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The Bayesian net is a formalism for structuring multidimensional dis-
tribution when initial data are scarse. It proved to be very useful
in modeling of systems which depend on random parameters, in par-
ticular in image processing, reliability analysis, processing of medical
information. In these cases very often it is impossible to recover the
distribution with reasonable precision, but it is possible to identify a set
of distributions to which the true distribution belongs. We consider the
problem to define the lower and the upper bound for the functional de-
fined on such a set. This gives rise to nontrivial optimization problems
in the space of probability measures. We describe some algorithms for
solving such optimization problems based on random search and linear
programming techniques.

1. Int roduct ion. In this paper we present numerical algorithms for
solving problems of a special type which arise in a priori and a posteriori
estimation of functions defined on Bayesian Networks (Pearl (1988)). In
particular we present some results on modelling and optimization of complex
stochastic systems in the case when the distribution functions of random
parameters are only partially known (Ermoliev et. al (1985), Gaivoronski
(1986)).

We consider systems which can be described by means of a set of functions
fk(x, ζ) : X X Ω —• 5ft, k — 0,1,.. .n, where x G X C $tq represents controlled
parameters and ζ is the vector of random parameters defined on appropriate
probability space.

Usually one is interested in estimate of some characteristics of a system
for fixed values of control parameters x, i.e. in finding the estimates of

(1) Efk(x,ζ) = f fk(x,ω)dH*(ω), * = 0 , l , . . . n

where ω and H* are respectively a realization and the distribution of random
parameters ζ. The next and more difficult step is to select the control pa-
rameters x in an optimal way, i.e. solve the following optimization problem:

(2) minE/ 0 (z,C)
xex

with possible constraints on values of functions E fk(x,ζ).
In this paper we consider the case when the distribution function H* is not
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completely known due to large dimension of the vector of random parame-
ters ζ and/or scarsity of the experimental data. This situation is common in
image processing (Geman et. α/(1984)), reliability analysis (Gaivoronski et.
αl (1994)), processing of medical data (Lauritzen et. αl (1993)) and many
econometric problems. In this case it is not possible to solve the problems
(1), (2) and new approaches are needed. One such possible approach is the
following.

1. Structural Analysis. Clarify the structure of the random vector ζ. In
our case this means finding statistical dependencies between various compo-
nents of ζ in such a way that the joint distribution ζ can be represented as
follows:

(3) H*(ζ) = Π H*((v\ζc(v))

For example the set c(υ) can be a subset of vertices in V. Notice that in
order for this representation to be correct it is necessary that conditional di-
stirbutions H(ζv | ζc(υ)) satisfy compatibility constraints. Distributions of
the type (3) are associated with the so-called Bayesian Nets (Pearl (1988)).
More detailed information about this problem will be given in Section 2.

2. Robustness Analysis. Even after structural analysis very often the

statistical evidence is not sufficient to define unique distributions H(ζυ\ζc^).

In this case it is possible to define for each pair (v,c(v)) the set GVMV\ such

that

(4) H ( ζ υ \ ζ c ( υ ) ) e G v A v ) , v e v

These sets can be defined using experimental data and/or expert estimates.
For example, they can be defined by bounds on mean, variance and other
moments of H(ζυ\ζc(v\) and/or bounds on probabilities of some sets by using
generalized moment constraints (DalΓAglio et. al (1994)) of the form:

(5) / fk(x,ωv)dH(ωv) < 0 k = l , 2 , . . . n .
JΩ

Combining the structure (3) with system of sets (4) we obtain Robust
Bayesian nets. We refer to the notion of robustness here because now we
can redefine the problems (1), (2) in such a way that their solutions will be
robust with respect to all distributions defined by (3) and (4).

In particular, the solution of problem

(6) max / / lx,ωv) I I
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provides the upper bound for the solution of problem (1) where such a bound
is valid for all distributions defined by (3) and (4). Similarly, the solution of
problem

(7) min max / f°(x,ωy) TT dH(ωv\ωc(υ\)

provides the upper bound for the solution of problem (2).

The respective lower bounds are defined similarly by substituting max for
min in (6) and (7).
In the next sections we consider the case when controlled parameters are
fixed. Under this assumption problem (7) becomes:

The rest of the paper is organized as follows: in Section 2 we give a bief
introducton about Bayesian Networks and define a new class named Robust
Bayesian Networks and introduce estimation problems on Robust Bayesian
Networks. In Section 3 we describe two different approaches for solving esti-
mation problems defined on Robust Bayesian Nets. Section 4 is devoted to
the description of estimation algorithms based upon the approaches intro-
duced in Section 3. In Section 5 we present a case study related to Integrated
Circuits Manufacturing (ICM) together with numerical experiments. Finally
in Section 6 is described a possible direction for further research.

2. Robust Bayesian Nets. In this section we gather basic definitions
which will be used in the sequel. Starting from the definition of Bayesian
Net we define Robust Bayesian Net (RBN). Suppose that G — (V^E) is an
acyclic directed graph with V being the set of nodes and E CV X V being
the set of directed arcs. For each node υ G V let us define respectively the
set of parents and the set of descendants:

c(υ) = {w\(w, v) £ E} d(v) = {w\(v, w) e E}

Let us consider a set of random variables ζv = {ζυ^v e V} indexed by
nodes V and defined on appropriate probability space (Ω,B,P). Suppose
that W is an arbitrary subset of V and ζ\γ is a vector which components
are indexed by elements of W. The graph G is associated with ζy and the
node v is associated with variable ζυ of ζv in the sense that G describes
probabilistic dependencies between different elements of ζv More precisely,
suppose that W is an arbitrary subset of nodes such that

W C V \ {d(υ) U υ}
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Then ζυ and ζw are conditionally independent given ζc(υ), i.e.

(8) P(ζv\ζwuc(v)) = P(C,|Cc(.)).

DEFINITION 1 A pair (ζv,G) which satisfies (8) is called a Bayesian Net.

Suppose now that H*(ζv) is the joint distribution of ζy. It follows from
Definition 1 that
(9) H*{ζv) = Π H*(ζυ\ζc{v))

where H*(ζv\ζc^) is the conditional distribution function of ζv given ζc(vy
Now we are going to introduce the definition of Robust Bayesian Net.

Suppose that Tίy is the set of all distributions representable in the form
(9), i.e.

(10) HV = \H((V)>0, f

and A is some subset of Hy. This subset contains all available information
about the distribution H*(ζv) of Bayesian net (£y,G).

DEFINITION 2 A triple (ζy,G,A) where ζv->G are the same as in Definition
1 and A C Tίv from (10) is called Robust Bayesian Net.

In order to be useful this definition should be supplemented with meaningful
examples of the distribution sets A. One such example is constituted by
generalized moment constraints (Betrό et. al (1994)).

Suppose that we have the set of functions fk(ωy), k = l , 2 , . . . n , then

we can define the set Aι as follows:

= <H\H e H V , ί fk(ωv) Π dH(ωv\ωc(v)) < 0, k = 1 , 2 , . . . n l .
I JQ v£V J

Let us now define different estimation problems associated with Robust
Bayesian Nets.

PROBLEM 1 For a given Robust Bayesian net (ζy,G,A) we define the a
priori estimation problem as that of finding the upper and lower bounds on
the values of E/°((V) where f°(ζv) is a known function of random vector
ζv- This is equivalent to the solution of the following problems:

(12) maχE/°(Cv) = maxί f°(ωv) Π dH(ωυ\ωc(υ))
rlEA ME.ΛJQ vGV

(13) min E/°(Cv) = min / f°(ωv) J J dH(ωυ\ωc(υ))
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Similarly we can define other important problems, e.g. aposteriori estimation
and optimization problems. We formulate here the a posteriori estimation
problem for the case of discrete random variables. The same formulation
is valid for continuous random variables which have densities. In such a
case we obtain the formulation of the problem by substituing densities for
distributions.

PROBLEM 2 For α given Robust Bαyesiαn net (ζy,G,*4) let ζs = ωε be the
available statistical information and assume the case when random variables
ζy are discrete. In such a case we have the following:

= i Π H(ζv = ω:\ζc(υ)) Π H(ζw\ζc(w)).
veε wev\ε

Then we define a posteriori estimation problem as that of finding the upper
and lower bounds on the values ofΈf°(ζv) where f°(ζv) i>s a known function
of random vector ζy. This is equivalent to the solution of the following
problems:

max Ef(ζV\ε\ω*ε) =

(14) = max ± / f(ωv) ]J H{ωl\ωc{v)) JJ dH{ωw\ωc{w))HeA o JQ υ e ε

min

(15) - min 1 / f(ωγ) Π HK\"c(v)) Π dH(ωw\ωc{w))

3. Lagrange relaxation and Ω-discretization. In this section we

propose two different appoaches for solving problems (12) (13) (14) and (15).

Let us now focus on problem (12). We propose two different approaches for

analyzing the above estimation problem named: Lagrange relaxation and

probabilities discretization.

The first approach relies on Lagrange relaxation and can be introduced as

follows. Let Fk(Π) = /Ω fk(ω)dH(ω) k = 1,2,.. .n and let T' be defined as

follows:

F = {F = (T°(H(ζv)), F^Hiζv)), ..., Fn(H(ζv))) : HeHv}

then for general constraints (5) it is possible to show that T1 is non-convex.
Let us now consider the case when each constraint is related to a single
random variable. In such a case we provide the following theorem.
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THEOREM 1 (Stella (1995)) Assume that fk(ω) Vk = 0 , 1 , . . . , n depends

on a single variable ζk then the set T' is convex and T1 — CoZ where:

Z = {z : z = (f°(ω)j'(ω),...r(ω)),ωeίl}

P R O O F : Let Fk(Hι), Fk(U2) be any pair of points in T1. Let us consider
the following linear combination.

fk(ω)(λh\ζυ I ζc(υ))+(l-\)h\ζυ I ζc(v)))dζυ.

We obtain a new distribution function H* defined as follows:

cic*,))) Π

which generates Fk(H*) = λFA :(ΰΓ

1) + (1 - \)Fk(H2). This impUes that:
ZCT' T1 C CoZ Tf is convex and then:

(16) T'

This completes the proof. •

Using the results from Theorem 1 it is possible to show that problem (12)

is equivalent to a linear programming problem obtained throught Lagrange

relaxation as stated in the following theorem.

THEOREM 2 (Stella (1995)) Assume that Ω is a compact set, fk(ω), k =
0 , 1 , . . . , n are continuous functions depending on a single variable and 0 £
int CoZ. Consider the following min-max problem:

(IT)

where Λ+ = {λ = (λo, λi,..., λ n ), λ& > 0}. Let L(λ) be defined as follows:

L(\) = max

L A ; = l J

and

Λ* = {λ* G Λ+ : L(\*) = min L(X)}

Ω* = L* G Ω : /°K) - f ] \kf
k(ω*) = max [/°(α;) -

Supp H* is the support set of distribution H. Then the solutions of both
problem (12), (17) exist, and the optimal values of both problems are equal.
Furthermore for each solution H* for (12) there exists λ* G Λ* such that:

suppH* C Ω*(λ*)
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For the proof of Theorem 2 the reader is referred to Stella (1995).
Let us now present the Theorem upon which is based the second approach

for solving problem (12) named probabilities discretization.

THEOREM 3 (Stella (1995)) Consider problem (12) and assume that the
functions fk(ω),k = 0 , 1 , . . . , n are B — measurable, than there exists a
distribution function H{ζy) solution for the aforementioned problem such
that H(ζy) = ΠveV H(Cv|Cc(v)) and suc^ ^ a i every conditional distribu-
tion function -H"(Cu|Cc(υ)) Z 5 discrete consisting of a support of at most n + 1
distinct values.

For the sake of brevity in this paper we do not report the proof for Theo-

rem 3 which is mainly based on results coming from Kempermann (1968).

4. Estimation algorithms. In this section we present three stochastic
optimization algorithms based on Theorems 2 and 3 respectively. Let us now
present a numerical algorithm for solving problem (12) based on Theorem
2.

ALGORITHM 1 Step 1. Let s be the current iteration number and set s = 0.
Furthermore let / £ N be a generic number and let e be any given suiably
small quantity. Choose randomly a starting pair of points ω^ £ Ω and
λW £ Λ. Set ωs — ωs where ωs represents the optimal point at iteration 5
and φ(ω, λ) = f°(ω) - £ L i Xkf

k(ω).
Step 2. Select randomly a point u;( s+1) £ λί(ω^) where λί(ω^) is some

neighborhood of ω^s\

Step 3. Select a new point λ( 5 + 1) according to the following

jθ;λ£ -= maxjθ;λ£ - Ph^χ ^ \ω = ωs\ Vk = 1,2,...

where ps

k is the step at iteration s.
Step 4- Compute the following quantities

φs+1 = φ(ωs+1; λ 5 + 1 ) = φ(ωs+1 : λ 5 * 1 ) .

Step 5. If <^ s + 1 ) > ^ ( 5 + 1 ) then set φ = φs+1 and ωs+1 = ωs+1 otherwise

set φ = ^ 5 + 1 and cJ5 + 1 = ωs.

Step 6. Compute the following quantity:

5+1

3=8+1-1

If for each λ£+ 1 > 0 we have that fr^l < e and for each λ£+ 1 = 0 we

have that 7^+ 1 > -e then the algorithm terminates.
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A similar algorithm has been developed for the a posteriori estimation
problem (14) based on Theorem 2.

ALGORITHM 2 Step 1. Let s be the current iteration number and set it equal
to zero: s = 0. Furthermore let / G N be a generic number and let € be any
given suitably small quantity. Choose randomly a starting triplet of points
ω^ G Ω. Λ ^ G Λ and μs G M. Set ωs = ωs where ωs represents the optimal

point at iteration s and φ(ω,\,μ) = /°(ω) —ΣJLi λ*/*(u;) —Σ3b=i A*fcί7*(α;)
SYep #. Select randomly a point ωs+1 G Λf(u W) where λί(ω^) is some

neighborhood of ω^s\
Step 3. Select a new pair of point λ( s + 1 ) and μ 5 + 1 according to the fol-

lowing

^. Compute the following quantities

¥> s+1 - ψ(ωs+1 : λ s + 1 : / / + 1 ) ^ s + 1 ^( μ)

5. If ψs+1 > ^ ( s + 1 ) then set φ = φs+ι and ωs+ι = ωs+1 otherwise
set φ = φs+1 and cJ s + 1 = ωs.

5^ep 6. Compute the following quantities:

5+1 8+1

Ίs

k

+1= Σ -fk&) δi+1= Σ -*V)
j=β+/-Z j=β+/-/

If for each λ^+1 > 0 we have that |7^ + 1 | < €, for each λ£+ 1 = 0 we have that
7^+ 1 > - c , for each μ£ + 1 > 0 we have that \Ss

k

+1\ < e and for each μ£ + 1 = 0
we have that #£+ 1 > — e then the algorithm terminates.

The proof of convergence for Algorithms 1 and 2, which is not reported
in this paper for the sake of brevity, is mainly based on results coming
from Gaivoronski (1986) and sufficient conditions for the convergence of the
algorithms 1 and 2 are:

(18) ^ > 0 5 > £ = +oo
s=l s=l

+ OO +OO

(19) rs

k>0 Σrk = +°°
s=l s=l
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For further details the reader is refered to Stella (1995).

Finally let us present a numerical algorithm for solving problem (12) based
on Theorem 3.

ALGORITHM 3 Step 1. For each root node i G V (i.e. c(i) = 0) randomly

select n + 2 different points ω\3 , j = 1,2, ...,n + 2. For each one of the

remaining nodes i £ V and for each configuration of its parent nodes ωcίΛ

randomly select n + 2 different points ω\3\ j = 1,2,..., n + 2. Set the number
of current iteration h = 0.

Step 2. For each node i €V and for each configuration of its parent nodes
ωφ) set:

i 1 2 + 2

5. Select a node i G F not yet selected during the current cycle and
increase the current number of selected nodes K, K = K + 1. Solve the
following linear programming problem:

n+2

Σ ^.co/V) Π

subject to:

n+2

Σ ».,(,,/V) Π

n+2

Σ Wi.c(0 = 1 VωΦ)
ii,c(o= 1

where M is some given large number. If the auxiliary variable σ = 0 then
go to step 4, else if K < \V\ go to step 3, else set K=0 and go to step 3.

Step 4- Update the number of current random searchs, h = h + 1. For
each node i 6 V and for each configuration of its parent nodes ωcu\ select

u>j such that Pjic(i) = 0. Then replace ur with ujj G Af((Jj) where

Af((Jj) is some neighborhood of ωy.
Solve the following linear programming problem:

n+2

max £ PjtA%)f(^) Π PhΛi)
ι ' c ( 0 ii()=l^V
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subject to:

Σ ^WV) Π

n+2

Σ Pii.cC.-) = X V ω c ( 0
it,c(t)=i

Step 5. Update the sample space for the node providing the best objective
function improvement.

Step 6. If h < N go to step 4, otherwise the algorithm terminates.

5. Integrated circuit robustness analysis. In this section we provide
a description of the robustness analysis of Integrated Circuits (ICs) based on
the theory and algorithms described in preceding sections. We first provide a
brief description of Integrated Circuit Manufacturing (ICM) and then report
a numerical experiment related to Algorithm 1.

The silicon wafer production process is characterized by a high number
of steps (about 80-120, according to the microcircuit to be produced). This
makes it very difficult for process engineers to diagnose the causes of failure.
On each silicon wafter (Figure 1) are located several chips (about 300 up
to 400) and five test structures hereafter referred as "test patterns". These
structures contain a variety of elements which can be contacted via probe
pads, e.g. Resietor, Contact, Metal Comb, Diode, Bipolar, Transistor and
MOS Transistor. In order to control the IC fabrication process test data for
both electrical and non-electrical parameters are collected during and after
processing. These measurements include:

In-process (IP) measurements: taken at several steps during the process.
They are normally utilized to control a specific process step. Three major
type of measures are carried out: sheet resistance of layers Rs. thickness
of grown or deposited layed d and critical dimension CD the line width of
photolitographic structure.

Parametric Control Monitors (PCM) tests: performed immediately after
the whole process is completed. The measurements performed on test pat-
terns are compared to previously established control limits in order to draw
conclusions regarding the succesful completion of the processing cycle.

Wafer Final Test (WFT): usually performed in two steps. In the first step
named "wafer test" ICs on unsawn wafers are tested in order to determine
whether they satisfy the IC specification limits. Based upon the test results
the ICs are classified into groups having different quality levels and packaged.
Then, the second stage of IC testing is performed on packaged microcircuits
where similar or identical tests as in the first stage are performed. Notice
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that the WFT test procedure allows also the detection of defectiveness while
PCM does not.

Based upon the ICM case study we performed a wide set of numerical
experiments related to Algorithms 1, 2 and 3. More precisely we analyzed
the behavior of the above mentioned algorithms w.r.t. some parameters of
interest such as algorithm step and objective function type. For brevity we
only describe some results related to Algorithm 1. More information about
numerical experiments can be found in Stella (1995).

Figure 1: Silicon Wafer

EXAMPLE. The case study we are going to present in the rest of the paper
is related to the DMOS microcircuit. The Bayesian net model related to
the DMOS microcircuit (Figure 2), has been obtained by combining expert
knowledge together with statistical estimation procedures. In Table 1

Node
vι
V2

V3

v4

v7

V8

V9

Description
Epi sheet resistance
P-body sheet resistance
N-f As sheet resistance
Gate oxide on epi capacit.
Si-poly strip width
Drain estension sheet res.
Vt shift due to B eff.
Vbe NPN P-body base
BVebo NPN P-body base

Node

vio

vn
V12

V13

V\4

V\5

vie

V17

Description
Hfe NPN P-body base
LDMOS Vt
LDMOS Vt
Bvcbo HV Power NPN-PBB
BVcbo NPN P-body base
Low Leakage diode BV
Power LDMOS Ron
BVceo NPN P-body base
Power VDMOS Ron

Table 1: Node-Parameter Correspondency Table
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we report the physical meaning for each node described in Figure 2.

Figure 2: Robust Bαyesiαn Net for ICM-DMOS Robustness Analysis

It is worth observing that the case study we are going to present is specif-
ically related to PCM parameters but in principle there is not reason why a
more general model involving IP and WFT parameters cannot be analyzed
using our approach.

In order to better clarify the nature of our problem let us specify that
each random variable can take values within the range [-1.1] according to a
gaussian distirbution. Furthermore in order to define probability constraints
we split the range [-1.1] as follows:

According to the above range splitting and for any given node Vj we con-
sider generalized moment constraints of the form:

(20) < /,• I / φ ) ) < μ3 +

Finally we present the case when the objective function is defined on node
vi3(P(ζi3 € /2)) In order to describe and discuss the behavior of algorithm
1 we have to introduce some new quantities. More precisely let S be the
algorithm iteration number. A, 5 , C be real variables and ps be the step
of algorithm 1. We consider the case when the algorithm step is defined as
ps = 1/{SA + B)c, where A = 0.3, B = 50 and C = 1.

In Figure 3 the behavior of Algorithm 1 is reported int he case when we
have to estimate a lower bound for our objective function.

The numerical experiment was performed assuming that in (20) the σj is
set to zero. This enables us to compute the correct solution to our problem
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which in Figure 3 is shown as means of a straight line. It can be observed

that our algorithm converges quite quickly to this solution and around iter-

ation 600 the precision is quite appreciable. We also performed numerical

experiments assuming σj φ 0 but in such a case it is not simple to evaluate

the algorithm behavior.

601 701

Figure 3: Lαgrαnge Multipliers Algorithm behavior

6. Direction for further research. In this paper we have considered
some optimization and estimation problems on Robust Bayesian nets, i.e.
nets in which we have uncertainty about conditional distributions of random
variables associated with vertices of acyclic directed graphs. We assumed
that the graph which defines the strucure of Robust Bayesian nets is known.
However, in many applications it is not completely true and we have also
uncertianty about the strucutre (Lauritzen et al. (1993)). This is a very
important problem which is one of the directions for further research. We
can give here only very brief outlines of our approach.

Let us consider, for example, an extension for this case of the a priori
estimation problem (1). Suppose that we know the set Q of possible struc-
tures of conditional dependencies and for each G 6 Q we have information
A(G) about conditional distributions. In this case we can study robustness
properties also with respect to structural uncertianty as follows:

PROBLEM 1. For a given set of possible structures Q we define the a
priori esimation problem with structural uncertainty as the problem of finding
the structures GG Q and G £ Q corresponding to Robust Bayesian nets
{ζv,&A(G.)), {ξv,G,A(G)) and the upper and lower bounds of the values of
E/°(ζV) from the solution of the following problems:
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(21) max max Ef°(ζv) = max max / f°(ωy) TT dH(ωv I ωc(v\)

(22) min min Ef°(ζv) = min min / / W ) Πin
GeQHeΛ(G)

This problem is more difficult numerically than the problems (12), (13)
and algorithms which exploits its structure should be developed for its solu-
tion.
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