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It has been shown, under certain conditions, by
Bahadur, Chandra, and Lambert (1982) that in the non-
null case the best possible asymptotic distribution for
the level attained by a test statistic is a certain
lognormal distribution, and that the level of the
likelihood ratio statistic has this optimal asymptotic
distribution. We describe a technical generalization of
this theory; in the present generalization the best
possible asymptotic distribution of the standardized
log-level is that of the maximum of a family of normally
distributed variables It is pointed out that these
considerations yield a corresponding generalization
concerning the asymptotic expansion of the log-size of
the best critical region when the power against a given
alternative is a specified constant

1 Introduction.

In the following sections S is a sample space of points s, and A is

a σ-field of subsets of S. Θ is a parameter space of points θ and, for each
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316 BAHADUR AND GUPTA

θ in 0, PQ is a probability on A. n is an index taking values in the set of

positive integers and, for each n, B
n
 is a subfield of A. We may think of n as

the sample size or cost of the experiment ί(S,B » P Q )
:
 θ i-

n
 ®J

concerning θ, but no particular relation is required of the fields B
n

corresponding to different values of n Θ is a subset of Θ, and the null

hypothesis under test is that some θ in Θ obtains Θ = Θ - Θ denotes the

non-null set of parameter points We assume that for each

n, δ in Θ , and θ in Θ , the probability P. is dominated by P
Q
 on B

n
, i.e.,

(1) dP
Λ
 = R (s:δ,θ) dP

Q
 on B

o n Ό n

where R is B^ measurable and 0 < R < °° . Let
n n n

(2) K
n
(s:δ,θ) = n log R

n
(s:δ,θ), - « < K

R
 < «> .

We also assume that there exists a constant K(δ,θ) such that, as n —• °° ,

(3) K
n
(s:δ,θ) -• K(δ,θ) in P^probability.

Then, necessarily, 0 < K < °° .

The present framework is a version of the frameworks in Bahadur and

Raghavachari (1972); Bahadur, Gupta, and Zabell (1980); and Bahadur, Chandra,

and Lambert (1982). As may be seen from discussions and illustrative examples

in these papers, which are henceforth referred to as [BR], [BGZ], and [BCL], and

in references therein, K is a generalized Kullback-Leibler information number

and it plays a central role in large deviation theories of testing and

estimation
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2 Asymptotic distribution of the level attained.

For each n let T
n
 be an extended real valued B

n
 measurable function

defined on S; T
R
 is to be thought of as a test statistic, large values of T

being significant. Let

(4) G
n
(t) - sup{P

Q
(T

n
 > t): θ in Θ

Q
}

for - » < t < °° , and

(5) L (s) = G (T (s)), 0 < L < 1 .
n n n n

Then 1^ is the level attained by T
R
 in testing Θ . It is known that in the null

case L
n
 is uniform or superunifoπn over [0,1], i.e.

(6) P
β
(L < α) < α for 0 < α < 1, θ in 0

Λ
 .

On 0

To consider the distribution of L in the non-null case, choose and fix δ

in θ .

With K defined by (1), (2), and (3), let

(7) v(6) = inf{K(δ,θ): θ in Θ
Q
}

Assumption 1. 0 < v(δ) < °°, and the set

(8) Γ
δ
 - {θ: θ in Θ

Q
, K(δ,θ) = v(δ)}

is non-empty.

For each point γ in Γ., let
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(9) Z
n
(s:6,γ) = n

7
2 [v(δ) - K

n
(β:δ,γ)]

Assumption 2. For each finite set {γ.,. ,γ } in Γ., the distribution

of (Z (s:δ,γ,), . .,Z (s:δ,γ )) under P. converges to a (possibly singular)
n 1 n m o

normal distribution centered at the origin in m-dimensional Euclidean space.

It is assumed in [BCL] that the point γ which minimizes K(δ,θ) over

Θ is unique, i.e. Γ. is a singleton. In this case Assumptions 1 and 2 become

the main assumptions of [BCL] and Assumptions 3 and 4 below are satisfied

trivially It should be added that non-uniqueness seems to be the exception

rather than the rule. We think, however, that the present generalization is of

interest because it provides insights into some of the difficulties and

complications involved in general studies of tests of composite null hypotheses;

see also Section 3.

For γ., γ
2
 in Γ., let C~(γ ,γ~) denote the asymptotic covariance

of Z (s:δ,γ ) and Z (s:δ,γ ). There exists a measurable space Ω of points ω, a

probability P on the measurable sets of Ω, and for each γ in Γ. a real-valued

random variable Yg(ω:γ) such that {Y
δ
(ω:γ): γ ε Γ } is a mean-zero Gaussian

process with covariance function C.. Let

(10) V
6
(ω) = sup{Y

δ
(ω:γ): γ in Γ

δ
> ,

- °° < Vβ < °° . It is not necessary to specify Ω, P, and the {Y.} , but we require

the existence of a version of these entities such that the following assumption

holds; see Fernique (1974) and references therein for general sufficient

conditions on C~
0

Assumption 3 . Γ. is a separable metric space. With probability one,

the sample function Y.(ω:γ) is continuous on Γ
Γ
, and V ^ ω ) < » .

o ό ό

Now choose a statistic T
n
 for each n, and with L

R
 defined by (4) and

(5), let
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(11) M (s:δ) = [log L (s) + n

n n

THEOREM 1 . For each z , -«> < z < °° ,

( 1 2 ) l im sup PΛ(M ( s : δ ) < z ) < P(V. < z ) .
On o

n —• °°

Proof. First consider a fixed n. Let k and α be positive constants

and γ a point in Γ.. It follows from (1) and (6) with θ = γ, exactly as in the

proof on page 6 of [BCL], that with R = R^ίs: δ,γ) we have P
f
(L <α, R <k)< kα.

n n 0 n n
It follows hence that if γ.,...,γ are points in Γ. and ir

m
' = min{R (s:δ,γ_,):

1 m o n n i

1 < i < m}, then P . ( L <α, RW < k) < mkα. Hence P . ( L <α) < P . ( R ( m ) > k) + mkα.
ύ n n O n On

By letting k = (not) and α = exp(-nv + n ^ z ) in this last inequality, it

follows from (2), (9), and (11) that

(13) P~(M < z) < P Λ ( Z ( m ) < z + a ) + (m/n)
on on n

where Z = maxίz ( s : δ , γ . ) : 1 < i < m} and a = ( log n)/n
n τi i n

Since the maximum co-ordinate of the point in R
m
 is a continuous

function of the point, it follows from Assumption 2 that Z converges in

distribution to Y^ = max{Y
s
(u:y. ): Ki<m} as n -• « . It follows hence from

ύ 0 i

(13) that, for any € > 0,

(14) lim sup P^ίM < z) < P(Y^ < z + e) .

n —> °°
 n

The inequality (14) holds with any choice of γ., γ
2>
...,γ . Now let

{γ., γ
2
,...} be a dense subset of Γ^. It then follows from Assumption 3 and the

definition of γ^
m
^ that γ^

m
^_^v pointwise and therefore in distribution

δ δ δ

as m —* °°; consequently lim sup
m
 P(Y^ < z + e) < P(V

δ
 < z + 2e) .p

m

Since ε i s arbitrary, i t fol lows hence from (14) that (12) holds for a l l z .
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Remark 1. It is plain from the proof that the bound (12) is uniform in T
n
,

i.e., with Q (δ:z) the supremum of Pβ(M < z) over all B measurable statistics

T
n
, lim sup

n
 Q

n
(δ:z) < P(V

δ
 < z) for all z.

A particular choice of statistic T
n
 for each n is said to be optimal

in the sense of weak exact slopes (in short, w-optimal) against 6 if

n log L (s) —• -v(δ) in P.-probability; T is optimal in the sense of

asymptotic distributions (in short, d-optimal) against δ if M (s:δ) —»-V~ in

distribution under P.. Since P(- °° < V~ < °°) = 1 by assumption, it is clear

from (11) that d-optimality implies w-optimality The following theorem shows

that the converse holds in the class of statistics such that log L has an

asymptotic normal distribution with mean and variance proportional to n.

THEOREM 2. Suppose that under P.

(15) log L
n
(s) is_ AN(-nμ(δ), nσ

2
(δ))

2
as n —* °° , where 0 < μ(δ) < « , 0 < σ (δ) < » . Then either μ(δ) < v(δ),

or μ(δ) = v(δ) and V^ is an N(O,σ
2
(δ)) variable.

Proof . It follows from (15) that n log L —• -μ in probability. Hence, by

[BR] or by arguments in [BCL], μ < v. Suppose that μ = v. Then, by (11) and

2
(15), M —*N(0,σ ) in distribution. It follows hence from Theorem 1 that

n

(16) P(N(0,σ
2
) < z) < P(V

6
 < z)

for all z. Let γ be a point in Γ
fi
 . Then Y~(ω:γ) < V

δ
(ω) by (10),

so P(N(0,σ
2
) < z) < P(Y

fi
(γ) < z) for all z, by (16). Since Y

fi
(γ) is normal with

mean 0 and variance Cβ(γ,γ), we must have Q (γ,γ) = σ
2
. Thus Y (γ) is

an N(0,σ
2
) variable. By (10) we now have P(V

6
 < z) < P(Y

δ
(γ) < z)

2 2

- P(N(0,σ ) < z) for all z; it follows hence from (16) that V
fi
 is N(0,σ ) .
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Remark 2. The conclusion that V. is a normal variable is equivalent

to P(Y
δ
(γ ) «

 Y

<
$(Ύ

2
))

 β
 1

 f o r
 all γ., Ύ

2
 in Γ

δ
; the conclusion therefore implies

that the uniqueness assumption of [BCL] is essentially satisfied.

Remark 3. Suppose v(6) = 0. It then follows from Theorem 2 by

letting T Ξ 0 (say) for each n that P(V
δ
 * 0) = 1. It follows hence from

Theorem 1 and v = 0 that, for any choice of T , not only n log L
n
 n

-1/2
but n log L converges to 0 in P .-probability. The case v = 0 is therefore

rather hopeless and is not considered further

Remark 4. It is easy to construct examples, even with Γ^ a singleton, of

statistics T
n
 which are w-optimal but not d-optimal against δ. Of course, in

such examples, (15) does not hold. Cf Remarks 10 in Section 3.

We now describe sufficient conditions in order that a particular

statistic T be d-optimal against a given ό Let

(17)
 u

n,δ
( s ) =

 ^ M * ) "
 τ
n

( s ) 1

Condition 1» U ~ is asymptotically stochastically smaller

than V^ when δ obtains, i.e.

(18) lim inf P.(U . < z) > P(V
Λ
 < z) for - < z < .

n
 - * oo

 δ n
»

δ 6

Condition 2» With G
n
 defined by (4) there exists a function g

n
,

<
 g
 < » , such that

(19) n^log G
n
(t) < -t + g

n
(t) for - < t <

and such that with
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(20) h (k :ό) = n ^ s u p ί g ( t ) : | t - v ( 6 ) | < k/J2 }
n n

we have

(21) lim sup h (k :ό) < 0 for each k, 0 < k <
n —• °°

THEOREM 3. If δ obtains, and T
n
 satisfies Conditions 1 and 2, then

(22)
 U

n δ ~~*
 V
δ
 i n d i s t r i b u t i o n

>

+ o(n
 2
) in probability,(23) log L

n
 - -nv(δ) + n

/

and T is d-optimal,

The proof of Theorem 3 is along the lines of the proof of Proposition

2.8 in [BCL] and is omitted. We note here that (22) holds for any sequence of

extended random variables U
 x

 if and only if (18) and

n,ό

(24) lim sup P
X
(U

 x
 < z) < P(V. < z) for - «> < z <

ό n.o o
n —• °°

are both satisfied. We note also from (1) and (6) that -
00
 < log L < 0

with P.-probability one, so the o(n
 2
) term in (23) is well-defined for each n

even if |u J = °° for some sample points.

In order to apply Theorem 3 to likelihood ratio and related

statistics, it is convenient to introduce here a rather natural additional

assumption concerning the framework itself. With Z
n
 defined by (1), (2) and (9)

let

(25)
 V

n,<S
(s) =

 sup{Z
n
(s:δ,γ): γ in
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and suppose that V
 x

 is B measurable, - » < y
 x

 < °°. It is plain fromr r
 n,δ n n,δ

 v

Assumptions 2 and 3 that V * is asymptotically stochastically larger

than V
x
 when δ obtains, i.e. (24) holds with each U

 x
 replaced by V

 f
.

o n , o
r y

n , o

Assumption 4. V
 x

 —• V
x
 in distribution when δ obtains

This assumption holds if, for example, I\ is compact metric, each Z (s:δ, ) is a

random element in the space of real-valued continuous functions on Γ
fi
, this last

space is equipped with the topology of uniform convergence, and the distribution

of the element Z (s:δ,.) under P
x
 converges to the distribution of the

n 0

element Y
δ
(ω:.); see, e.g., Billingsley (1968).

In the following Remarks 5-7 we consider Conditions 1 and 2 of Theorem

* 0

3 for three likelihood ratio (LR) statistics T ., T ., and T the
n, ό n,o n

corresponding variables U * defined by (17) are denoted by U *, U *,

and U
 Γ

 respectively
n,o

Remarks 5. Suppose for the moment that the null set is Γ. and δ is the

singleton alternative. Then

(26)
 T

n , δ
( s ) =

 inf{K
n
(s:δ,γ): γ in

is a version of the relevant LR statistic. It is plain from (17), (25) and (26)

that U
 x

 is V ., so Condition 1 for T . is equivalent to Assumption 4.
n,δ n,δ' n,δ

 n
 *

it

Condition 2 is always satisfied by T . when Γ is the null set. To see this,

we note first that, for any θ in Θ , (1) implies P
Q
(R (δ:θ) > k) < k"

for 0 < k < «>; hence for γ in Γ
fi
,

 p

γ
(

τ

n δ
 > t) < P (K

n
(δ,γ) < t) < exp(-nt)

for each real t, so Condition 2 holds with g
n
(t) = 0. Thus Assumption 4 is

sufficient for d-optimality.

Remarks 6. For testing the given Θ against a singleton δ
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(27) T°
 δ
(β) - inf[K

n
(s:δ,θ): θ in Θ

Q
}

is the LR statistic corresponding to T
 fi

. It follows from the argument in

Remark 5 that, with Θ as the null set, T
 δ

 always satisfies Condition 2

with g (t) = 0; consequently, Condition 1 is sufficient for d-optimality. It is

plain from (26) and (27) that U° . > U*
 x
 - V

 Λ
. It follows hence fromr

 n,δ n,o n,o

Stigler's Proposition 2.5 in [BCL] that Condition 1 holds for T
R fi

 if and only

0 *
if Assumption 4 holds and U

 δ
 ~ U

 δ
 —> 0 in P^probability, i.e.

(28) J
2
 [T*

 Λ
 - T° A —• 0 in P

Λ
-probability .

n,o n,o o

In (28) the indeterminate differences « - »
 a
nd (-

00
) - (-«) are understood to be

0. Needless to say, if T . is known explicitly, it may be a simple matter to

verify directly that U
 Γ

 —» V* in distribution.

n,δ δ

Remarks 7. For testing the given Θ against every δ in Θ the LR statistic is

(29) T
n
(β) - sup{T^

 δ
(s):δ in

For any particular non-null δ, T
 Γ

 < T and hence U
 x

 < U
 x

. It follows
J
 * * n,δ n n,δ n,δ

0
that if T . satisfies Condition 1 at δ then so does T . Verification of

n,δ n

Condition 2 for T is, perhaps, the most challenging of the verifications under

discussion, but the condition is usually found to hold in regular cases (cf.

examples in [BR] and [BCL]); the underlying reason is that Condition 2 is

satisfied by T whenever Θ is finite, and discretization is operative in

regular cases with infinite Θ .

The following is a simple example where Γ
g
 is not a singleton

and V
δ
 is not a normal variable. Suppose that

 s
 - (

x > x
 ,...) is a sequence of

2
i.i.d. random vectors in the plane R , with each x^ normally distributed with

mean vector θ and covariance matrix the identity. Let Θ be the plane, and
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suppose Θ is the unit circle (θ:||θ|| « 1}. For each n let (S, B
n
) represent

the sample space of (x
1
, ..,x

n
). Then K(δ,θ) = ||δ - θ|| /2.

If δ * (0,0), Γ. is a singleton and the considerations of [BCL] apply.

Suppose δ » (0,0); then Assumption 1 holds with v(δ) = V2 and Γ~ = Θ . It is

easily seen that, with <•,•> the Euclidean inner product, Z (s:δ,γ) equals

<γ, n 2χ > for γ e Θ . Let Ω be the plane of points ω « (ω ,ω ) with

ω and ω independent N(0,l) variables, and let Y«>(ω:γ) = <γ,ω>. Then, for each

n, the distribution of {Z (δ:γ): γ ε Θ > coincides with that

n U

of (Y
δ
(γ): Ύ ε Θ } so Assumption 2 holds; since <γ,ω> is continuous

in γ and V~(ω) = ||
ω
||> Assumption 3 holds, and V* is a χ_ variable.

Here V . = | |n 2χ | | is a χ_ variable for each n when δ obtains, so Assumption

* 0
4 also holds . Since Γ

X
= Θ . , T * = T » and it follows from Remarks 6 and 7

δ 0 n,δ n,δ
that T satisfies Condition 1 of Theorem 3. To verify Condition 2

for T , let W
 Q
 be the LR statistic for testing the singleton θ against all

n n, 0
2

alternatives Then W Q is a χ«/2n variable when θ obtains

Now, θ ε Θ
Q
 implies T

n
 < W ^ , and hence P

θ
(T

n
 > t) < P

Q
(W

n θ
 > t) - exp(-nt)

for 0 < t < »; it follows hence that T satisfies Condition 2 with g = 0 . In
n n

A
 — 9

the present example, T • (||x || - 1) /2, and it is possible to verify

Conditions 1 and 2 directly for any non-null δ

Remark 8. In the preceding Remarks 5-7 and Example, and in [BCL], Conditions 1

and 2 are used as convenient sufficient conditions; in fact, in a certain sense

they are also necessary for d-optimality. Corresponding to any statistic T

there exists a statistic T which is a non-decreasing function of T
n
,

with L = L , such that T
n
 is d-optimal against a given δ if and only if T

satisfies Conditions 1 and 2 at δ; T = n log L is such a statistic.

n n

3 Asymptotic expansion of the log-size.

The preceding section concerns descriptive significance testing; the

statistician chooses a test statistic T
R
 and computes and records or even
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reports the level L_ attained by T In this section we consider some related

aspects of behaviorist testing; the statistician chooses a critical

function φ and rejects the hypothesis, or accepts it, with respective
n

probabilities φ and 1 - Φ
n
.

In the framework of Section 1, for each n let φ (s) be a B
n
 measurable

function such that 0 < φ < 1. The size of φ in testing Θ . say α(φ ), is

n n u n
(see, e.g., Lehmann (1959))

(30) o(φ
n
) = sup{E

θ
(φ

n
): θ in Θ

Q
} .

Choose and fix a non-null δ and a constant 3, 0 < 3 < l We require φ to have

power at least 3 against <S, i.e.

(31) E
δ
(φ

n
) > 3 .

It has been known for some time that, in typical cases, (31) with equality

implies log α(φ ) = -nμ + o(n) for some μ > 0; more recently, several authors

have obtained various refinements of this first-order expansion in various

examples and contexts; see Section 1 of [BCL] and references given there. In

this section we obtain the second-order expansion for the best critical function

in the general case, and show that the log-size of a critical function based on

a d-optimal statistic has this expansion.

It is assumed henceforth that Assumptions 1-3 of Section 2 hold

with v(δ) > 0 and P(V. = 0) * 1. It follows from Assumption 3 by the remarkable

results in Tsirel'son (1975) that the 3-quantile of V^ is uniquely determined,

(32) sup {z: P(V
δ
 < z) < 3} - inf {z: P(V

δ
 < z) > 3}

= q(δ:3) say,

< q < oo, and that q is a continuous function of 3 for 0 < 3 < 1.
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Let v
δ
 = inf{z: P(V

6
>z)>0} and

 P<s
 = P(V

6
 = v

fi
) . If v

fi
 » - or, more

generally, if p^ = 0, then q is strictly increasing on (0,1) with

range (v^, °°); but if p. > 0 then p^ < 1, q = v~ for 0 < 3 < p., and q is

strictly increasing on (p^, 1) with range (v~, °°) .

Let ξ (θ:β) be the infimum of α(φ ) over all B
Λ
 measurable φ such

n n n n

that (31) holds. This infimum is generally attained, but not necessarily by a

critical function based on the LR statistics T or even T
 x

, since the Neyman-

n n,o
 J

Pearson lemma does not extend to tests of composite hypotheses .

COROLLARY 1. As n

(33) log ξ
n
(δ:3) > -nv(δ) + n ^ q(δ:0) + 0(1/2 ),

Proof . Let u be a random variable uniformly distributed over the

interval [0,1] = I say, independent of s, and let S = I x S be the space of

points s = (u,s). With B the Borel field in I let A = B x A, and let P
θ
 be

the probability measure on A when θ in Θ obtains . For each n let B = B x B ,

* * * *
and call S , A , {B }, and {P

Q
} the augmented framework. It is easy to see that

n σ

all our assumptions, including Assumptions 1-3, continue to hold in the

augmented framework, with v(δ) retaining its original value and V^ its original

distribution.

For a particular n let φ be a B measurable critical function such

that (31) holds and

(34) α(φ
n
) < 1 .

Since ξ < 3 < 1 , the additional restriction (34) involves no loss of
n

generality. Let
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1 if « < φ (β)
(35) T (s ) =

0 otherwise.
Then

(36) P*(T* = 1) = E
θ
(Φ

n
) for all θ in θ

With L*(s*) the level attained by T in testing Θ , it follows from (30), (35),
n n u

and (36) that

(37) L
α(φ ) if T = 1

n n

1 if T* = 0 .
n

It is plain from (34) and (37) that L < α(φ ) if and only if T - 1.

n n n
Hence

(38) P*(L*

by (31) and (36). We refer the reader to Kallenberg (1981, 1983) for other uses

of the augmented framework in relating behaviorist and descriptive theories of

testing.

Now choose a z such that P(V~ < z) < 3, and let

(39) λ
n
 - exp[-nv + n

/ 2
z] .

It then follows from Theorem 1 and Remark 1 in Section 2 that

* * * *
lim sup P*(L < λ ) < 3 uniformly in B - measurable statistics T . In

n o n n
 J

 n n
* *

particular, there exists m such that n > m implies P
X
(L < λ ) < 3 for all φ

o n n n
under consideration; hence α(φ ) > λ for all φ , by (38) . Hence

n n n
n > m implies ξ > λ , i e. log ξ > -nv + n 2 z

- Vo
Hence lim inf^ n

 2
 [log ξ + nv] > z . Since z is arbitrary, it follows from

(32) that (33) holds.

Next, let T
fl
 be a B

n
 measurable statistic defined on S, and let 1^ be

the level attained by T
R
 in testing Θ

Q
. Let a

n
 = a

n
(δ,3) be the constant
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(40) P.(L < a ) < 3 < P*(L < a ) , 0 < a < 1 ,

and let

if L < a

(41) φ(s) - '
 n n

n f
 " if L > a

n n
ι:

Then φ satisfies condition (31). Of course, this φ based on T depends on
n n n

δ and 3, even if T
R
 itself does not.

COROLLARY 2. Suppose that there exists a T
n
 which is d-optimal in

testing Θ against δ . Then

(42) log ξ (δ:3) = -nv(δ) + n
/2

q
(δ:3) + o(J

2
 ) .

Moreover, if φ is based on T
n
 according to (40) and (41) then φ is efficient

to second-order, i.e., log α(φ ) = log ξ + o(n 2) .

Proof . Choose a d-optimal T
n
 and let φ be based on T

n
 as above

Since α(φ ) > ξ for each n, and since (33) holds, it will suffice to show that
n n

(43) log α(φ ) < - nv(δ)

It follows from (41) and (6) that, for θ in Θ_, E
Ω
(φ ) = P_(L < a ) < a

0 σ n D n n n

hence α(φ ) < a for each n, by (30) .
n n

Choose a z such that P(V
X
 < z) > 3, and let λ be defined

0 n

by (39). It then follows from (11) by the d-optimality of T
Q
 that

lim inf P.(L < λ ) > P(V. < z) > 3. It follows hence from (40) that
n o n n o

a < λ for all sufficiently large n. The conclusion of the preceding paragraph

and (39) now imply that lim sup n 2 [log α(φ ) + nv] < z; since z is

arbitrary, it follows from (32) that (43) holds.
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Remarks 9. A general form of Stein's lemma states that, in testing a

singleton θ against <5, log ξ (<5:3) = -nK(δ,θ) + o(n) provided only that (1),

(2), and (3) hold with K(δ,θ) < «; see [BR], [BGZ], and Raghavachari (1983).

The expansion (42) is evidently an extension (to composite Θ
Q
) and refinement

(to second-order) of the general Stein lemma. Such extensions and refinements

are more or less implicit in [BCL] and some of the references therein; we think

the present explicit account might be of interest. It follows from Remarks 6

that (42) is valid for every $ if Assumption 4 and (28) hold.

Remarks 10. In the present context, efficiency to first order,

i.e. log α(φ ) * -nv + o(n), does not necessarily imply efficiency to second

order, even in very simple cases with V. a normal variable. To see this,

suppose that n takes all values 1,2,... that B
R
C B

R + 1
 for each n; that (42)

holds and there exists a second-order efficient φ . For each n let m(n) be the
n

positive integer such that n - n
2
< m(n) < n - n

 2
+ l,and define φ

R
 = *

m
(

n
)

Then log α(φ°) » -nv + n
 2
(q + v) + o(n'

2
 ), so φ is first-order efficient but

not second-order efficient. This demonstration does not, however, contradict

statements in [BCL] and in Kallenberg (1983) that first order efficiency does

imply second order efficiency since the statements cited concern critical

functions which satisfy certain structural conditions . Cf . Remark 4 in

Section 2.
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