
CHAPTER 7

AUTOREGRESSION

7.1. INTRODUCTION.

The purpose of this chapter is to offer a unified functional approach to some
aspects of robust estimation and goodness-of-fit testing problems in pth
order autoregression (AR(p)) models. This approach is similar to that of the
previous chapters in connection with linear regression models, thereby-
extending a statistical methodology to one of the most applied models with
dependent observations.

As before, let F be a d.f. on R, p > 1 be an integer, e\, €2, ^ e i-i-d.
F r.v.'s and Yo := (Xo, X-i> •., Xi-p)' be an observable random vector
independent of ei, €2, In an AR(p) model one observes {Xi} satisfying

(1) Xi = pχXi-1 +• •+ /?pXi-p + £i, 1 < i < n, p > 1,

for some p' = (ρh p2, ... , ρv) e Rp.

Processes that play a fundamental role in the robust estimation of p in
this model are the randomly weighted residual empiήcal processes

(2) Tj(x, t):= n" 1 .^ g(X H ) I(Xi - X Y ^ < x), xGR, tGRp, 1 < j < p,

where g is a measurable function from R to R and Y M := (Xi-i,..., Xi-p)', 1
< i < n . Let T := (T1} ..., T J ' .

The generalized M- (GM) estimators of p, as proposed by Denby and
Martin (1979), are solution t of the p equations

(3) £j(t) := / iix) Tj(dx, t) = 0, 1 < j < p,

where ψ is a nondecreasing bounded measurable function from R to R. These
estimators are analogues of M-estimators of β in linear regression as
discussed in Capter 4. Note that taking g(x) = xl[ |x | < k ] + kl[ |x | > k] Ξ
ψ(x) in (3) gives the Huber(k) estimators and taking g(x) = x = ̂ (x) gives
the famous least square estimator.

The m.d. estimator p\ that is an analogue of /ζ of (5.2.20) is defined

as a minimizer, w.r.t. t , of

(4) Kg(t) = l j [if 1 ' 2 J^Xi- jHltXi < x + t ' Yi-O

- I(-Xi < x . t ' Yi-0}]2 dG(x), t e Rp.

209
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Observe that K involves T. In fact, V t e Rp,

Kg(t) = lmi / [ n ^ T j f r t) - Σ i g(Xi, ) + Tj(-x, t)}]2 dG(x).

Three members of this class of estimators are of special interest. They
correspond to the cases g(x) Ξ X = G(x); g(x) = x, G Ξ ί<j, the measure
degenerate at 0; g(x) Ξ x, G = F in the F known case. The first gives an
analogue of the Hodges-Lehmann (h.l.) estimator of p, the second gives the
least absolute deviation (l.a.d.) estimator, while the third gives an estimator
that is more efficient at logistic (double exponential) errors than l.a.d (h.l.)
estimator.

Another important process in the model (1) is the ordinary residual
empirical process

(5) Fn(x, t) := n" 1 Σi I(Xi - 1 ' Y M < X), X G R , t G RP.

An estimator of F or a test of goodness-of-fit pertaining to F are usually

based on Fn(x, p), where p is an estimator of p.
Clearly F n is a special case of (2). But, both F n and Tj, 1 < j < p,

are special cases of

(6) Wk(x, t) := n" 1 Σi KY^) I(Xt - t Ύ i , < x)

= n" 1 Σi h(Yi.O I(ci < x + (t - p) Y M ) , x G R, t G Rp,

where h is a measurable function from Rp to R. Choosing h(Yi-i) = g(Xi-j)
in Wh gives Tj, 1 < j < p and the choice of h = 1 yields F n .

From the above discussion it is apparent that the investigation of the
large sample behavior of various inferential procedures pertaining to p and

F, based on {Tj} and Fn( , p), is facilitated by the weak convergence

properties of {Wh(x, /wΓ ' 2 u), xGR, ΠGRP}. This will be investigated in
Section 7.2, with the aid of Theorem 2.2b. 1. In particular, this section

contains an a.u.l. result about {Wh(x, p+n~ ' u), xGR, | |U|| < B} which in

turn yields a.u.l. results about {T(x, p+nΓ^u), xGR, | |U| | < B} and {Fn(x,

p+vΓ ' u), xGR, | |U| | < B}. These results are useful in studying GM- and R-
estimators of p, akin to Chapters 3 and 4 when dealing with linear regression
models. They are also useful in studying the large sample behaviour of some
tests of goodness-of-fit pertaining to F. Analogous results about the
ordinary empirical of the residuals in autoregressive moving average models
are briefly discussed in Remark 7.2.4.

Generalized M-estimators and analogues of JaeckePs (1972)
R-estimators are discussed in Section 7.3. In order to use R- or m.d.
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estimators to construct confidence intervals one often needs consistent
estimators of the functional Q(f) of the error density f. Appropriate
analogues of estimators of Q(f) of Section 4.5 are shown to be consistent
under (Fl) and (F2). This is also done in Section 7.3, with the help of the

a.u.l. property of {Fn(x, p+n ' u), xeR, |lπ||<B}. This result is also used to
prove the a.u.l. of serial rank correlations oί the residuals in an AR(p) model.
Such results should be useful in developing anlogues of the method of
moment estimators or Yule-Walker equations based on ranks in AR(p)
models.

Section 7.4 investigates the behaviour of two classes of m.d. estimators

of p, including the class of estimators {pg}. A crucial result needed to
obtain the asymptotic distributions of these estimators is the asymptotic
uniform quadraticity of their defining dispersions. This result is also proved
in Section 7.4. Section 7.5 contains appropriate analogues of some of the
goodness-of-fit tests of Capter 6 pertaining to F.

7.2. ASYMPTOTIC UNIFORM LINEARITY OF Wh and F n .

Recall the definition of Vh process from (1.4.1) and the statement of
Theorem 2.2b.l. In (1.4.1), let

(1) Cni Ξ €i, hn i = h(YM), δni = n~ 1 / 2u' YM, u e Rp, 1 < i < n,

Λnl = σ-field {Yo}, Λύ = σ-field {Y'O, ei,...,€i-i}, 2 < i < n.

Then one readily sees that the corresponding Vh(x), Vh(x) are, respectively,

equal to PFh(x, /n-n"1' u), Wh(x, p) for each u e Rp and for all x e R.
Consequently, if we let

(2) ι/h(x, t) := n" 1 Σi h(Yi.O F(x + (t - p) Y M ) ,

, t) := n 1 / 2[ Wh(x, t) » i^(x, t)], x 6 R, t e Rp,

then the corresponding C/h(x), C/h(x) are, respectively, equal to %(x, p+

n" l y r 2π), %(x, p) for each ueRp and for all xeR. Recall the conditions (Fl)
and (F2) from Corollary 2.3.1. We are now ready to state and prove the
following

Theorem 7.2.1. In addition to (7.1.1), assume that the following
conditions hold:

(al) h is a bounded function.



212 AUTOREGRESSION 7.2

(a2) n " 1 / 2

(a3) n " 1 ^

(a4) F satisfies (Fl) and (F2).

TΛen, for every 0 < B < α,

(3) sup I l£(x, /mf ^ u ) - %(x, p) | = op(l),
xeR,||n||<B

and

(4) n 1 / 2[ Wh(x, p+n~1/2u) -Wh(x, p)] = - u 'n^Σi h(Yi-,)Yi-i f(x)

where o p ( l ) is a sequence of stochastic processes that converges to zero,
uniformly over the set xeR, | |U | |<B, in probability.

Proof. In view of the discussion preceeding the statement of the
theorem it is clear that (2.2b.2) of Theorem 2.2b.1 applied to entities given
in (1) above readily yields that

sup{ I %(x, /mΓ1 / 2u) - %(xf p) I XGK} = op(l) for every fixed u 6 Rp.

It is the uniformity with respect to n that requires an extra argument and
that also turns out to be a consequence of another application of (2.2b.2) and
a monotonic property inherent in these processes as we now show.

Since h is fixed, it will not be exhibited in the proof. Also, for

convenience, write W(-), %(•)> W/

u

±( ), *£(•) etc. for %( , p), %( ,

p*n ' u), Wh( , p+n ' u), i^( , p+n ' u) etc. with ± signifying the fact

that h* now appears in the place of h in these processes where h+ = OVh,
h" = h - h+. To avoid displays being broken into different lines often, write

fi, hi, ht for Yi-i, h(Yi-i), h^Yi-i), respectively, i>l. Thus, e.g.,

(5) %*(x) = n" 1 / 2Σi ht {I(€i < x * n~1/2u' ft) - P(x + n~1/2u' ft}.

We also need the following processes:

(6) T*(x; π, a) := n" 1/ 2 Σj ht I(£i < x + n " 1 / 2 u ' ft + a" 1 / 2

m*(x; u, a) := n " 1 / 2 Σj ht F(x + n " 1 / 2 u ' ft + n" 1 / 2a| |ft | |)

Z±:=Ί±-m±

t x e R , u 6 Kp, a G R.
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Observe that if in ϋk of (2.2b. 1) we take ζΏi= e\, h n i = h^ft), ί n i =
n {u'ξi+a||^i||} and Λni, 1 < i < n, as in (1), we obtain

ί7h( ) = Z±( π, a), for every u e Kp, a e R.

Similarly, if we take ί ni Ξ n ' u ft and the rest of the quantities as above
then

Uh(.) = Z*(-; u, 0) = %*(•), for every u 6 Rp.

It thus follows from two applications of (2.2b.2) and the triangle inequality

that for every u e Rp, a 6 R,

(7a) supx I Z*(x; u, a) - Z*(x; u, 0) | = o p (l),

(7b) β π p x | n * ( x ) - r * ( χ ) | =op( l ) .

Thus, to prove (3), because of the compactness of i(B), it suffices to show
that for every e > 0 there is a δ > 0 such that for every ||u|| < B,

(8) lim supn P( sup | %{x) - %(x) | > 4e) < 6.
||s||<B,||s-π||<ί,χ

By the definition of w and the triangle inequality, for xeK, s, ueRp,

(9) I %(x) - %(x) I < I rs\x) - %+(x, u) I + I %-(x) - %-(x) I,

I fftx) - n*(x) | < n1 / 2[|Wί(x) - Wί(x)| + |ι/ί(x) - »4(x)|].

But s eJ/(B), ||u|| < B, ||s - u | | < 6 imply that for all 1 < i < n,

(10) ft +

From (10), the monotoniάty of the indicator function and the nonnegativity

of h , we obtain

T*(x; π, -S) - T*(x; u, 0) < Wί(x) - WΪ(x) < T*(xj u, S) - T*(x; u, 0)

for all x e R, s 6 flβ), ||frπi|| < δ. Now center T* appropriately to obtain
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(11)

< |Z*(x; u, δ) - Z*(xj u, 0) | + |Z*(x; u, -£) - Z*(x; u, 0) |

+ |m±(x; u, 8) - m±(x; u, 0) | + |m±(x; u, -δ) - m±(x; π, 0) | ,

for all xeR, s 6 i^B), ||s - u| | < 8.

But, by (a4), V ||u|| < B,

(12) supχ |m*(x; n, *ί) - m*(x; n, 0)1 < ί||f||β n^ΣiUhiftll,

(13) sup n^ l^ί ίx ) - i4(χ)| < ί||f|| n^ΣiHhifill.
| | | | <

From ίl2V (11), (7a) applied with a = δ and a = — δ and the
assumption (a3J one concludes that for every e > 0 there is a δ > 0 such
that for each | |u|| < B,

lim supn P( sup n 1 / 2 1 W^(x) - WΪ(x) | > e) < e/2.
||s-π||<ί,x

From this, (13), (9), and (a3) one now concludes (8) in a routine fashion.
Finally, (4) follows from (3) and (a4) by Taylor's expansion of F. D

An application of (4) with h(Yi-i) = g(Xi-j) and the rest of the
quantities as in (1) readily yields the a.u.l. property of Tj—processes, l<j<p
of (7.1.2). This together with integration by parts yields the following
expansion of the M-scores </j, l<j<p of (7.1.3).

Corollary 7.2.1. In addition to (7.1.1), (a2) and (a4), assume ihat the
following conditions hold.

(bl) g is bounded.

(b2) *ψ is nondecr easing, bounded and ftp dF = 0.

(b3) n" 1 Σi HgtXi^YMll = O p (l), 1 < j < p.

Then, V 0 < k, B < QD,

where the supremum is taken over all ψ with ||^||tv< k < oo, ||u|| < B, l<j<p. D
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Upon choosing h Ξ 1 in (4) one obtains an analogous result for the
ordinary residual empirical process Fn(x, t). Because of its importance and
for an easy reference later on we state it as a separate result. Observe that
in the following corollary the assumption (a3*) is nothing but the assumption
(a3) of Theorem 7.2.1 with h = 1.

Corollary 7.2.2. Suppose that (7.1.1) holds. In addition, assume that
(a2), (a3*) and (a4) hold, where,

(a3*) n" 1

Then, for every 0 < B < OD,

(14) sup|n1 / 2{Fn(x, p+n~1 / 2u) - Fn(x, p)} - u V 1 ^ Y M f(x) | = op(l),

where the supremum is taken over x e R, ||u|| < B. D

Remark 7.2.1. Observe that non of the above results require that the
process {Xi} be stationary or any of the moments be finite. D

Remark 7.2.2. Consider the assumptions (a2) and (a3). If Yo and

{ei} are so chosen as to make ίXi} stationary, ergodic and if E( | |Y O | | 2 +6 2 )<OD
then (a2) is a priori satisfied and (al) implies (a3). See, e.g., Anderson
(1971; p 203). In paricular, (a3) holds for the h corresponding to the Huber
function h(x) = lx | I ί | x | < k) + sign(x)I(|x| > k), k > 0.

Of course if (al) holds with the function h Sounded in such a way that
puts zero weight outside of compacts then (a3) is trivially satisfied.

Observe that (a2) is weaker than requiring the finiteness of the second
moment To see this, consider, for example, an AR(l) model where Xo and
6i, 62, ... are independent r.v.'s and for some \p\ < 1,

Xi = p X M + €i, i > 1.

Then,

χ t = p% + ^ p>-% Yi = Xi, i > 1.

Thus, here (a2) is implied by

(i) m ^ n - ^ l e i ^ O p ί l ) .

n

But, (i) is equivalent to showing that x in {1-P( | eχ| >x)} —» 0 as x —» OD,

which, in turn is equivalent to requiring that x P( | eχ| >x) —» 0 as x —»op.
This last condition is weaker than requiring that E| e\\ < OD. For example,
let the right tail of the distribution of | €i| be given as follows:
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= l, x < 2 ,

= l/(x2 in x), x > 2.

Then, E| €i| < co, E e\ = x, yet x2P(| eι\ >x) —» 0 as x —»σ. D

Remark 7.2.3. An analogue of (14) was first proved by Boldin (1982)

requiring {Xi} to be stationary, Eei = 0, E(ei) < α> and a uniformly
bounded second derivative of F. The Corollary 7.2.2 is an improvement of
Boldin's result in the sense that F needs to be smooth only up to the first
derivative and the r.v.'s need not have finite second moment.

Again, if YQ and {e\} are so chosen that the Ergodic Theorem is

applicable and E(Yo) = 0, then the coefficient n Σi Yi_i of the linear term
in (14) will converge to 0, a.s.. Thus (14) becomes

(14*) sup | |π | | ίB In^ίFnfc pnΓ1^) -Fn(x,

In particular, this implies that if p is an estimator of p such that

then

00

Consequently, the estimation of p has asymptotically negligible effect on the
estimation of the error d.f F. This is similar to the fact, observed in the
previous chapter, that the estimation of the slope parameters in linear
regression has asymptotically negligible effect on the estimation of the error
d.f. as long as the design matrix is centered at the origin. α

An important application of (14) occurs when proving the a.u.l
property of the serial rank correlations of the residuals as functions of t.
More precisely, let Rπ denote the rank of X r t ' Yi-i among Xj-t'Yj-i, l<j<n,
l<i<n. Define Ru = 0 for i<0. Rank correlations of lag j , for l<j<p, are
defined as

(15) Sj(t) := - ^ J. # i(RH t

S := (Si, ..., Sp).

Simple algebra shows that

Sj(t) = an[Lj(t) - n(n+l)2/4] + bn j(t), 1 < j < p,
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where an is a nonrandom sequence not depending on t, | a n | = 0(1),

bnj(t)= J ί f ± ! L ( | . + Σ

j ) R i t )
{ n ( n 2 - l ) } i=n-J+1 i =i

and

Lj(t):= n"3 Σ ^ KHt R it, 1 < j < p, t e Rp.

Observe that sup{|bn,(t)|; teRp} < 48p/n, so that n 1 / 2 sup{|b n j (t) | ; teRp}
tends to zero, a.s. It thus suffices to prove the a.u.l. of {L,} only, 1 < j < p.

In order to state the a.u.l. result we need to introduce

(16) Zij := fCeH)P(€l) + f(ei)F(eH), i > j ,

:= 0, i < j .

ϋij := Yi_H P(ei)ί(eH) + Y H ί(ci)F(eH), i > j ,

: = 0 , i < j .

n .— n 2J I i-i

Observe that {Zii} are bounded r.v.'s with EZy = J ^(x) dx for all
i and j . Moreover, {ei} i.i.d. F imply that {Zy, j<i<n} are stationary and
ergodic. By the Ergodic Theorem

Zj-^b( f ) :=/f 2 (x)dx, a.s., j = 1, ..., p.

We are now ready to state and prove

Theorem 7.2.2. Assume that (7.1.1), (a2), (a3*) and (a4) hold. Then,
for every 0 < B < OD and for every 1 < j < p,

(17) 8uPiLii/iι l n l L j ( ^ n uhLj(P)J - u l b ( f ) γ n - ϋ j j | =

0 0

7/(a2) and (a3*) are strengthened to requiring E(||Yo|| + e{) < oo and
stationary and ergodic then Yn and TΓj may be replaced by their respective
expectations in (17).

Proof. Fix a j in l<j<p. For the sake of simplicity of the exposition,

write L(u), L(0) for Lj(/wΓ ' u), Lj(p), respectively. Apply similar

convention to other functions of u. Also write e\n for e\ — n ' u Yi-i
and Fn( ) for Fn( , p). With these conventions Ri u is now the rank of
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Xi — (p+n ' π) Yi-i = €{u. In other words, Riu = nFn(6iu, π) and

L(u) = n'^Σ +i Fn(£i. i u, u) F n(6 i u, u), u 6 Rp.

The proof is based on the linearity properties of Fn( , u) as given in (14) of
Corollary 7.2.2 above. In fact if we let

Bn(x, π) := Fn(x, u) - Fn(x) - n " x / V Yn f(x), x 6 R.

then (14) is equivalent to

supn 1 / 2 |B n (x,π) | =

All supremums, unless specified otherwise, in the proof are over xeR, l<i<n
and/or ||u|| < B. Rewrite

= n"1 / 2.Σ+ i{F n(ci- j u, u) F n (c i u , u) - Fn(ei-j) F n ( C i )}

= n"1/2.Σ + i[{Bn(ei- jU j u) + F n(ci. j u) + n" 1 / 2 uΎ n f(ei- jn)}

•{Bn(e i u j u) + F n (e i u ) + n" 1 / 2 uΎ n f(e i u)}

-Fnίei-jOF

Hence, from (14), (a2) and (a3*),

(18) n ^ t J - L ί O ) )

= n" 1/ 2!. + i [F n (e H u ) F n (e i u ) -F n (c i ) P n ( e H ) ]

+ n"1 J jFaίei-j^Cta) + Fn(c l i l)f(ci. j l l)](iιΎn) + o p(l),

where, now, o p (l ) is a sequence of stochastic processes converging to zero
uniformly, in probability, over the set M(B).

Now recall that (a4) and the asymptotic uniform continuity of the
standard empirical process based on i.i.d. r.v.'s imply that

sup n1/21 [Fn(x) - F(x)] - [Fn(y) - F(y)] | = o p (l )
|x-y|<ί

when first m m and then δ-* 0. Hence from (a2) and the fact that
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16 i u - ei| < Bn 1 / 2maxi

one readily obtains

s u P i , u n1 / 21 [F n (e i u ) - F(e i u)] - [F n(C i) -

From this and (a4) we obtain

(19) su P i ) 1 1 n
1 / 2 | F n ( 6 i u ) - F n ( C i ) + n " 1 / 2 u Ύ n

From (18), (19), the uniform continuity of f and F, the Glivenko-Cantelli
lemma, one obtains

(20) n ^

= n" 1 . ! + i [F(e H ) f(C i) + F( £ i ) rXei-jMu

- n V 1

In concluding (20) we also used the fact that by (a2) and (a3*),

sup |n~3/2.Σ Ju'Yi-j V Y M I < B n~1/2max ||YM|| n^.Σ ^ | |YH | | = o p (l) .

Now (17) readily follows from (20) and the notation introduced just before
the statement of the theorem. The rest is obvious. α

Remark 7.2.4. Autoregressiυe moving average models. Boldin (1989)
and Kreiss (1991) give an analogue of (14*) for a moving average model of
order q and an autoregressive moving average model of order (p,q)
(ARMA(p,q)), respectively, when the error d.f. F has zero mean, finite
second moment and bounded second derivative. Here we shall illustrate as to
how Theorem 2.2b. 1 can be used to yield the same result under weaker
conditions on F. For the sake of clarity, the details are carried out for an
ARMA(1,1) model only.

Let eo, 6i, 62, •.., be i.i.d. F r.v.'s and Xo be a r.v. independent of {ei,
i > 1}. Consider the process given by the relation

(21) Xi = />XM + cι + β €i-i, i > 1,

where | / ? | < 1 , | / 3 | < 1 . One can rewrite this model as

(22) ei = Xι-(pXo + βeo), i = 1,

= Xi -Y i(-^(/?+/g) XI-M + B?)1"1 (/>Xo + βeol i > 2.
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Let θ := (s, t) ' denote a point in the open square (—1, I)2 and 0O := (p,
β)' denote the true parameter value. Assume that 0>s are restricted to the
following sequence of neighborhoods: For a be(0, α>),

(23) n l / 2 { | B _ p , + | t _ f l } < b .

Let {ei, i > 1} stand for the residuals kCi, i > 1} of (22) after p and
β are replaced by s and t, respectively, in (22). Let F n ( , 0) denote the

empirical process of {e\, 1 < i < n}. This empirical can be rewritten as

(24) Fn(x, 9) = n" 1.^ I( C i < x + δni), xeR,

where

(25) ίni := (s - p)X0 + (t - b) c0> i = 1,

= Ϋ [ ( - t ) i ( s + t ) - ( - ^ ( p + ^ ) ] X i . j . 1

+ (-t)1"1 (sXo + te0) - {-β)1-1 (pX0 + βe0), i > 2.

= tail + tai2, say, i > 2.

From (25), it follows that for every θ € (-1, I)2 satisfying (23),

+ ( l -

Consequently, if n~ ' max |Xi| = op(l), then the {δni} of (25) would

satisfy (2.2b.A2) for every θ € (-1, I)2. But by (21),

(26) Xi = pX0 + βe0 + €U i = 1,

= ^-tyXo+Zfco) + Ϋ pi{p+β) Ci-j-i + Ci, i > 2.

Therefore, (2.2b.A2) will hold for the above {ί n i } if

(27) n - ^

il (1 - b n ' 1 / 2 - ^
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We now verify (2.2b.A3) for the above {δa\} and with hni = 1. That is

we must show that n~ ' Σ| 6ni\ = O p(l). We proceed as follows. Let u =

n^is-p), v = nX/2(t -β) and Zo := |X0 | + | e o | By (23), |u | + |v | <
b. From (25),

(28) n" 1 / 2 Σ|ίni | ^ n Λ Z o

+ n"1'2 J j ^[(-tfts+t) - {-β)Kp+β)] Xi-j-il

+ n"1/2 j j HHsXo + t£0) - (-0)1"1 ZI,

= Ani + An 2 + An3, say.

Clearly, |A n l | = o(l), a.s. Rewrite

An2 = n"1/2 Σ I Ϋ[(-t)i{(u+v)n-1/2+p+^} - {-β)Kp+β)] Xi-j-t
1 - Δ J - U

(29) = 2bAn2i + 2An22, say.

By a change of variables and an interchange of summations one obtains

(30) A n 2 i < n h IXi| ( l - | t | ) .

Next, use the expansion ai — ci = (a — c) Σ a jM"k c k for any real numbers

a, c, to obtain

An22<bn-\Σ ΫVltlH-MiSlNXi-J-il
1 = 0 J = l Jt = U

Again, use change of variables and interchange of summations repeatedly and
the fact that | p | v | t | < 1, to conclude that this upper bound is bounded
above by

b(l -I^D^Kl -hi)"1 + 1] n^JjXil.

This, (28) and (29) together with (23) imply that
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(31) A n 2 < 2 b n \Σ |Xi| [(1-b

Finally, similar calculations show that

(32) A n 3 = O p(i

From (28), (31) and (32) it thus follows that if n" 1.! |Xi| = O p(l),

then the {δΏi} of (25) will satisfy (2.2b.A3) with hni = 1. But in view of
(26) and the assumption that | p | V | β\ < 1, it readily follows that if

loo) n ii Iί\\ = u p ι l ) ,

then (2.2b.A3) with h n i = 1 holds for the { ί n i } of (25). We have thus
proved the following:

If (21) holds with the error d.f. F satisfying (Fl), (F2), (27) and (33),
then V 06 (-1, I)2,

sup x |n" 1 / 2 .Σ {I(ci < x) - I ( c i < x) - F ( x + £ n i ) + F(x)}| = o p (l) .

Now use an argument like the one used in the proof of Theorem 7.2.1 to
conclude the following

Corollary 7.2.3. In addition to (21), assume that the error d.f. F
satisfies (Fl), (F2), (27) and (33). Then, V 0 < b < α>,

sup I n 1 / 2[F n(x, U) - Fn(x,0o)] - n" 1 / 2 Σt ί n i f(x) | = o p (l),

where the supremum is taken over xGR and θ, θo satisfying (23).
7/(33) is strengthened to assuming that E\e\ < m, then

sup In"1/2 Σ δni-n^2[(s-p)(l-p)-1 + (t-^XH-^)"1] μ\ = op(l),

where the supremum is taken over s, t satisfying (23) and μ = Ee. α

Consequently, if Ee = 0 and (p, β) is an estimator of (p, β) such that

Hn1' (p-p, β-β)\\ = O p(l), then an analogue of (14*) holds in the present
case also under weaker conditions than those given by Boldin or Kreiss.
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The details for proving an anlogue of Corollary 7.2.3 for a general
ARMA(p,q) model are similar but some what complicated to those given
above. α

7.3. GM- and R- Estimators.

In this section we shall discuss the asymptotic distributions of GM- and R-
estimators of p. In addition, some consistent estimators of the functional
Q(f) will be also constructed. We begin with

7.3a. GM-Estimators.

Here we shall state the asymptotic normality of the GM-estimators. Let p~

stand for a solution of (7.1.3) such that | |n1 / 2(pM - p)\\ = Op(l). That such

an estimator pM exists can be seen by an argument similar to the one given

in Huber (1981) in connection with the linear regression model. To state the
asymptotic normality of p^ we need to introduce some more notation. Let

(1)

Xo

1 X 0 j JX 2 -p

[ g(x0)
g(X0 g(X0))....,g(X2-p)

• o•
g(Xn.1)g(Xn.2),..,g(Xn.p)

Proposition 7.3.1. In addition to (7.1.1), (7.2.a2), (7.2.a4), (7.2.bl),
(7.2.b2) and (7.2.b3) assume that

(b4) n~ BΏ = B + op(l), for some p*p non-random positive
definite matrix B.

Then

//, in addition, we assumes that

(b5) n" 1 p[ p = 0*+ op(l), G* a pxp non-random positive
definite matrix,

then
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Proof. Follows from Corollary 7.2.1, the Cramer-Wold device and
Lemma A.3 in the appendix applied to Q. u

Again, if Yo and {ei} are so chosen as to make {Xi} stationary,

_ o_lie and E(||Y0||
2+€?)<αD

e.g., Anderson (1971; p 203).
ergodic and E(||Y0|| +CI)<CD then (b4) and (b5) are a pήori satisfied. See,

Note*. For a more general class of GM—estimators see Bustos (1982) where a
result analogous to the above corollary for smooth score functions 'φ is obtained. D

7.3b. R-Estimators.

This section will discuss an analogue of JaeckePs (1972) R-estimators of p
and their large sample properties.

Recall that Ru is the rank of Xi-t 'Yi-i among {Xk-t'Yk-i, 1<
k < n}, for 1 < i < n. Also, Ru = 0 for i < 0. Let φ be a nondecreasing
score function from [0, 1] to the real line such that

(1) Ei φ/(nΛ)) = 0.

For example, if di) = — φ{\-1) for all t e[0. 1], i.e., if ^ is skew symmetric,
then it satisifies (l). Define

5j(u) := n"1 Σ X H p(Riu /(n+l))f 1 < j < P, π G Rp,

S := {Sb ..., Sp).

The class of rank statistics 5, one for each φ, is an analogue of the class of
rank statistics discussed in Section 4.3 above in connection with linear
regression models where one replaces the weights {Xi-j} by appropriate
design points. A test of the hypothesis p = po may De based on a suitably
standardized 5(/>o), the large values of the statistic being significant.

It is thus natural to define R-estimators of p by the relationship

(2) pR=argmin{| |5(t) | | ; t € Rp}.

An alternative way to define R-estimators of p is to adapt Jaeckel

(1972) to the AR(p) situation. Accordingly, for a teKp, let

= X k - t ' Y k . 1 ) l < k < n ,

i) (t) := the ith largest residual among {Zk(t), l<k<n}, l<i<n,
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n n

^r \ J * # Ίr \ / \ J) \ */ \ / ™"*
1 = 1 i = :

Then Jaeckel's estimator p is defined by the relation

); t e Rp}.

Jaeckel's argument about the existence of an analogue of p in the

context of linear regression model can be adapted to the present situation.
This follows from the following three lemmas, the first of which is of a
general interest.

Lemma 7.3b.l. Let di, d2, ..., dn, vi, V2, ..., vn, be real numbers such
that not all {di} are the same and no two {vi} are the same. Let τ m

denote the rank of vi — udi among {VJ — udj; 1 < j < n}, u e R. Let {bn(i);
1 < i < n} be a set of real numbers that are nondecreasing in i. Let

T(u):=Σ dibn(r i u), ueR.
1 = 1

Then, T(u) is a nonincreasing step function in all those ueR for which
there are no ties among {VJ — udj; 1 < j < n}.

Proof. See Theorem II.7E, p35 of Hajek (1969). α

Lemma 7.3b.2. Assume that the model (7.1.1) holds with (Yo, Xi, X2,
..., Xn) having a continuous joint distribution. Then the following hold.

(a) For each realization (Yo, Xi, X2, ..., Xn), the assumption (1) implies
that /{i) is nonnegative, continuous and convex function of t with its
a.e. derivative equal to —nS(t).

(b) If the realization (Yo, Xi, X2, ..., Xn) is such that the rank of J£ is p

then, for every 0 < b < OD, the set {teRp; /(i) < b} is bounded, where
ι3£ is the £ o/(7.3a.l), centered at the origin.

Proof, (a). For any x ' = (x l f x2, ..., xn)eRn, let x(l)<x(2)<....<x(n)
denote the ordered xi, X2, ..., x n Let Π := {x = (TΓI, 7Γ2, ..., TΓΠ)'; τ a
permutation of the integers 1, 2, ..., n.}, bn(i) := <p(i/(n+l)), 1 < i < n, and
define

D(x) := Σ i b n (i) x(i), D χ(x) := J i b n (i) x^., x e Rn,

k := min{l < j < n; bn(j) > 0}.

Observe that / ( t ) = D(Z(t)).
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Now, (1) and ψ nondecreasing implies that

D(X) = I b n ί O ί x W -

= Vbn(i) (x(i) -x(k)) + J kb n(i) (x(i) -
n ( ) ( ( ) (k)) + J k

> 0, V x e Rn,

because each summand is nonnegative. This proves that /{ϊ) > 0, t e R.
By Theorem 368 of Hardy, Littlewood and Polya (1952),

D(x) = max^jj D^x), V x e R n .

Therefore, V t e Rp,

(*) / ( t ) = D(Z(t)) = m a x Λ Π Dχ(Z(t))

This shows that /(i) is a maximal element of a finite number of
continuous and convex functions, which itself is continuous and convex. The
statement about a.e. differential being -nS(t) is obvious. This completes
the proof of (a).

(b) Without the loss of generality assume b > /(0). Write a teRp as

t = u0, ueR, flεRp, \\0\\ = 1. Let di = 0'Yi-i The assumptions about JS
imply that not all {di} are equal. Rewrite

/(t) = /(uθ) = J t bn(i) (X - ud)(i) = £ bn(riu)(Xi - udi)

where now riu is the rank of Xi — udi among {Xj — udj; 1 < j < n}. From

(*) above, it follows that /(uθ) is linear and convex in u, for every 0eRp,
n

\\0[\ = 1. Its a.e. derivative w.r.t. u is — Σ dibn(riu), which by Lemma 7.3b.l
i = l

and because of the assumed continuity, is nondecreasing in u and eventually
positive. Hence /(uff) will eventually exceed b, for every 0έRp, ||0|| = 1.

Thus, there exists a uβ such that /{MJS) > b. Since / is continuous,

there is an open set 0 - of unit vectors i/, containing θ such that / ( u ^ )

> b. Since b > /(O), and / i s convex, J(uu) > b, V u > u f land V ^ 0 -

Now, for each unit vector θ, there is an open set 0 ^ covering it. Since the
unit sphere is compact, a finite number of these sets covers it. Let m be the
maximum of the corresponding finite set of u ff Then for all u > m, for all

unit vectors i/, /(uv) > b. This proves the claim (b) and also the lemma, D
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Note: Lemma 7.3b.2 and its proof is an adaptation of Theorems 1 and
2 of Jaeckel (1972) to the present case. π

From the above lemma it follows that if the r.v.'s Yo, Xi, X2, ..., Xn

are continuous and the matrix n~ Σi(Yi_i — Y)(Yi-i — Y)' is a.s. positive

definite, then the rank of ά£ is a.s. p and the set {teRp; /(i) < b} is a.s.

bounded for every 0 < b < α>. Thus a minimizer p of / exists a.s. and has

the property that makes ||5|| small. As is shown in Jaeckel (1972) in
connection with the linear regression model, it will follow from the linearity

result given in Theorem 7.3b. 1 below that p and p are asymptotically

equivalent. Note that the score function φ need not satisfy (1) in this
theorem.

Some steps of the proof of Theorem 7.3b. 1 heavily depend on the
representation of the AR(p) process {Xi} in terms of the error variables
{e\\. For that reason we shall now extend the index i in the process {Xi}
to both sides of 0. Accordingly, assume that {ei, i = 0, ±1, ±2, ....} are
i.i.d. F r.v.'s and that

(3) Xi = piXi-x + />2Xi-2 + ... + /0pXi-p + Ci, i = 0,±l,±2, .... , p e Rp

In addition assume the following:

(4) All roots of the equation

x p — /hxp~ — /?2XP~ — ... — p p = 0 are in the interval (—1, 1).

It is well known that if E |c | < <D, there exist constants {0j, j > 0}
such that 0o = 1, Σj>o I 0j j < en, a n d that

(5) X i = Σ 0i_k 6k, i = 0, ±1, ±2, ...., in L2 and a.s.,

where the unspecified lower limit on the index of summation is -m. See,
e.g., Anderson (1971) and Brockwell and Davis (1987, pp 76-«6). Thus {Xi}

is stationary, ergodic and E||Y0||
2 < α>. Hence (7.2.al) implies (7.2.a3).

Moreover, the stationarity of {Yi-i} and E||Yo|| < α> imply that V η > 0,

(6) P ( i ? a | n HYMII > η n1'2) < {rμ^2y2^ EllYi-JI2 I(||Yi-i|| > rμ1'2)

= η2 E||Yo||2I(||Yo|| > rμί/2) = o(l)

Thus (7.2.a2) holds. These observations will be used in the sequel
frequently, some times without mentioning.
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With this preliminary background, we now state

Theorem 7.3b.l. {A.U.L. of R-statistics). Assume that (3) and (4)
above hold. In addition, assume that F satisfies (Fl), (F2) and that the
following hold.

(cl) (i) Ee = 0. (ii) 0 < Ee4 < *.

(c2) φ is nondecreasing and differentiable with its derivative φ
being uniformly continuous on [0, 1].

Then, for every 0 < B < GO,

(7) sup \\^2{S(p,n^2n) - 5} + uΈ Q|| = op(l),

IMI<B

where S := (Si, ..., 5P) with

e i ) ) - ^ ] , φ=fQ

1φ(t)dt, 1 < j < p,

j^if^Xi-j, Q : = / f d y < F ) ,

Σ := ((^(k-j)), 1 < k < p; 1 < i < p; 0(k) = Cov (Xo, Xk), 1 < k < p.

Before proceeding to prove the above result, we shall state a lemma
giving the asymptotic continuity of certain basic r.w.e.p.'s. Accordingly, let
h be a nonnegative measurable function from [0, 1] to R, U denote a
uniform [0, 1] r.v., and define

Sj(t):= n1'2 lχ Xi-j [A(F(ei)) I(F(eO < t) -JΓ(t)], 0 < t < 1, 1 < j < p,

where H(t):= E Λ(U)I(U < t) = J Λ(s)ds, 0 < t < 1.

The proof of the following lemma will be given in the subsection 7.3d.

Lemma 7.3b.3. In addition to (3), (4) and (cl(i)) assume that EΛ4(U) <
m. Then, V 7 > 0 , V 1 < j < p,

lim lim supn P( sup | ^( t ) - S(v) | > 7) = 0. α
^ ° | |
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Proof of Theorem 7.3b.l. Observe that with

5j(u):= n " 1 . ^ Xi.j p(R i u /(n+1)), u e Rp, 1 < j < p,

(8) ^lu^n1/21 ^(u)-^! ! ) I <p ^mg^ |Xk| \\ψ\\a n
1'2 - 0, a.s..

Thus it suffices to prove the theorem with {5j} replaced by {Sj}. Let

~S':= (5i, ..., 5P). Observe that

S(n) = n"1 Σ Yi-i ^ R i u /(n+1)), u eRp.
1 = 1

The proof is facilitated by centering S. Accordingly, define

M(u) := n" 1 £ Yi-i [^R i u /(n+1)) - φ ], u G Rp,

As in the proof of Theorems 7.2.1, 7.2.2, let M(π), Fn( , π), etc. stand

for M(p+n~1 / 2u), Fn( , p + n " 1 / 2 u ) , etc. Thus, e.g., Fn( , 0) now stands for
the empirical d.f. of 6i, l<i<n. Write Fn( ) for Fn( , 0). Recall, from the

proof of Theorem 7.2.2 that e\u = e\ - n^^uYi- i , n^^ iu = Fn(eiu, u).
Now, let

βniu = n 1 / 2 [(R iu /(n+l)) - F(ei)], 1 < i < n, u 6 Kp.

We first prove the

(9) Claim: supi^n^leniul = op(l).

As in the proof of Theorem 7.2.2, the supremum w.r.t. i, π will be over
1 < i < n, i\B), respectively, unless mentioned otherwise.

To begin with, | [n(n + I)""1 - 1] | = Ofa"1) implies that

(10) sup |n" 1 / 2 eniπ-[Fn(cin,iι)-P(€i)] | =O(n"1)> a.s.1) U

Now, in view of (3), (4) and the discussion preceeding the stament of
this theorem, it follows that {Xi} are stationary, ergodic and hence by
(cl(i)) and the Ergodic Theorem, (l/n)Σi Y M — EY0 = 0. This together
with (6) above, Remark 7.2.3 and (7.2.14*) imply that
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sup n1/2|Fa(x,u)-Fll(x)|=θp(l).
|X|<OD,| |U| |<B

This together with (6), (10) and (7.2.19) readily imply that

n " 1 / 2 e n i u = [Fn(e iu) - F(eO] + op(ifx/2)

(11) = [Fn(Ci) - F(Ci)] - n - ^ n Ύ i , f( f i) + δpOf 1 ' 2),

where, op(n ' ) is an array of processes in (i, u) that converge to zero,

uniformly in (i, u), in probability, at a rate faster than n" 1 ' 2 .

Now the Claim (9) follows from (6), the Glivenko — Cantelli Lemma
and the assumption (Fl) that ensures ||ϊ|| < <D.

Next, define

f(u) := n~* Σi YMen i l l ^F(eO), u e Kp.

Note that

M(u) = n" 1 Σi Yi.! [<p(F(£i) + n" 1 / 2 e n i u ) - φ ].

Therefore, from the uniform continuity of φ, the facts that n Σi ||Yi-i|| =
—1 f 2

Op(l) = n ||Σi Yi-iYi-iH, which in turn follow from the assumption Ee < αo
and the Erogodic Theorem, and from (9), one readily concludes that, with
U F ( )

(12) = op(l).

Next, we approximate f(u). Again, by the Ergodic Theorem, the
independence of Yi-i from Ci, i > 1, and Ee = 0 imply that

Hence by (11),

(13) f(u) = n-V\ Yi-^Fnίei) - F(ei)} - n ' ^ V Yi-if(ei)]i<Ui) + όp(l)

= Kn-u'Ln + Opίl),

where now op(l) is a sequence of stochastic processes converging to zero,
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uniformly in u, in probability, and where

VΏ := n1'2 Σi Y M [Fn(e0 -

Ln := n"1 Σi Y M Y U f(ei) ^

Note that

ELn = E(n~^i Yi-iYl-O Q = Σ Q, Q = fi dtfF).

By the Ergodic Theorem,

(14) Ln—»ΣQ, a.s..

Our next goal is to approximate Vn. To that effect, let Vnj denote
the jth component of Vn. Define

^ n j ( x ) := n"1/2 Σi Xi-j ^(F(ei)) I( C i < x)

ί/njίx) := n"1/2 Σi Xi.j / * φ{F{γ)) dF(y) = n"1/2 Σi Xi-j

X n j ( x ) : = %rnj(x)-i/nj(x), x6R,

0 < t < 1, 1 < j < p.

Observe that

Vnj = / [ F n - F] d ^ n j = / [ F n - F] d ^ j + / [ F n - F] di/nj

1 "njίFήV)) - ^njίF'V))] dt - / ί/nj d[Fn - F]

\= - f \ ^j(F(F^(t))) - SJ(t)] dt - fuai d[Fn - F].

But, %ι is a 2j—process of Lemma 7.3b. 1 with h = ψ. Hence

(15)

by Lemma 7.3b.l and the fact that supΠFtFnV)) - t | ; 0<t<l] = o p(l),
which in turn follows from Lemma 3.4.1.
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Next, observe that, with Xj = n Σ Xi-j, 1 < j < p,

*Ίij d(Fn - F) = n~3/2 Σi Xi-j Σi [φ(F(ei)) -~φ ]

Let X' := (Xb ..., Xp) and f = n " 1 / 2 Σi [φ(F(ei))-φ]. Then from
(13)-(15) we obtain

(16) Fn = - X T + θp(l), f(u) = - X T - Σ u Q + op(l).

From (12), (16) and direct algebra one now readily concludes that

M(u) = M-XT-ΣuQ+ όp(l)

= n-WϊfYi-i-X) W(ei)) -φ]-ΣuQ + op(l).

Now argue as for (5) to conclude that

H n " 1 ' 2 ^ ( Y M - X) [φ{F(eι)) - φ ] - S || = Op(l),

thereby completing the proof of (3). α

Remark 7.3b. 1. Note that the same proof shows that under the
assumed conditions, for every 0 < B < oo,

sup ||5(/H-n"1/2u) - 5(p) + u Έ fίdφ(F) || = op(l). o

IWI<B
Remark 7.3b.2. Argue either as in Section 3.4 or as in Jaeckal (1972)

to conclude that | |n 1 / 2 (p R - p)\\ = Op(l) and that | |n 1 / 2 (p R - p3)\\ = op(l).

Consequently by Theorem 7.3b.l,

(17) n 1 ' 2 ^ - p) = uι'\Pi - p) + op(l) = Q"1 Σ"1 S+ op(l).

Observe that 5 is a vector of square integrable mean zero martingales

with ESS'= σ2 Σ, σ1 := Var.(p(U)). Thus, by the routine Cramer-Wold

device and by Lemma A.3 in the Appendix, one readily obtains

(18) 5-.N(0,σ2Σ),
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Estimation of Q(f) :=

(19) n1/2(pR-p) -* N C O . l O . n ^ - p ) -j N(0, V), V = Q~2σ2

φΣ"1. D

Remark 7.3b.3. See the recent paper of Koul and Ossiander (1992) for
an extension of the above results to any φ e <β of (3.2.1). α

7.3c. ESTIMATION OF Q(f): = Jf dp(F).

As is evident from (7.3b.19), the rank analysis of an AR(p) model via the
above R-estimators will need a consistent estimator of the functional Q. In
this subsection we give two classes of consistent estimators of this functional
in the AR(p) model (7.3b.3), (7.3b.4). One class of estimators is obtained by
replacing f and F in Q by a kernel density estimator and the empirical
d.f. based on the estimated residuals, respectively. This is analogous to the
class of estimators discussed in Theorem 4.5.3. The other class is an
analogue of the class of estimators discussed in Theorem 4.5.1 in connection
with the linear regression setup.

Accordingly, let p be an estimator of p, K be a probability density
in R, hn be a sequence of positive numbers, h n —» 0 and define, for x e R,

ϊ i := Xi - p' Yi-i, 1 < i < n; Fn(x) := Fn(x, p) = n" 1 Σ41(ϊi < x),

fn(x) := (nhn)"1 Σi K ( ^ i i ) , fn ( x) : =

Finally, let

Theorem 7.3c.l. In addition to (7.3.b3), (7.3.b4), assume that Eei = 0,

< OD. Moreover, assume that (Fl), (F2) and the following conditions hold.

(i) φ e if := {φ: φ a nondecreasing Junction on [0, 1], φ(0) — 0, ^ 1 ) = 1}.

(ii) h n > 0; h n —ι 0, n 1 / 2 h n —ι OD.

(iii) K is absolutely continuous with its a.e derivative K satisfying J \ K | <QD.

(iv) Hn^p

Then,

(1) sup |5π-Q(f) |=0p(l) .
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Proof. The proof is similar to that of Theorem 4.5.3, so we shall be
brief, indicating only one major difference. Unlike in the linear regression
setup, i.e., unlike (4.5.11), here we have from Remark 7.2.3,

(2) supx n 1 / 21 Fn(x) - Fn(x) | = op(l), where Fn(x) = Fn(x, p).

In other words the linearity term involving n ' (p — p) is not present in the

approximation of F n . Proceeding as in the proof of Theorem 4.5.3, (2) will
yield

||fn - f c | | β < ( n ^ h n ) ' 1 . | | n 1 / 2 [ F n - P j | |

Compare this with (4.5.19) where Op((n ' hn) ) appears instead of

op((n ' hn)~ ). Rest of the proof is exactly the same as there with the
proviso that one uses (2) instead of (4.5.11), whenever needed. α

The reader may wish to modify the above proof to see that QΏ

continues to be consistent for Q even when Ee Φ 0, so that the term that is

linear in n ' (p — p) is now present in the expansion of F n .

We shall now describe an analogue of δn of (4.5.6). The motivation is
the same as in Section 4.5, so we shall be brief on that also. Accordingly, let

P(y) : = /[Fn(y+x) - Fn(-y+x)] d p(Fn(x)), y > 0.

Observe that p is an estimator of the d.f. of the absolute difference | e — η\,
where e and η are independent r.v.'s with respective d.f.'s F and φ(F).
As in Section 4.5, one can use the following representation for the
computational purposes.

_i n n

P ( y ) = n . Σ M J / n ) - P ( ( j - 1 ) Λ O ] S I ( | c ( i ) - c ( j ) | < y ) , y > 0,
J = l 1 = 1

where {c( D } are the ordered residuals {ei} from the smallest to the largest.

Now let t n denote an αth percentile of the d.f. p(y) and define

ΰn = n P(n t n j / J t n , ϋ < a < 1.

The consistency of these estimators may be proved using the method of the
proof of Theorem 4.5.1 and the results given in Corollary 7.2.1. The
discussion about the choice of a etc. that appears in Remark 4.5.1 is also
pertinent here.
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Estimation of Q(f) :=

Another class of estimators is obtained by modifying Qn by replacing

F n by the estimator Fn(x) = J fn(y) I(-αo<y<x) dy. The consistency of
these estimators can be also proved by the nelp of Corollary 7.2.1. α

7.3d. PROOF OF LEMMA 7.3b.3.

The proof of Lemma 7.3b.3 is similar to that of Theorem 2.2a.l(i) and will be
a consequence of the following two lemmas.

Lemma 7.3d. 1. In addition to (7.3b.3), (7.3b.4) and (7.3b.cl) assume
ihat the following hold:

(dl) The d.f. F is continuous and strictly increasing.

(d2) The function h on [0, 1] to R is nonnegative and f \ h(t) | dt< α>.

Then the following hold:

(A) For any 0 < u < v < w < l and for all 1 < j < p,

(1) lim supn E{ ^(v) - 3j(u)}2{( 3j(w) - ^(v)} 2 < C

where mi := f h (t) dt, m2 := J h (t) dt, C is a constant given in (19)

below.

(B) For any 0<u<γ<l,andfor 1 < j < p,

lim supn E { Sj(v) - 2j(u)}4 < C m2.

Proof. (A). Since u, v, w, are fixed, we shall suppress these entities
in the notation. Let 7γ := σ-field{6i; i < k}, k = 0, ±1, ±2, ... . Further, to

simplify writing let x = F~ (u), y = F" (v) and z = F (w) and define

(2) P l = #(v) - tf(u), P2 = H(w) - tf(v); qj = 1 - P j , j = 1, 2,

aι := Λ(F(ci))I(x < « < y) - Pb βi := Λ(F(ci))I(y < eι < z) - p2.

Then

(3) { ^(v) - 2j(u)}2{ ^(w) - ^(v)} 2 = n"2(Σi Xi.

In carrying out the computations that follow we have repeatedly used
the following facts: αi, β\ are centered; a\β\ are 7k-i measurable for all
i < k and Xi-j is 7i-i measurable and independent of 6i, i > 1. Thus,
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(4) E <*i = 0 = E βk, for all i,k.

i-jXk-j αi/ίk = E[X i. jXk. jα iE(^k|7k.1)] = Epi-j-Xk-jαi] E(ft) = 0, i<k;

Xk.jXj.jai Ok & = EtXi-jXk-jX?.^ a i E ^ ^ ) ] = 0, i, r < k.

Using facts like these one can write

(5) ECΣiXi-jαiΛΣrXr.j^)2

= Σ E Xij a\β{ + Σ^ΣExij X?.jα?

+ 2 Σ ^ Σ E Xi-j Xk.j X?.j(αi Okfi + βiβv α?)

+ 4 Σ ^ Σ E Xi-j Xr.j Xί-j αi βΓ Ofc βt

+ 4 ̂ ^ Σ E Xi-j XΓ-j Xξ-j α i βτ £* )9k

= Ti + T 2 + 4 T 3 + 2(T4 + T5) + 4(T6 + T7), say.

We shall now show that n~2Tj —» 0, for j = 1, 4, 5, 6, 7, and that

lim sup n (T2 + 4 T3) < C mim2. The basic idea of the proof is to exploit
the hierarchal nature of the process. Observe that had the underlying
observations been independent then Tj would have been equal to zero for j
= 4, 5, 6, 7. However, under (7.3b.3), {Xj} are not independent but
asymptotically behave like independent r.v.'s. This is the reason to expect

n~2Tj —> 0 for j = 4, 5, 6, 7.

The details of the proof of n Tj tending to zero for each j = 4, 5, 6,
7 are elementary and cumbersome but similar. So the details will be given

only for n~2T7 —> 0. To this effect, observe that

j j j = E Xi-jXr-jXi-joAEiok Al^k-i), i, r < k.

Moreover, {ei} i. i. d. implies that for all k > 1,

= (1-PI)PI(-P2)+(-PI)(1-P2)P2+PIP2(1-PI-P2) = -P1P2,
2

and, in addition, Ee = 0 implies that EXi-jXΓ-jXk-jαi = 0, r < i, k—j < i—1.
Therefore,
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—O —O O

(0) n 17 = —n PIP2J2J ii ϋ»Ai-j λΓ.j X\ a\ pτ

n~2{T7 1 + T 7 2 } , say.

Now, for a convenient reference we rewrite (7.3b.5) as

(7) Xi = k Σ . θi-γ ek, i > l , a.s.,

where, as in (7.3b.5), the unspecified lower limit on the index of summation
is —αo, and {0k} are real numbers satisfying θo = 1, Δ i < α>, with

Δ q : = Σ k > 0 |0k|Q, q > l

Note that supk \θί\ < Δ i and hence Δ t < α> implies that

(8) Δ Γ < Δ? < αo, for all q > 1.

Next, define

(9) A m , n : = Σ θm.rer,

rSn

n n

H m , k •= Σ θm-τ eΓ, 0 < n < m < GD, k < n.
r = kaΓ := E(α cΓ), b r := E(/? eΓ), (*:= EC

Γ, 1 < r < 4,

σ\ := Var.(α), σ\ := Var.(^)

where α, β are copies of αi, β\. Observe that

(10) HΪ,k = Am, n - Am,k-i, k < n < m,

Xi = Ai,i = Ai,i-j + Hi,i-j+i + Ci = Ai,i-i + Ci, V i,

o\ i πik, where mk is as in (1), k = 1, 2.

Morover, {e\} i.i.d., E(€) = 0, and (8) imply that for all n < m < α>,

(11) E A J L = Σ θί μ2 < β2 Δ] < OD,
r>m-n

EAj,n = Σ eίμ4 + 3 Σ Σ , £θ*μ2 < {μi+μjAΪ < oo.
k>m-n k>m-n r>m-n>rtk
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For the same reasons, from (10) it follows that

E{Xi αi|7i-i} = 2 Ai,i-i ai + a2, for all i.

Use this and argue as for (6) to obtain

T n = ΣΓ E XHβτ {2ai LΓ + a2 XΓ}

4 l E Xτφ {2aiLi + a 2XH}

say, where Li:= Xi-j

The C—S inequality, the staionarity of the process {Xi} and (11) imply
that for all r, j ,

E\Xτφ LΓ+j | < {E(XΓ.j/?Γ)
2 EL 2

+ j }
1 / 2 < D4 C4 < . ,

E|Xr.j/?rLr | < D 4 C 4 < O D ,

where Dk, Ck are constants depending on the kth moment of h(\J) and the
kth moment of e and Δk, respectively, 1 < k < 4. These facts imply that

(12) n " 2 | T m | = O ( n " 1 ) = o(l).

Next, to handle Tπ 2, use (11) to obtain that for i—j > r+1,

L {A # € H } { A ^ 6 H }

Use the above type of conditioning argument to obtain that

EXΓ-j βr Li = EXr-j {[θi-τ Ai-j^-! + ̂ i-j-r Ai>Γ-J bi + ̂ i-j-r î-r b2},

E X H βT Xi-j = EXr-jiflij-r b 2 + 2^-i.r AH > Γ-i b!>, H > Γ+l.

Use these facts together with (11) and an argument like the one that led to

(12) to conclude that n " 2 | T 7 i 2 | = O(n"2). This and (12) yield

(13) n" 2 |TM |=O(n" 1) = o(l).

Now we turn to T72. Using (10) write
k-j

Xk-j = Ak-j,i-i + 0k-j-i e\ + Hk-j,i+i, k-j > i+1,

and use arguments like those above to obtain that

E{X2-j αi|7i-i} = ί .j-i a2 + 2Ak-jf M 0k-j-i a b k-j > i+1,
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SO that

(14) T7 2 = ^ £ Λ Σ>u E X H βτ Xi.j {^.j.i a2

= a2 T721 + 2ai T722, say.

Arguing as above and using the stationarity and the fact that EX0 = 0, one
obtains

i ~ΐ

EXΓ.j βτ Xi-j = EXΓ.j βτ {Ai.j,Γ.! + 6>i.j.Γ cΓ + Hi-j,Γ+i}

= EXΓ-j ^i-j.Γ bi = 0, i-j > r+1.

Thus,

< a2 d2 ^ Σ | EXr.j βv X H | = 0.

Similar arguments show that |n T722I = o(l) thereby completing the

proof of n" 2 |T 7 2 | = o(l). This together with (13) shows that

n " 2 | T 7 | = o ( l ) .

Now consider T2: Rewrite

T2 = ( Σ ^ + Σ̂ Σ) (Exij X?.j a\ fi) = T21 + T22, say.

Again, by a conditioning argument,

(15) T2 1 = σ\ Σ^Σ E x i j X?.j a\

= σ\ - ( Σ Σ + Σ Σv )(EXL X?.j a\
Vi<r5r-i<j i<r;r-i>j+lA J J-i<j

= σ\ {T2 1 1 + T2i2}, say.

Again, the C—S inequality, the stationarity of the process {Xi}, the

assumptions (7.3b.cl) and (d2) imply that 0 < T2n < j n EXo = O(n), by
(8) and (10), so that

(16) n"2T211 = Otn"1) = o(l).

Next, argue as for (14) to obtain

= Σ Σs. EXi-j a? {AΓ.j,i-i * «r-j-i £i • H^j ; i
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= σ\ ? ? E x i j {A?.j,i-i + ΓΣJ. .̂jHn Ee2}

+ 2c Σ Σ
I<Γ5Γ-I>

(17) = σ\ B! + 2c B 2 + O(n), say, c = E(eα)2.

The C-S inequality and (11) yield that

(18) n"2Bi < C < OD, for all n > 1,

where C is a constant depending on μt and Δi. A similar argument shows

that | B 2 | = Ofa"1). This together with (17) and (18) yield that

(19) lim supn n~2 |T2 1 2 | < C σ\.

Hence, from (17) — (19) one readily obtains

lim supn n" 2 |T 2 1 | < C σ2 σ\ < C mim2> by (10).

Similarly, one concludes a similar result for T 2 2 thereby enabling one
to conclude

(20) lim supn n" 2 |T 2 | < C mim2, where C is as in (18).

Finally, consider n"2T3: By arguments similar to those above we
obtain

(21)

Let cΓ

n"2Ts

= E(aβ eΓ).

= - n " 2 Σ
i

= -PlP2

Use (10)

9 9

~2 yr\ γi -ri-
ll. ZJ LA Hi.

i<r;r-i>j*l

and proceed as

i/?iPlP2

before to

iX?-j +

obtain

EX?.j αi βi X?.j = EXij{-p l P 2

ί?-j-i c2 + 2ci

Combine this with (21), argue as above using (11) and the C—S inequality, to
obtain

n~2T3 = (p l P 2) 2n~ 2

i <Σ Σ ^ E X?-i[A;.jf M + Λ

Another application of (11) yields
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lim supn |n 2 T 3 | < C (pφ2)2 < C mi m 2 ,

where C is as in (18) above, because

p 2 = {JJ Λ(t) dt} 2 < (v - u) fj h\t) dt < m i

P2 = {XW Kt) dt} 2 < (w - v) fj Λ2(t) dt < m2.

The proof of (A) is now terminated.

PROOF of (B). Fix j and define, for r > 1, k > 1,

= E{(Xk.j Okfl̂ k-i} = Xk-j HάlTί-i);
k k

U r k = .Σ u r i; S k = .Σ Xi-j Λi.
i=l 1=1

Now observe that

(22) 3(v) - ^(u) = n" 2Sn.

Because {Xi-, a\} are conditionally centered, gives 7i-i, it readily follows
that {Sn, ?n} is a mean zero martingale. Therefore, from Chow, Robbin
and Teicher (1964),

(23) E Sί = E{U4n + 4 Sn U 3 n + 6 S2, U 2 n - 6.Σ u2 j U2 j}.

But,

E S u 2 k U 2 k = E { Σ E(xί.j αίl^k-O-.E E(X?.j αi^i-i)}
k = 1 k = 1 1 = 1

= E Σ Xk-j &ι Σ Xi-j O\ = Σ Σ E Xί-j Xk-j • Gu
k = 1 i = 1 i<k

E SnU3 n = E{.Σ Xi-j αi J E((Xk.j

E S2 U2n = σ\ - E{(Σ Xij a\ + 2 Σ^Σ X^-wa^ Σ X?.j)}

= <7Ϊ [ΣΣ EX?-j α2 Xk-j + Λ ΣΣ. E X?.j X?.j
i<k-j k-j<i-l

+ 2 Σ ^ ^ EXi-j Xr-j Xj.j tti Or],
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E U 4 n = Σ E Xi-j E(α4).

Combine the above with (23) to obtain

n"2E Sί = n"2{.Σ E x i j • E(α4) + 4.^ Σ. EXi-jXj.j a{ E(α3)

g
+ 2 Σ ^ Σ EXi-j Xr.j XΪ.j on

+ 4 K2 + 6 σ\ [K3 + σ\ K4 + 2 K5]}, say.

Arguing as for the proof of (A), one can show that n Kj —» 0, j = 1,

2, 5, that lim sup n~2 |K3 |< C σ\ and that lim sup n"2K4 < C. Hence (B). D

Lemma 7.3d.2. In addition to (7.3b.3) and (7.3b.4) assume that Ee = 0,

Ee < GO, and Eh (U) < m. Then the finite dimensional distribution of 2%,

for every 1 < j < p, converges weakly to that of {E(X<>) } ' ! ? ( • ) , where B is
the Brownian motion in C[0, 1] with the covariance function H(\x) —H(u)H(γ),
0 < u < v< 1.

Proof. The proof uses Corollory 3.1 of Hall and Heyde (1980; p 58)(see
Lemma A.3 in the Appendix) and the Cramer—Wold device. Accordingly, fix

j and let 0 < ui < u2 < .... < uΓ < 1, θ e RΓ. Define

αn(6i) : = E λk {Λ(F(6i))I(P(cO < πk) - G(uk)},

^ni := n " 1 / 2 Xi.j αn(ei), ^ni:= J ^ n k , 1 < i < n.

r

Note that Snn = Σ 0k ^j(uk). Because of the given assumptions, and

because ξn\ is conditionally centered, given 7\-u {(£ni, î-i)> 1 i i i n} is a
mean zero square integrable martingale array. Next, for a θ > 0, by the C-S
inequality,

il >0)l?i-i]

= n" 1 .Σ

D4
>Γ
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where, in the above, D 4,Γ is a constant dependin on r, D4 and θ and C3 is a
constant dependin on μ% and di.

Next, from the definition of H in terms of h one readily sees that

Σ EC&I/M) = n"1 Σ l 2

= n " 1 . ^ Xij k Σ i B E λkλm [G(ukΛum) - G(uk) G(um)]

2 J i m Σ i λkλm[G(ukΛum) - G(uk)G(um)] + op(l

by the Ergodic Theorem.
The above calculations show that {SΏ\y T\-h 1 < i < n} satisfy the

conditions of Lemma A.3 and hence SΏΏ converges weakly to an appropriate
normal r.v. This completes the proof of the Lemma. α

Proof of Lemma 7.3b.3. In view of the Lemmas 7.3d.l(A) and 7.3d.2
above, the proof uses Lemmas A.I, A.2 and Theorem A.I in the Appendix
and is exactly like that of Theorem 2.2a.l(i). D

7.4. M.D. ESTIMATION

In this section we shall discuss two classes of m.d. estimators. They are the
analogues of the classes of estimators defined in the linear regression setup at
(5.2.11) and (5.2.20). To be precise, consider the autoregression model
(7.1.1) and define, for a GeDJ(R),

(1) Kg(t) = j Σ i / [ n " 1 / 2 J i g (X H ){I(Xi < x+t' Y M ) - F(y)}]2 dG(x),

Kt) = lt /[n" 1 / 2Σ i g(XH){I(Xi < x-t7 Yi-i)

- I(-Xi < x-t7 Yi,)}]2 dG(x),

In the case the error d.f. F is known, define a class of m.d. estimators of
p to be

(3) pz •= argmin{Kg(t); t e Rp}.

In the case the error distribution is unknown but symmetric around 0,
define a class of m.d. estimators of p to be
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(4) pi := argmin{Kj(t); t e Rp}.

Note that the role played by the vectors {n~ ' [g(Xi-i), g(Xi-2), ..., g(Xi-p)];
1 < i < n} is similar to that of the vectors {dni; 1 < i < n} of Chapter 5. To

put it in matrices, the precise analogue of D is the matrix n ' j?, where
φ is as in (7.3a.l).

The existence of these estimators has been discussed in Dhar (1991a)
for p = 1 and in Dhar (1991c) for p > 1. For p = 1, these results are
relatively easy to state and prove. We give an existence result for the
estimator defined at (4) in the case p = 1.

Lemma 7.4.1. In addition to (7.1.1) with p = 1, assume that either

(5a) xg(x) > 0, V xeR, or (5b) xg(x) < 0, V xeR,

Then, a minimizer of Kg exists if either G(R) = αo or G(R) < oo and g(0) = 0.

The proof of this lemma is precisely similar to that of Lemma 5.3.1.

The discussion about the computation of their analogues that appears
in Section 5.3 is also relevant here with appropriate modifications. Thus, for
example, if G is continuous and symmetric around 0, i.e., satisfies (5.3.10),
then, analogous to (5.3.7*),

Kj(t) = jΣ i £ J ig(XH)g(Xk^){ I G(Xi-t'Yi-0 - G(-Xk+t'Yk.O I

Ύ
If G is degenerate at 0 then one obtains, assuming the continuity of the
errors, that

(6) K+(t) = .ΣJ .^ g(Xi-j)sign(Xi - tΎi-0] 2, w.p.1.

One has similar expressions for a general G. See (5.3.7) and (5.3.7').

If g(x) = x = G(x), pg is m.l.e of p if F is logistic, while p\ is an
analogue of the Hodges—Lehmann estimator. Similarly, if g(x) = x and G is

degenerate at 0 then pg is the l.a.d. estimator.

We shall now focus on proving their asymptotic normality. The
approach is the same as that of Sections 5.4 and 5.5, i.e., we shall prove that
these dispersions satisfy (5.4.A1) — (5.4.A5) by using the techniques that are
similar to those used in Section 5.5. Only the tools are somewhat different
because of the dependence structure.
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To begin with we state the additional assumptions needed under which
an asymptotic uniform quadraticity result for a general dispersion of the
above type holds. Because here the weights are random, we have to be
somewhat careful if we do not wish to impose more than necessary moment
conditions on the underlying entities. For the same reason, unlike the linear
regression setup where the asymptotic uniform quadraticity of the underlying
dispersions was obtained in Li, we shall obtain these results in probability
only. This is also reflected in the formulation of the following assumptions.

(7) (a) Eh2(Y0) < op. (b) 0 < Ee2 < o .

(8) V ||u|| < B, a e R,

h'CYeJlPix+n-^VYa+allYoll)) - F(x)|dG(x) = o(l).

(9) There exists a constant 0 < k < oo, 3 V ί > 0, V ||u|| < B,

lim infn
^ h ( Y i

- F(x+n"1/2nΎi-i-n"1/2«||Yi.i||)}]2dG(x) < kfl) = 1,

where h* is as in the proof of Theorem 7.2.1.

(10) For every ||u|| < B,

and (5.5.68b) holds.

Now, recall the definitions of Wh, Vh, %, JΓ*, T*, W±, Z=t, m* from
(7.1.6), (7.2.2), (7.2.5) and (7.2.6). Let | | Q denote the Lr-norm w.r.t. the

measure G. In the proofs below, we have adopted the notation and
conventions used in the proof of Theorem 7.2.1. Thus, e.g., & = Yi-i; % ( )

uu( ) stand for %( , /wΓ^u), Vh( , /M-n"1/2^, etc.

Lemma 7.4.2. Suppose that the autoregression model (7.3b.3) and
(7.3b.4) holds. Then the following hold.

(11) Assumption(8) implies thatV 0 < B < QD,

E/[Z*(x; »> a ) " z ± ( χ : «. 0)]2dG(x) = o(l), V ||u|| < B, a e R.

(12) Assumption (9) implies that V 0 < B < ω, V ||u|| < B,
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Urn infn P( sup n1 / 21 iί(x, /ML 1 / 2 V ) -ι/£(x, p+n 1 / 2u) | 2 < kδ*) = 1.
| | | | < G "

k and £ are as in (9).

(13) Assumptions (7), (9) and (10) imply that V 0 < B < a>,

s u p
||π||<B

Proof. Let, for x, a e K; u, y e

(14) p(x,π,a;y) := ^

i-i f(x)]2dG(x) =

Now, observe that n ' [Z (x; u, aJ-Z^ίx; u, 0)] is a sum of n r.v.'s
whose i t h summand is conditionally centered, given 7\-\, and whose

conditional variance, given 7\-h is E[{h*(£i)p p(x,π,a;ξi){l- p(x,π,a;^i)}], 1

< i < n. Hence, by Fubini, the stationarity of {&} and the fact that (h ) <
h2V i^B)

< /Eh2(Yo)p(x,u,a;Yo) dG(x) = o(l),

by (8) applied with the given a and with a = 0 and the triangle inequality.

To prove (12), use the nonnegativity of h , the monotonicity of F and
(7.2.10), to obtain that ||v|| < B, ||v - u|| < δ imply that V ||n|| < B,

(15) n 1 ' 2 14(x) - i£(x) I < I m*(x; n, δ) - m*(x; n, - ί ) |, V

This and (9) readily imply (12) as the r.v. in the l.h.s. of (9) is precisely the

I I of the r.h.s. of (15) for each n > 1.

The proof of (13) is obtained from (7), (9) and (10) in the same way as
that of (5.5.30) from (5.5.7), (5.5.8) and (5.5.9), hence no details are given, α

Lemma 7.4.3. Suppose that the autorearession model (7.3b.3) and
(7.3b.4) holds. In addition, assume that (8) and (9) hold.

Then, V 0 < B < GD,
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(16) s u p | N | < B / [ %*(x, p+n^u) - ft*(χ, p)]2dG(x) = o

S u p ||u||<B

Proof. Let q(x,u;y) := |F(x + n~1/2u'y) - F(x)|, x e R; u, y e Rp.

The r.v. n ' [ % ( • ) - 5Γ( )] i s a s u m °f n r.v.'s whose i t h summand is
conditionally centered, given 7\.\, and whose conditional variance, given 7\.\,

is EKh^fi)}2 q( ,u;&){l- q( ,u;&)}], 1 < i < n. Hence, by Fubini, the

stationarity of {̂ i} and the fact that (h*)2 < h2, V ||u|| < B,

(18) EI * * - y* 11 < /n" 1.! Eh2(Yi.O | Pίx+n^VYi-O - F(x) | dG(x)

< /Eh 2(Yo)|F(x+n" 1 / 2uΎo) - F(x)| dG(x).

Therefore, by (8) with a = 0 and the Markov inequality,

(19) | n *

Thus, to prove (16), because of the compactness of i(B), it suffices to
show that for every η > 0 there is a δ > 0 such that for every ||u|| < B,

(20) lim infn P( sup \CY-CU\ < η) = 1,
||v-u||<*

where Cu := | % * - r * | J , ||u|| < B.

Expand the quadratic, apply the C—S inequality to the cross product
terms, to obtain

\ c u - c Y \ < I j ς * - * * i 2 + 2 | r u

± - r v

± \ G \ % ±

q

Observe that h > 0, F nondecreasing and (7.2.10) imply that

0 < |m±(x; u, ±S) - m±(x; π, 0)| < m±(x; u, S) - m±(x; u,-ί),

for all XGK, S e J/(B), ||s-u|| < δ. Use this, the second ineqality in (7.2.9),
(7.2.10), (7.2.11), and the facfthat (a+b)* < 2(a2+b2), a, beR, to obtain
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* * - n * | J < 16{/[Z*(x; u, j) - Z*(x; u, 0)]2dG(x)

+ /[Z*(x; π, -5) - Z*(x; u, 0)]2dG(x)

+ /[m*(x; π, 5) - m*(x; u,-ό)]2dG(x)

for all V E ^ B ) , ||v - u|| < 6. This together with (9), (12), (13), (19), (21)
and the C—S inequality proves (20) and hence, (16).

The proof of (17) follows from (16) and the first inequality in (7.2.9). D

Now define, for t e Kp,

(22) ϋΓh(t) := / [ n " 1 / 2 Σ h(Yi.,){I(Xi < x+tΎi-ό - F(y)}]2 dG(x),

Ah(t) := / [ %(x, p) * n1 / 2(t-p)' n " 1 ! h(Yi-0Yi-ίfi(x)]2 dG(x).

Theorem 7.4.1. Suppose that the autoregression model (7.3b.3) and
(7.3b.4) holds and that (5.5.69), (7) - (10) hold. Then, V 0 < B < O |

(23) sup | | u | |<B I Kh(p + n ' ^ u ) - Kh(p + n"1/2u)) | = o p (l) .

Proof. Observe that, by (5.5.69), (7),

(24) Έf %\x, p) dG(x) = Eh2(Y0) J*F(l-F)dG < *.

The rest of the proof of (23) follows from Lemmas 7.4.2 and 7.4.3 in a similar
way as that of (5.5.28) from Lemmas 5.5.1, 5.5.2 and the result (5.5.30). D

Now we shall apply this result to obtain the required quadraticity of

the dispersion Kg and Kg. For that purpose recall the matrices J>, p and
j&n from (7.3a.l). Note that Xi-j, g(Xi-j) are the (i,j)*h entries of Jf, %
respectively, l<i<n, l<j<p. Also observe that the

(25) jΛ row of Bn is J^Xi-j)Y'i -i, 1 < j < p.

To obtain the desired result about Kg, we need to apply the above
theorem p times, j t h time with

(26) h(Y M ) = g(Xi.j), j = 1, .., p.
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Now write Ti for % when h is as in (26) and 7K( ) for ΨA-, p\
1<J<P Note that

Iflx) := π ^ Σ ^ X H H l ί d < x) - F(x)}, 1 < j < p, x G K.

We also need to define the approximating quadratic forms: For t e Rp, let

" 1(27) Kg(t) := jΣ i / [ ϊKx) + n ^ t - p ) ' n

(28) Kj(t) := jΣ i / [ I f (x) + 2n1/2(t-p)' n"1 Σ^X^Yi-i

where

(29) ϊ f (x) := n"1'2 Σ^Xi-jHlίei < x) - I(-Ci < x)}, 1 < j < p, x 6 I.

Before stating the desired results consider the conditions (7) — (10)
when h is as in (26). Condition (7a) is now equal to requiring that
Eg2(Xi-j) < a) for all j = 1, ..., p. Because of the stationarity of {Xi}, this in
turn is equal to

(7a g) Eg2(X0) < op.

Similarly, (8) is equal to

(8g) V |ln|| < B, a e K, 1 < j < p,

V ) ) - F(x)|dG(x) =

Let (95) stand for the condition (9) after h (Yi-i) is replaced by g (Xi-j),
l<j<p, in (9), l<i<n. Interpret (10g) similarly. We are now ready to state

Theorem 7.4.2. Suppose that the autoregression model (7.3b.3) and
(7.3b.4) holds and that (5.5.68a), (5.5.69), (7b), (7ag) - (10g) hold.

Then, V 0 < B < σ,

Proof. Note that the j t h summand in Kg is a K^ with h as in (26).
Hence (30) readily follows from (23). D

Lemmas 7.4.2 and 7.4.3 can be directly used to obtain the following

Theorem 7.4.3. In addition to the assumptions of Theorem 7.4.2, except
5.5.69); assume that F is symmetήc around 0, G satisfies (5.3.8) and that
5.6a. 13) holds.
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Then, V 0 < B < o ,

(31) β α P | | « | | < B I K l

Upon expanding the quadratic and using an appropriate analogue of
(24) obtained when h is as in (26), one can rewrite

Kg(t) = Kg(p) + 2(t-p)'if ^ / r (x) f(x)dG(x)

l teRp,

where 3Γ:= (T\, ..., 5j£)'. Now consider the r.v.'s in the second term.
Recalling the definition of ψ from (5.6a.2), one can rewrite

Γ(x) f(x)dG(x) = - n " 1 ' ^ g i

where gi7 is the i t h row of fy i.e.,

(32) gi' := (g(Xi-i), g(Xi-2), ..., g(Xi-p)), 1 < i < n.

Since gi is a function of Yi-i, it is 7i-i — measurable. Therefore, in
view of (7ag) and (5.5.68a), {(<Sn, ^n-i), n > 1} is a mean zero square
integrable martingale array. The same assumptions, and an argument like
that in the proof of Lemma 7.3d.2, enable one to verify the applicability of
Lemma A.3 in the Appendix to Sn. Hence, it follows that

(33) Sn - j N(0, G*τ2Ipxp), G* = E g l g l S r^ = Var

By the stationarity and the Ergodic Theorem, we also obtain

(34) n " 1 ^ —* B, a.s., B:= En~% = E g ^ i .

Consequently it follows that the dispersion Kg satisfied (5.4.A1) to

(5.4.A3) with θo = p,δnΞ n 1 / 2 , Sn = n" 1 / 2^ή SΏ, Wn Ξ n " 1 ^ , W = 5,

Σ = B G*B r2, and hence it is an u.l.a.n.q. dispersion.

In view of (24) applied to h as in (26), the condition (5.4.A4) is
trivially implied by (7ag) and (5.5.69).

Recall, from Section 5.5, that in the linear regression setup the
condition (5.4.A5) was shown to be implied by (5.5.11) and (5.5.12). In the

present situation, the role of Γn, Γn of (5.5.11) is being played by n"1i5n f,

n BΏ JfdG, respectively. Thus, in view of (34) and (5.5.68a), an analogue of
(5.5.11) would hold in the present case if we additionally assumed that B is
positive definite. An exact analogue of (5.5.12) in the present case is
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(35) Either

0 giYi-i0> 0, V 1 < i < n, V θ e Rp, ||0|| = 1, a.s.,

or

0'giY'i-i0< 0, V 1 < i < n, V θe Kp, ||0|| = 1, a.s..

We are now ready to state the following

Theorem 7.4.4. In addition to the assumptions of Theorem 7.4.2,
assume that the B o/(34) is positive definite and that (35) holds. Then,

(36) n 1 / 2 (p g - p) = - {n '^n / f ^ G } " 1 SΏ + o p (l).

Consequently,

(37) nί/2(pe - p) -* N(0, (By'&iB'y'T*). π

Let px denote the estimator pg when g(x) = x. Observe that in this

case G* = fl=En JS3S— EYoYo Moreover, the assumption (35) is a

priori satisfied and (7.3b.3), (7.3b.4) and (7b) imply that EYoYo is positive
definite. Consequently, we have obtained

Corollary 7.4.1. Suppose that the autoregression model (7.3b.3) and
(7.3b.4) holds and that (5.5.68), (5.5.69), (7b), (8g) - (10g) with g(x) Ξ X
hold. Then,

(38) n1/2(px-p) -J N(0, i 1

Remark 7.4.1. Asymptotic Optimality of px. Because B and EYoYo

are positive definite, and because of n 35 JS—» EYoYo, a.s., and (34), there

exists an N o such that τC^JS JS and n" Bn are positive definite for all n>No

Recall the inequaHty (5.6a.8). Take J = n " 1 / 2 ^ , L = n~ll2JS' in
that inequality to obtain

^fP >n~1£JΓ(n~1JΓ' S)~X-τΓXS f, V n > No, a.s.,

with equality holding if, and only if & ex p. Letting n tend to infinity in
this inequality yields
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We thus have proved the following:

(39) Among all estimators {p*; g satifying (7%*) — (10g) for the given (F, G)
that satisfy (7b), (5.5.68), (5.5.69)}, the one that minimizes the

asymptotic variance is px ! D

We shall now state analogous results for pg. Arguments for their
proofs are similar to those appearing above and, hence, will not be given.

Theorem 7.4.5. In addition to the assumptions of Theorem 7.4.4, except
(5.5.69); assume that F is symmetric around 0, G satisfies (5.3.8) and that
(5.6a.l3) holds. Then,

(40) ^\pl - p) = - {n"1^ / f ' d G Γ 1 Sn

+ + op(l),

where

/ ) f(x)dG(x) = if1/2.! g i

Consequently,

(41) n 1 ' 2 ^ - p ) -^ N(0, {BTγ

(42) *Φ{lί-ρ) -j N(0,
d

Obviously the optimality property like (39) holds here also.

Remark 7.4.2. On assumptions for the asymptotic normality of px, /£.
If G is a finite measure and F has uniformly continuous density then it is
not hard to see that ί8g) - (10g), with g(x) = x, are all implied by (7b).

Consider the following assumptions for general G:

(43) E |e | 3 <cD, E c 2 > 0 .

(44) As a function of s e R, J E I X ^ J ^ H Y O H f(x+s||Y0||) dG(x) is continuous

atO, 1 < j < p.

(45) For every δ > 0, u e Rp,

JΓ J/EίllYoUKx+n-^VY t̂ίllYolD) - f ( x Λ γ o ) ] f dG(x)dt =
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(46) For every u e Kp,

/ [ π " 1 j Xt-j HYi-,11 f(x+n-1/2n'Y i.1)]2 dG(x) = O p(l), 1 < j < p.

An argument similar to the one used in verifying the Claim 5.5.1 shows
that (5.5.68a), (43) and (44) imply (8g) while (5.5.68b), (45) and (46) imply
(9g) and (lOg).

In particular if G(x) Ξ X, then (5.5.68), (43) and f continuous imply
all of the above conditions, (5.5.69) and (5.6a.l3). This is seen with the help
of a version of Scheffe's Theorem. α

Remark 7.4.3. Asymptotic relative efficiency of px, px. Since their
asymptotic variances are the same, we shall carry out the discussion in terms

of px only, as the same applies to px under the additional assumption of the
symmetry of F and G.

Consider the case p = 1. Let σ2 = Var(c) and p\s denote the least

square estimator of p\. Then it is well known that under (7b), n ' (p\s — pi)

—» N(0, 1-pi). See, e.g., Anderson (1971). Also note that in this case
d

(EYoYo)1 = (l-p2\)/σ2. Hence the asymptotic relative efficiency e of ρx,

relative to p\Sy obtained by taking the ratio of the inverses of their
asymptotic variances, is

(47) e = e(px, pis) = σ2/τ2.

Note that e > 1 means px is asymptotically more efficient than p\s.

It follows that px is to be prefered to p\s for the heavy tailed error d.f.'s
F. Also note that if G(x) = x then τ2 = 1/12 [Jf2(x) dxp and e = 12 σ2

[jPU) dxp. If G is degenerate at 0, then τ2 = l/[4f2(0)] and e =
4σΦ(0). These expressions are well known in connection with the Wilcoxon
and median rank estimators of the slope parameters in linear regression
models. For example if F is N(0, 1) then the first expression is 3/τr while
the second is 2/τr. See Lehmann (1975) for some bounds on these
expressions. Similar conclusions remain valid for p > 1. α

Remark 7.4.4. Least Absolute Deviation Estimator. As mentioned

earlier, if we choose g(x) = x and G to be degenerate at 0 then px is the
l.a.d. estimator, v.i.z.,
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See also (6). Because of its importance we will now summarize sufficient
conditions under which it is asymptotically normally distributed. Of course
we could use the stronger conditions (43) — (46) but they do not use the
given information about G.

Clearly, (7b) implies (7ag) when g(x) = x. Moreover, in this case the
l.h.s. of (8g) is

ExijlFίn-^u'Yo-allYoll)) - F(if ̂ u'Yo) |

which tends to 0 by the D.C.T., (7b) and the continuity of F, 1 < j < p.
Now consider (9g). Asssume the following:

(49) F has a density f that is continuous at 0 and f(0) > 0.

Recall from (7.3b.6) that under (7.3b.3), (7.3b.4) and (7b),

(50) n'^maxίllYi-dl; 1 < i < n} = o p (l) .

The r.v.'s involved in the l.h.s. of (9g) in the present case are

M +

which, in view of (49), can be bounded above by

(51) 1Jt

where {τ/ni} are r.v.'s, ηai e n~1/2[uΎi-i - ί||Yi-i||, n'Yi-i + £||Yi-iJ|], l<i<n.
Hence, by the stationarity and the ergodicity of the process {Xi}, (7b), (49)

and (50) imply that the r.v.'s in (51) converge to 4P [EXί-i||Y0|| f(0)]2,
a.s., 1 < j < p. This verifies (9g) in the present case. One similarly verifies
(10g) "

Also note that here (5.5.68) is implied by (49) and (5.5.69) is trivially
satisfied as JF(1—F) dG < 1/4 in the present case. We summarize the above
discussion in

Corollary 7.4.3. Assume that the autoregression model (7.3b.3) and
(7.3b.4) holds. In addition, assume that the error d.f. F has finite second
moment, F(0) = 1/2 and satisfies (49). Then,

n l / 2 ( ' / a d - ' ) "3 N(0, (EYoY'o)-1/4f2(O)),

where p * , is defined at (48). D
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7.5. GOODNESS-OF-FIT TESTING.

Once again consider the AR(p) model given by (7.3b.3), (7.3b.4) and let F o

be a known d.f.. Consider the problem of testing HQ: F = Fo. One of the
common tests of HQ is based on the Kolmogorov—Smirnov statistic

D n := n 1 / 2 sup x | Fn(x, p) - F0(x) | .

From Corollary 7.2.1 one readily has the following:

If Fo has a uniformly continuous density f0, fo > 0 a.e.; Jx dF0(x) <

OD, p satisfies (7.3c.(iv)) under Fo, then, under Ho,

Dn = sup |B(F0(x)) + n1/2(ρ-p)'n~% Y M ^ X ) ! + op(l).

In addition, if EY0 = 0 = Eeu then Dn —* sup{|B(t)|, 0 < t < 1}, thereby
d

rendering D n asymptotically distribution free.
Next, consider, ffOi: F = N(μ, σ ), μ 6 R, σ > 0. In other words,

ifoi states that the AR(p) process is generated by some normal errors. Let

/in, σn and pn be estimators of μ, σ, p respectively. Define

Fn(x) := n " 1 Σi I(Xi < xσn + βn + p'Ώ Yi), x 6 K,

D n := n 1 / 2 sup x |F n (x) - Φ(x)|, Φ = N(0, 1) d.f..

Corollary 7.2.1. can be readily modified in a routine fashion to yield that if

1 / 2 M ) + ( σ » - σ ) | σ'1 + n^2\\pn - p\\ = O p ( l)

then

D n : = s u p x | B(Φ(x)) + n 1 / 2 { ( £ n - μ) + ( σ n - σ)}σ~X n(x)| + o p ( l) ,

where n is the density of Φ. Thus the asymptotic null distribution of D n

is similar to its analogue in the one sample location-scale model: the

estimation of p has no effect on the large sample null distήbution of D n.

Clearly, similar conclusions can be applied to other goodness-of-fit
tests. In particular we leave it as an exercise for an interested reader to
investigate the large sample behaviour of the goodness-of-ίit tests based on
Lr-distances, analogous to the results obtained in Section 6.3. Lemma 6.3.1
and the results of the previous section are found useful here. DDDDD




