mathcal{A}$ is the Boolean arrangement, NBC is contractible and it follows
from [OT1, 2.51] that $\beta(\mathcal{A})=0$ . For the induction step we assume that the result
holds for all arrangements $\mathcal{B}$ with $r(\mathcal{B})<r$ and for all arrangements $\mathcal{B}$ with $r(\mathcal{B})=r$
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and $|\mathcal{B}|<|\mathcal{A}|$ . Consider the exact sequence (5). Here we need a case distinction.
If $H_{n}$ is a separator (Definition 3.1.3), then $r(\mathcal{A}^{\prime})<r$ . In this case $\mathcal{A}^{\prime}=\mathcal{A}^{\prime\prime}\times\Phi_{1}$ .
Thus $\chi(\mathcal{A}^{\prime}, t)=t\chi(\mathcal{A}^{\prime\prime}, t)$ , so Proposition 3.1.4 implies that $\chi(\mathcal{A}, t)=(t-1)\chi(\mathcal{A}^{\prime\prime}, t)$

and hence $\beta(\mathcal{A})=0$ . On the other hand, $ X\cap H_{n}\neq\emptyset$ for all $X\in L(\mathcal{A}^{\prime})\backslash \{V\}$ so
NBC $=\overline{st(H_{n})}$ , which is contractible. If $H_{n}$ is not a separator, then for $p\neq r-1$

the induction hypothesis implies that $H_{p}(NBC^{\prime})=H_{p-1}(NBC^{\prime\prime})=0$ and hence
$H_{p}$ ( $N$ BC) $=0$ . For $p=r-1$ , the induction hypothesis implies that $H_{p-1}(NBC^{\prime\prime})$

is free of rank $\beta(\mathcal{A}^{\prime\prime})$ and $H_{p}(NBC^{\prime})$ is free of rank $\beta(\mathcal{A}^{\prime})$ . The conclusion follows
from Proposition 3.3.3.

This allows completion of the proof. For $r=2$ , the complex NBC is 1-
dimensional and hence it has the homotopy type of a wedge of circles whose number
equals the rank of $H_{1}$ ( $N$ BC). We showed above that this rank is $\beta(\mathcal{A})$ . For $r\geq 3$ ,
the complex NBC is simply connected. It follows from the homology calculation
and the Hurewicz isomorphism theorem that $\pi_{i}$ ( $N$ BC) $=0$ for $1\leq i<r-1$ and
$\pi_{r-1}$ ( $N$ BC) $\simeq H_{r-1}$ ( $N$ BC; $\mathbb{Z}$ ). The last group is free of rank $\beta(\mathcal{A})$ . $\square $

5.3 The $\beta nbc$ Set
Ziegler [Zi] defined a subset $\beta nbc(\mathcal{A})$ of $nbc(\mathcal{A})$ of cardinality $|\beta nbc(\mathcal{A})|=\beta(\mathcal{A})$ .
It has the property that if the simplexes corresponding to $\beta nbc$ are removed from
the complex NBC, the remaining simplicial complex is contractible. The set $\beta nbc$

is used to construct a basis for the only nontrivial cohomology group $H^{r-1}$ ( $N$ BC).

Definition 5.3.1. A frame $B$ is called $a$ $\beta nbc$ frame if $B$ is an nbc frame and
for every $H\in B$ there exists $H^{\prime}\prec H$ in $\mathcal{A}$ such that $(B\backslash \{H\})\cup\{H^{\prime}\}$ is a
frame. Let $\beta nbc(\mathcal{A})$ be the set of all $\beta nbc$ frames. When $\mathcal{A}$ is empty, we agree that
$\beta nbc(\mathcal{A})=\emptyset$ .

We need to determine what happens to these frames under deletion and re-
striction. Recall that we have agreed to delete the la$st$ hyperplane $H_{n}\in \mathcal{A}$ . Let
$\beta nbc=\beta nbc(\mathcal{A}),$ $\beta nbc^{\prime}=\beta nbc(\mathcal{A}^{\prime})$ , and $\beta nbc^{\prime\prime}=\beta nbc(\mathcal{A}^{\prime\prime})$ . Ziegler [Zi,
Theorem 1.5] proved the following important $\beta nbc$ recursion:

Theorem 5.3.2. Write $\overline{\beta nbc}^{\prime\prime}=\{\{\nu B^{\prime\prime}, H_{n}\}|B^{\prime\prime}\in\beta nbc^{\prime\prime}\}$ . If $H_{n}$ is a separa-
tor, then $\beta nbc=\emptyset$ . Otherwise, there is a disjoint union

$\beta nbc=\beta nbc^{\prime}\cup\overline{\beta nbc}^{\prime\prime}$

When $\ell=1$ , we agree that $\beta nbc^{\prime\prime}$ is empty, so $\overline{\beta nbc}^{\prime\prime}=\{H_{n}\}$ .
For an nbc frame $B\in nbc$ let $B^{*}\in C^{r-1}$ ( $N$ BC) denote the $(r-1)$ -cochain dual

to $B$ . Thus for an nbc frame $B^{\prime}\in nbc,$ $B^{*}$ is determined by the formula

$\langle B^{*}, B^{\prime}\rangle=\left\{\begin{array}{ll}1 & if B^{\prime}=B\\0 & otherwise.\end{array}\right.$

The next result follows from Ziegler’s recursion theorem 5.3.2:
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Theorem 5.3.3 ([FT]). The set $\{[B^{*}]|B\in\beta nbc\}$ is a basis for $H^{r-1}$ (NBC).

Proof. If $H_{n}$ is a separator, then $\beta nbc=\emptyset$ . In this case NBC is contractible as we
saw in the proof of Theorem 5.2.10. Suppose that $H_{n}$ is not a separator. Recall
(3) and (4). The Mayer-Vietoris cohomology exact sequence reduces to

$0\rightarrow H^{r-2}(\overline{st(H_{n})}\cap NBC^{\prime})\rightarrow^{\partial^{*}}H^{r-1}$ ( $N$ BC)

$\rightarrow H^{r-1}(i_{1},i_{2})^{*}(\overline{st(H_{n})})\oplus H^{r-1}(NBC^{\prime})\rightarrow 0$

because $H^{p}$ ( $N$ BC) $=0,$ $H^{p}(NBC^{\prime})=0$ and $H^{p-1}(NBC^{\prime\prime})=0$ when $p\neq r-1$ by
Theorem 5.2.10. We describe the connecting morphism $\partial^{*}$ explicitly. If $B^{\prime\prime}$ is an
$(r-2)$ -simplex of $NBC^{\prime\prime}$ , then $\nu B^{\prime\prime}$ is an $(r-2)$ -simplex of $\overline{st(H_{n})}\cap NBC^{\prime}$ and

$\{\nu B^{\prime\prime}\}^{*}\in C^{r-2}(\overline{st(H_{n})}\cap NBC^{\prime})$ .

The natural map

$C^{r-2}(\overline{st(H_{n})})\oplus C^{r-2}(NBC^{\prime})\rightarrow C^{r-2}(\overline{st(H_{n})}(j_{1},-j_{2})^{\#}\cap NBC^{\prime})$

sends the element $(\{\nu B^{\prime\prime}\}^{*}, 0)$ to $\{\nu B^{\prime\prime}\}^{*}$ . Note that every $(r-1)$-simplex in
$\overline{st(H_{n})}$ includes $H_{n}$ as a vertex and $\{\nu B^{\prime\prime}, H_{n}\}$ is the unique $(r-1)$-simplex in
$\overline{st(H_{n})}$ which contains $\nu B^{\prime\prime}$ . Thus the coboundary map

$\delta$ : $C^{r-2}(\overline{st(H_{n})})\rightarrow C^{r-1}(\overline{st(H_{n})})$

sends $\{\nu B^{\prime\prime}\}^{*}$ to $\{\nu B^{\prime\prime}, H_{n}\}^{*}$ . This diagram chase shows that

$\partial^{*}([\{\nu B^{\prime\prime}\}^{*}])=[\{\nu B^{\prime\prime}, H_{n}\}^{*}]\in H^{r-1}$ ( $N$ BC).

Now we get the desired result by induction on $|\mathcal{A}|$ using Ziegler’s recursion theorem
5.3.2. $\square $

Example 5.3.4. Recall the Selberg arrangement of Examples 3.1.1, 5.2.4. Here
$\beta nbc=\{\{2,4\}, \{2,5\}\}$ . We see in Figure 3.1 that the complement of $\mathcal{A}$ has 2
bounded chambers. This agrees with the cardinahty of $\beta nbc$ , see Theorem 3.3.9.
The cohomology classes $[\{2,4\}^{*}]$ and $[\{2,5\}^{*}]$ form a basis for $H^{1}$ (NBC).




