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1 Introduction

This paper introduces a multi-step procedure for estimating the re-

gression coefficients in a linear model when the dependent variable of interest

is a randomly right-censored transform of survival, i.e., log lifetime. The

procedure is closely related to that introduced by Buckley and James (1979).

Using large sample properties developed by the authors (1981), asymptotic large

sample consistency and normality are seen to hold for each iterate of the orig-

inal estimator. A limited simulation study examines the small sample behavior

of the procedure.

The linear regression model considered is:

(1) X
±
 = α + 3 x

i
 + ε

±
, i = l,...,n ,

where {x.} are the known independent (design) variables, {ε } are independent,
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identically distributed (i.i.d.) error variables with an unknown distribution

2
function F with E(ε ) =0, Vaτ(ε^) =σ , and (α,3) are the parameters of interest.

There exists an extensive literature on inference for α and 3 based on observing

the X., but only recently has much work been done on estimating α and 3 when the

X.
f
s are right-censored. For a discussion of some recent results, see Miller

(1976,1981), Buckley and James (1979), and Koul, Susarla and Van Ryzin (1981,

1982). The importance of such a problem in survival data analysis where the

X.
f
s are survival times, or transforms thereof such as log lifetimes, has been

pointed out in the above references. Typically right-censored data with follow-

up times Y. can be represented as

Z
i
=min{X

i
, Y j

1 if X. <Y. (uncensored lifetime)
and

6
i - i

1
 ' 0 if X.>Y. (censored lifetime),

where, here and throughout, i=l,...,n. The paper by Miller (1976) considers

the situation where Y. = α + 3x.+ε!, where {ε!} are i.i.d., independent of {ε.},

and proposes estimators of α and 3 via the method of Kaplan-Meier (1958) least

squares. That is, he suggests minimizing the sum of squares of residuals with

weights assigned to the summands in the sum of squares according to the Kaplan-

Meier estimator of F based on the residuals. Such a solution leads to an iter-

ative procedure for the estimators of α and 3 which Miller shows may not con-

verge and could lead to inconsistent estimators of α and 3 unless the above

assumption holds, namely that the Y.
?
s have means following the regression line.

To overcome these possible inconsistency problems, Buckley and James (1979)

suggest another method, described below, which also may have the same type of

convergence problem as does the Miller method, although less so. In Buckley and

James, the {Y. =y.} is taken as a fixed known sequence. In this paper, we

present a modification of the Buckley-James procedure under the assumption that
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the {Y
i
} are i.i.d. random variables. The first-step estimators suggested for

the α and 3 are those presented by Koul, Susarla and Van Ryzin (1981), which

were shown to be consistent and asymptotically normal. Using these as first-

step estimators, we show that the iterated subsequent-step estimators are also

consistent and asymptotically normal.

The next section describes the method of Buckley and James (1979). Section

3 presents our modification of their method, while Section 4 provides the large

sample consistency and asymptotic normality of the estimator. Section 5 con-

tains some simulations of our method and that of Buckley-James and compares sub-

sequent iterates using as first-step estimators those of Koul, Susarla and Van

Ryzin (1981).

2. The Buckley-James Method

Consider the random variable

*(2) X* = δ ^ + U - δ
±
) E[X

i
|X

i
>yJ

•k

for i = l,...,n. Note that X. is an unbiased estimator of α+βx. for each i.

Hence, with d.=x.-x, nx = J.x., where £. represents sum over i = l,...,n, we

have, E[J\ d.(X. -$x.)]=0. Therefore, a suitable analogue of the normal equa-

tion solution for estimating (3 is to choose that value of b such that

However, the factor E[X.|x. >y.] is unknown in X. and therefore b cannot be cal-

culated directly from the data. Buckley and James (1979) suggest estimating

this expectation by using the product limit estimator F^ y.(') based on the cen-

sored residuals (δ., Z.-bx.). Then
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(3) Ejj^ I X
±
 > y

±
] = bx

±
 + E[X

1
 - bx

±
 | X

±
 - bx

±
 > y

±
 - bx

±
]

can be estimated by

(4) x.(b) = bx. + Σ
k ε A

_ (y
k
-bχ

k
) v

k
(b)/ F (

y i
-

where v. (b) is the jump under F
π
 , at all uncensored X, - bx

7
 and A. is the set

of all k such that X, -bx, >y. -bx.. Note that the y.
f
s are fixed. Sub-

stituting (4) as an estimator of (3) into b gives the equation

(5) b = Σ
±
 [

δ

±

d
i

z
i
 + (1

" V
 x

i
( b ) ] ; τ

x

Buckley and James suggest solving for b in (5) iteratively using b =I.(δ.d.Z.)/

2
τ as the initial estimator of 3. They also provide some simulation results

for their estimator and a heuristic discussion of its large sample properties.

3 A Modification of the Buckley-James Method

In our modification of Buckley and James (1979), we assume {Y.} to be

i.i.d. random variables with some continuous distribution G and that {Y.} is

independent of {ε.}. Consider again the relation of (1) written as

(6) X* =

*_ *

It is easy to see that E[_X.J =α+βx. for all i, and the X. follow the re-

gression line of interest. Thus, the Buckley-James observation holds when the

{Y.} are random provided the {X.} and {Y.} are independent. However, the {Y.l

could be dependent within themselves. Thus, natural estimators of 3 and α
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based on the X. in (6) are

(7) β = ( L d,X*) / τ
2
 , α = n

 X
 ΪX* - β x

The X. in (6) themselves cannot be used directly since the E[X.|δ. =0] are un-

known. To overcome this difficulty we will estimate E[X.|δ. =0] based on a pre-

liminary estimate of 3, say, 3 .

Note that the definition of conditional expectation implies

(8)

f sG(s) dF(s-α-βx.)

I L i

G(s) dF(s-α -βx
±

where P. ., j =0,1 are defined as indicated. Therefore, if a first-step esti-

mator (α*,3*) is available, one can estimate 1-F by 1-F given by the Kaplan-

Meier (1958) estimator based on the censored residuals (δ., Z. -α*-β*x.) and

1-G can be estimated by the Kaplan-Meier estimator 1 - G
Λ
 using (1-δ., Z. );

that is, we treat the lifetimes as censoring the follow-up times. Thus, P. .

for j =0,1 can be estimated by

* f i * * * *
(9) P. . = s

J
 G (s) dF Cs-α*-β

x
x.) ,

1-9 J J
 1

for i = l,...,n and j=0,l. Substituting (9) into (7) and (8) we have a second-

step estimator 3 of 3 given by

(10) β = I.d.
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The second-step estimator of α resulting from this procedure would be

(11) α = n"
1
 l

±
 {6

j
Z
±
 + (1 - 6

±
) P*

 ±
 / P*

 Q
} - 3 x .

Given these second-step estimators, one could then repeat this process to

obtain a third-step estimator. Multi-step estimators could be derived by con-

tinuing this procedure. In the next section, we show that starting with the

consistent and asymptotically normal estimators of (θi,3), the second-step esti-

mator (and hence subsequent-step) estimators are also consistent and asymp-

totically normal. Section 5 investigates by simulation the change in the esti-

mators over the early steps and compares them with the Buckley-James estimators.

z\

4. Some (Intuitive) Large Sample Properties of 3

Consider the second-step estimator 3 for 3 given by (10). If {p" .}
1
»J

are consistent estimators of {P. .}, then 3 can be expected to be a consistent
1
 9 3

•k

estimator of 3. Therefore, we consider the behavior of P. . under i.i.d. cen-
1
» 3

soring with distribution G.

Under i.i.d. censoring and certain other regularity conditions 3 can be

chosen to be a consistent estimator of 3 (see Koul, Susarla and Van Ryzin

(1981)). In fact, 3 can be taken such that τ (3 - 3) + U ~ N(0,σ
2
), where

d
 2

-*- stands for convergence in distribution as n^°° and N(0,σ ) stands for a
2

normal distribution with mean zero and variance σ .

/\

We can express the difference P.
 Λ
- P .

 Λ
 as

i0 i0

(12)
 P

i θ"
P
i 0

 =
 I ̂ ( s + ^ + ̂ x J - G(s+α* + β*

Xl
)} dF*(s)

d(F*-F) (s) .
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Note that the first term on the right-hand side of (12) can be bounded by

sup \G (s) -G(s)| which converges to zero with probability one under quite
s

general conditions due to the recent results of Foldes and Rejto (1981). The

same situation exists for the second term on the right-hand side of (12) which

is bounded by sup |F ( S ) - F ( S ) | . Since these convergent bounds are independent

i * i
of i, equation (12) yields lim sup.|P.

 n
- P . J =0 with probability one.

n i l j U l j u

t * i

Similarly, it can be expected that lim sup.[P. -P. | =0 with probability

n ί ϊ>J- !»-•-

one, under quite general conditions. For example, using results similar to

those of Susarla and Van Ryzin (1980) for estimating the mean, it would suffice

to have the {x.} be bounded and the G having a heavier tail than F. Hence,

from these results, we expect 3 of (10) to be a strongly consistent estimator of

Note that there is no need to have an estimator of α to implement (10) to

find 3. This is similar to the situation noted by Buckley and James (1979) in

their estimate of 3 Thus, in the remainder of the arguments we take α = α =0

for simplicity of notation.

To study the asymptotic normality of the second-step 3, we consider the

random variable τ (3-3) In all statements which follow, by o (1) we mean a

term which converges to zero in probability as n->°° . Consider now

(13)

(s+3*x±) G*(s+3*x±)

* * *
G (s+3 x j dF (s)

E[XJ 1-6 ]

. - 1τ ϊ . d . ( ό . Z . - E [ δ . Z . ] ) = 1 + 1 1
X L± 1 1 1 1 1

Since II is easily seen to converge in distribution as a sum of independent

2

random variables provided τ -»• °° as n -* °° , we concentrate our efforts on ob-

taining an approximation (in probability) of I. For the following details, let
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F (s) = F(s-3x
i
), a

±
 = I sG(s) d F ^ s ) , and b

±
 = (1-F

±
(s)) dG(s) and for

i = 1,. . . ,n, F*(s) = F*(s - β V ) . Note that F*(

based only on {6., z. -β x.). Now write I as:

l,...,n, F?(s) =F*(s-β*x
1
). Note that F*(s) is the Kaplan-Meier estimator

(14)

-1
d.(l-δ,)

sG dF. sG dF.

^
 1
 it

- 1 v ,
T
χ l

 l

sG dF.

* *

G dF.

f sG dF.

JGdF.

j G dF
±
 j

•k *

G dF
i

sG dF.
1

JGdF.

Since I is a sum of independent random variables, it can be shown to be

asymptotically normal. Thus, consider I and I .

We first deal with I which can be rewritten as

(15)

-l

Ί

-1

r ί ί * *i
r [ G dF. - G dF. ]

( G dF
±
) ( I G dF

1
 )

J
 SG d F

i r f f * *
Ί

i.(l-δ.)
 J

 o
 { G dF. - G dF.} +1

 ( f G d F . )
2
 J

 1
 J

o
p
(l)

-G*) dF* + J G d(F
±
-F*)} + o (1)

- δ ^ { I (G-G*) dF
±
 + I (F

i
-F*) dG} +

 Op
(l)



93

Since the term in braces in the last line of (15) is approximately centered,

replace (1-δ.) by its expectation b. to obtain

(16) I . = τ λ I d. ~=- ί | ( G - G " ) dF. + [ ( F . - F * ) dG} + o (1) .
Z x i i b _ L J l J l l p

The first term of (16) can be treated by an approximation as in Koul, Susarla

and Van Ryzin (1981). This involves first approximating the term by a U-

statistic, and then reducing it to a sum of independent centered random varia-

bles, denoted by A- + +A .

To approximate the term £. d.(a./b.) (F. -F.)dG in (16), we have to study

the process { |F. (S) - F. (s) | - °° < s < °°} , for i = 1,.. . ,n, more carefully. Re-

call here that F.(s) = F(s-(3x.). A Taylor expansion yields

F*(s) -F
i
(s) = expίln F*(s)} - expίln F

±
(s)}

(17) *

δ.[z. -βx. <s-Bχ. + (3 -3)(χ.-χ.)]

= L -
J
-

J J 2
 lnF (s) + o (1) ,

where o (1) is independent of i and [s] is the indicator function of the set S.

The random variable in (17) can further be approximated by

Ί
 [Z. -βx. <s-βx. + (β*-β)(x. -x.)]

A £.6. - -1 ^ ^ _-J—^ _ _ .
n-

1
 I

k
[z

k
-3χ

k
>z.-3χ.]

 +
 n-

χ
 I

k
(χ.-χ

k
) f

fc
(z. - 3χ.) (B* - 3)

+ o (1) ,

where f is the density of Z - 3x . The factor
k K. R



94

I x . I < τ I 3 -3 I (τ " max. | x. | ) -*• 0 whenever max. | x. | τ ~
1
 •* 0 and

as n -> o°. Therefore,

Λ
 δ.[z. -3χ. <s-βχ.]

(19) ¥
±
 (s)-F

i
(s) = ± I. -

J
—

J 2
 — - lnF^s) + o

p
(l)

-
1
Σ [ ]

This term is similar to the terms dealt with in Koul, Susarla and Van Ryzin

(1981) which can be approximated by a sum of independent centered random varia-

bles, denoted by B + +B . Combining this result with that earlier for the

first-term of (16), we have

(20) I = A
Ί
 + ••• + A + B- + ••• + B + o (1) .

z 1 n 1 n p

To treat the term I in (14), rewrite I as

= τ
χ

1
 h V i - V

0
* ! ^

 λ {
 ί

 s(G
*

dF
i "

 G d F
i

)

•k -k -k
and noting that lim b. = lim G dF. = GdF. =b. and that lim sup. sup

|F.(s) - F.(s)| = 0 with probability one, we can approximate I as

(22) I = T
 λ
 I. d.(l-δ.) b.

 λ
 { I s(G*-G)dF. + ί s(F*-F.)dG} + o (1)

1 X 1 1 1 1 1 1 1 p
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By writing G' (S) - G ( S ) =exp{lnG (s)} - exp{lnG(s)} and similarly for F. -F.

and doing a Taylor expansion similar to that in (17), I., can be approximated as

a sum of independent centered random variables, denoted by C + •••+C . This

result combined with (13), (14) and (20) yield τ (β - β) = II + (A- + +A ) +

x I n
(B- + •• +B ) + (C. + •• +C ) + I

o
, which we see is the sum of a triangular

1 n 1 n J

array of independent random variables, and hence by the Lindeberg-Feller central

limit theorem will be asymptotically normal. Note that the conditions that

2
τ ->• °° as n-^°°, max. x. /τ -*- 0 and that G have heavier tails than F are re-
x l ' l

1
 x

quired for this to hold. Thus, asymptotic normality of 3 is expected to hold

provided the first-step estimator β is consistent. Such a consistent first-

step estimator is given by Koul, Susarla and Van Ryzin (1981). That subsequent

finite-step estimators of 3 are consistent and asymptotically normal follows

inductively.

5. Some Simulation Results

Table 1 presents the results of six simulations of the multi-step pro-

cedure of this paper and that of Buckley and James (1979). In all cases, the

table entries are based on 500 simulations of the situation described. All

simulations are for the two sample problem with n=50 observations where x. =0

for 1 = 1,...,25 and x.=l for i = 26,...,50. The simulation sample standard

errors for the simulation averages of α and 3 for the 500 repetitions were in

all cases .< 017 for α and <..O31 for 3 and thus are not individually given to

save space. The first-step estimates for both methods were taken as the esti-

mator of α and 3 as defined in Koul, Susarla and Van Ryzin (1981) with M =n,

and are denoted in the tables as method M^. The second, third and fourth-step

estimators for the estimators introduced in this paper are denoted by M , M ,

and M,, respectively, while those of Buckley and James are referred to as M-,

* *
M_ and M.. Furthermore, in each case of Table 1 the error distribution for the
3 4

simulation was taken as ε. ~ N(0,l). The follow-up distribution G(y) for the

first five cases are exponential with mean μ and are denoted by E(μ) in Table 1

while the six case has a right-sided logistic distribution given by l-G(y) =
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2e"
y
/(l + e"

y
) on [0,«J and is denoted by LOG&).

Upon examining Table 1, it is clear that the method of this paper performed

better than that of Buckley-James over the initial three iterates after the

first-step. Thus, based on these limited simulations, we feel the multi-step

procedure introduced in this paper holds considerable promise. Simulations

for differing sample sizes and for regression situations other than the two

samples are under investigation and will be presented elsewhere.

TABLE 1. Simulation of 4-step estimators based on 500

replicates.

Simulated Case

Average of

Method of Estimates

Estimation (α,3)

Average Mean Square

Error of Estimates

(α,3) = (0,0)

Follow-up dist. =E(1)

Average censoring:

Sample 1= .44

Sample 2 = .44

(α,3) = (0,-1)

Follow-up dist. =E(2)

Average censoring:

Sample 1 = .44

Sample 2 = .22

M
l

M
2

M
3

M
4

M*

M
3

M*

M
l

M
2

M
3

M
4

M*

M*

(-.200,.017)

(-.144,.015)

(-.137,.015)

(-.135,.015)

(-.190,.013)

(-.186,.012)

(-.185,.012)

(-.227,-.797)

(-.130,-.906)

(-.105,-.939)

(-.096,-.949)

(-.200,-.875)

(-.193,-.892)

(-.191,-.987)

(.082,.077)

(.074,.087)

(.076,.096)

(.077,.100)

(.085,.082)

(,087,.088)

(.088,.092)

(.087,-115)

(.067,.096)

(.066,.098)

(.066,.099)

(.084,.094)

(.084,.094)

(.084,.094)
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Simulated Case

Average of

Method of Estimates

Estimation (α,β)

Average Mean Square

Error of Estimates

(α,β) = (1,2)

Follow-up dist. =E(20)

Average censoring:

Sample 1 = .18

Sample 2 = .62

(α,3) - (1,2)

Follow-up dist. =E(10)

Average censoring:

Sample 1= .30

Sample 2 = .79

(α,β) = (0,3)

Follow-up dist. =E(20)

Average censoring:

Sample 1= .07

Sample 2 = .62

M
i

M
2

M
3

M
4

M*
2

M*
3

M*
4

M
l

M
2

M
3

M
4

M
2

M
3

K
M
l

M
2

M
3

M
4

M*

M*

M
4

(.960,.760)

(1.021,1.485)

(.976,1.743)

(.967,1.855)

(.961,1.338)

(.927,1.560)

(.908,1.655)

(.895,.234)

(1.055,1.022)

(.961,.1.387)

(.942,1.597)

(.911,.815)

(.871,1.147)

(.839,1.343)

(-.008,1.708)

(.012,2.506)

(-.008,2.776)

(-.012,2.884)

(-.012,2.276)

(-.037,2.487)

(-.052,2.574)

(.083,1.872)

(.053,.400)

(.048,.176)

(.048,.129)

(.049,.590)

(.051,-306)

(.053,.214)

(.119,3.584)

(.076,1.217)

(.058,.576)

(.058,.326)

(.068,1.692)

(.071,.958)

(.078,.620)

(.047,1.895)

(.046,.366)

(.044,-155)

(.043,.118)

(.044,.662)

(.044,.372)

(.045,.277)
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Table 1 (continued)

Simulated

(α,β) - (0

Follow-up

Case

,-D

dist. =LOG(^)

Average censoring:

Sample 1

Sample 2

= .50

= .26

Method of

Estimation

M
l

M
2

M
3

M
4

M*

M*

Average of

Estimates

(α,3)

(-.248,-.790)

(-.144,-.907)

(-.115,-.945)

(-.104,-.959)

(-.234,-.884)

(-.227,-.908)

(-.222,-.915)

Average Mean Square

Error of Estimates

(α,3)

(.094,.113)

(.066,.091)

(.064,.093)

(.064,.095)

(.094,.087)

(.093,.087)

(.093,.088)

6. Concluding Remarks

This paper presents a multi-step estimator for the α and 3 in linear

model (1) when the independent variable X. is randomly right-censored. These

estimators are modifications of the Buckley-James estimators. The large sample

properties shown to hold here might be extendable to the Buckley-James case of

fixed censoring or to our modification of the Buckley-James case when the Y.

are not i.i.d. (see Susarla and Van Ryzin (1979)) if in our method we replace

(1 - G) in our formulas by the estimator one would get using the Kaplan-Meier

for the non i.i.d. case as an estimator of lim {n £.(1 - G.(t)}, assuming this

exists. This seems worth further investigation.

We remark that everything mentioned in this paper easily extends to the

multiple regression model where

with Ĉj, being the i*-*
1
 row of the n x p design matrix C, 3 is the p x 1 vector

of regression coefficients, and G., Y., Z. and 6. are as above. Then, the
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second-step es t imator of 6 would be given by

- 1 ^4. Λ * / \ * Λ *

CC fC) C f X * , X = ( X _ , . . , , X ) f

~ ~ i n

with X. = δ.Z. + ( l - δ . ) P / P where P. . is given by (9) with the first-
i i i l i,J. i,u i»J

step uncensored residuals Z. = C
!
3 with δ. =1 used to estimate 1-F by the

•k *

Kaplan-Meier method, 1-G is estimated as before, and 3 is the first-step

estimate of 3 given by (5.2) in Koul, Susarla and Van Ryzin (1981) with M =n.

n

Clearly, further simulations (or theoretical) studies of the convergence

properties (speed, etc.) of our multi-step procedure seem warranted and are

anticipated.
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