Chapter 5

Stochastic differential
equations in Hilbert space

Throughout this chapter, H will be a separable Hilbert space with inner
product < -,- > and norm || -||. L(H,H) will denote the class of all con-
tinuous linear operators on H and Lo(H, H) the class of all Hilbert-Schmidt
operators. For an operator A € Ly(H, H), the Hilbert-Schmidt norm will be
denoted by || - [|2-

Let (2, F, P) be a complete probability space with a given filtration (F;)
assumed to satisfy the usual conditions. Let (W;) be an (F;)-cylindrical
Brownian motion (c.B.m) on H and let (B;) be an (F;)-adapted H-valued
Brownian with covariance ¥ (cf. Section 3.2 for definition).

5.1 Diffusion equations in Hilbert spaces

Suppose that A : H — H and G : H — L(H,H) are two continuous
mappings. We consider the following SDE on H:

X, = Xo+ /0 " A(X,)ds + fo ' G(x.)dB.. (5.1.1)

It is possible to establish a unique solution for (5.1.1) by making use
of weak convergence techniques and by following the method which will be
developed in Chapter 6, i.e., first we obtain a solution for the corresponding
martingale problem by approximation and then get a weak solution by the
representation theorems given in Chapter 3; finally we establish a unique
strong solution by the Yamada-Watanabe argument. However, in this sec-
tion, we shall adopt the approach given by Leha and Ritter [37] to establish
a unique strong directly.

149



150 CHAPTER 5. SDE IN HILBERT SPACE

Definition 5.1.1 {X,} is called a strong solution of (5.1.1) with ezplo-
siton time T if

(i)

limsup || X|| = o0 on the set {T < 00}.
t—T1

(ii) There exists a sequence {T,} of stopping times, increasing to T, such
that

(a)
tATh
E/ IA(X,)||ds < oo.
0
(b)
tATh 9
B [ I g myds < oo.
(c)
tATH tATh
Xonr, = Xo+ / A(X,)ds + / G(X,)dB,
0 0
where the stochastic integral is defined as I;(f) (cf. Section 3.3) with
f(s,w) = G(X,)E31,¢r, € Liy)(H, H).
As

tATR

t
E [ (e w) s < 2B [ 16X mds < oo,

I(f) is well-defined, where || - [|(;) denotes the nuclear norm of nuclear op-
erators on H.

Theorem 5.1.1 (Leha-Ritter) Suppose that Xy has a finite second mo-
ment and A, G satisfy Lipschitz conditions on bounded sets, i.e., Yn, 3L,
such that Vz,y € H, ||z|| < n, ||y|]| < n, we have

14(z) = AWl + 1G(2) = GW)l|L(a.ar) < Lnllz = yll.
Then there is a unique strong solution to the SDE (5.1.1).

Proof: First assume the global Lipschitz conditions for A and G,i.e. L, = L.
We construct a Picard sequence as follows:

X? = X,
t t
XmH = Xo4 /0 A(X™)ds + /0 G(X™dB,.  (512)

By induction, it is easy to show that V¢ > 0

t
E/ IX™%ds < 00 Vm >0,
0
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and consequently, {X;"} is well-defined by (5.1.2).
Note that, by Theorem 3.3.2,

t 2
E sup / (Gxm - 6(xr)) aB,
o<t<r llJo

[/

< 4Bl [ 1 - XP s

IN

G(XD) - G(X ™)) 5 2

ds
2

Therefore
D = Esup |xr - xr1
0<t<lr
2
< 2F sup /(G’(X;")—G(X;"_l)) dB;
0<tlr livVO
¢ 2
+2F sup / (axm) - axrh)) ds
o<e<r lJo
< A4Sy +7) / DT1ds. (5.1.3)
0

Let K(r) =2L*(4||Z||(1)+ r). Then

D:n < DE (K(r)r)m

= (5.1.4)

where
t 2 t 2
D° < 2F sup / G(Xo)dB, / A(Xo)ds| < oo.
o<t<r IJo o<t<r [Jo
Vr > 0, let
oo
Q =Kw: sup | X™ - XM Y <o0b.

{ m2=1 092’ Il X¢ e |l }

As

EE Sup IIX"‘ x| < Z E sup | X" - X717

m=10% m=1 0<t<r

Z ppE

IA

P(92,) = 1 and hence, P() = 1 where Q' = UX,Q,. It is clear that
VYw e ', IX (w) € C([0,0),H) s.t. VT >0

sup || X (w) — X¢(w)| — 0. (5.1.5)
0<t<T
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By (5.1.4), it is easy to show that, Vr > 0

Ki(r)=sup E sup || X||® < o0 (5.1.6)
m>0 0<tlr
and
lim E sup || X™ - X¢||* — 0. (5.1.7)

By Fatou’s lemma, we then have
E sup || X¢|® < Kyi(r). (5.1.8)
0<t<lr

Now we show that {X;} satisfies the conditions of Definition 5.1.1 with
T = o00. (i) is trivially true. For (ii), (a) and (b) follows from (5.1.8) and the
global Lipschitz conditions on A and G. (c) follows from (5.1.7) and (5.1.2).
Hence X is a strong solution of (5.1.1).

Suppose that X is another solution and let

D, =E sup | X, - X,|%
0<Ltlr

As in (5.1.3) we have
B, < 2L 0+ 7) / D,ds
0

and hence D = 0. This proves the uniqueness of the solution.
Finally, we return to the general case. Define

G(e)  iffzll<n

Gn(z) = { G (ﬁ) otherwise.

A, can be defined similarly. Then A,,, G, satisfy the global Lipschitz condi-
tions and hence by the first part of the proof there is a unique strong solution
& for (5.1.1) with A, G replaced by A,, G, respectively. Let 7, be the first
exit time of " from {z € H : ||z|| < n}. Then {7,} is a non-decreasing
sequence of stopping times and

Ml V< T

Let 7 = sup,, 7, and
Xt = f? vt S Tn.

Then
lim sup [|X,| > lim_ | Xr,[| = co.
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This proves (i) of Definition 5.1.1. The condition (ii) follows directly from
the construction of {X;}. Hence X is a solution of (5.1.1) upto time 7. M

It follows from the proof of the above theorem that 7 = co a.s. if A and
G satisfy the global Lipschitz conditions. The following theorem gives the
same result under weaker conditions.

Theorem 5.1.2 (Leha-Ritter) If, in addition to the conditions of Theo-
rem 5.1.1, A and G satisfy the following: There exists a positive constant K
such that for any z € H,

< z,A(z) >< K(1 4+ ||z||?)

and
IG@)E a2y < KA+ l2]l),

then {X;} has infinite explosion time, i.e., T = 00 a.s.

Proof: We use the same notation as in the proof of Theorem 5.1.1. It follows
from Ité’s formula that

tATR
el = Xl +2 [ < Gleryer aB. >

tATn tATR 1112
+2 /0 <€ A(ET) > ds+ / G(en)mt]’ ds
0

where G(£7)* denotes the adjoint operator of G(£7). Therefore

t
BlEurl? < BIXol? +2K [ (1+ Bl I)ds
t
HISIWK [ 1+ Bl€n s
By Gronwall’s inequality, we have

E||&nr, 117 < (1+ E||Xo|*)el 0! = g(t) < 00, ¥t > 0.

Hence
P(r <t) < P(m < t) < P(||€]0, ]l > m) < n72g(2),

ie. P(1 <t)=0Vt>0and hence, 7 =  a.s. |
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5.2 Stochastic evolution equations
in Hilbert space
We are going to consider the following SDE
dXt - —LXtdt + G(t, Xt)th + A(t, Xt)dt (52.1)

where X is independent of (W;). Here the operator L is assumed to satisfy
the following conditions:

T; = e7** is a contraction semigroup on H, (5.2.2)

L™! is a bounded self-adjoint operator with discrete spectrum. (5.2.3)

Let {¢«} be the eigenfunctions of L, which constitutes a CONS in H and let
{Ar} be the corresponding eigenvalues. We assume also that A : [0, T|x H —
H and G:[0,T] x H — L(H, H) are continuous functions satisfying

| (A(t, k), $) | < ar(L +[|h]|?)2 (5.2.4)
IG*(t, h) k|| < bi(1 + ||R]|?)2 (5.2.5)
| (A(t, k1) — A(t, h2), ¢k} | < akllh1 — hal| (5.2.6)
(G*(t, h1) — G*(t, h2)) || < brllh1 — hal| (5.2.7)

forall k > 1,t € [0,T), h, hy, hy € H, where G* is the adjoint of the operator
G and {ax}, {bk} satisfy

00
Y apAt =Cop < 00 (5.2.8)
k=1
00
Z b,zc)\lzl = 02’2 < 00. (529)
k=1

Under these conditions the stochastic integral fg G(s, Xs)dW, may not
be defined. However, for any predictable process (X;),

IA

t o0
30 e a1 (X, )ds

t
[ 1765, X3
0 k=1

= [fott-a)a+IxiDds (5210

where

fo(t) =Y e 2}, (5.2.11)
k=1
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Since [ fo(u)du < T2, b2A;! = Oy, it follows that the stochastic integral
referred to above exists if

T
/ | X,||%ds < 0 a.s. (5.2.12)
0

Similarly

t 2 t ©
[ /0 ||Tt_,A(s,X,)||ds] < T /0 T e 2 g2 (14 [|X, |2)ds

k=1
= [ -0 rixipes 219

where

o0
fat) =T e Pwta} (5.2.14)
k=1

and again we have that f(f fa(u)du < TCs;. Thus for every w such that
(5.2.12) holds, we also have that the integral

t
/ Ti—sA(s, Xs)ds (5.2.15)
0

is well defined.
We will prove the existence and uniqueness of the above equation (5.2.1).
The details are taken from Bhatt, Kallianpur, Karandikar and Xiong [1].

Definition 5.2.1 A predictable process (X;) is said to be a mild solution
or evolution solution to (5.2.1) if (5.2.12) holds and for every ¢

t t
X, = ToXo + / Ty oG(s, Xo)dW, + / T, JA(s,X,)ds a.s.  (5.2.16)
0 0

Note that the predictability of (X;) implies that Xy is independent of
(Wy). Tt is easy to see that if (X;) is a solution and (X;) is a predictable
modification of (X;), i.e. P(X; = X,) = 1 for all t, then (X,) is also a
solution to (5.2.1).

It is convenient to define a new probability measure P on F,

p(C) = /C exp{~|| Xoll}dP / [ expt-Ixal e (5.2.17)

Clearly, P and P are mutually absolutely continuous and the Radon-Niko-
dym derivative % is Fo measurable. Hence (W) is again a c¢.B.m on
(Q,F,P). If M, = [ F,dW, on (Q,F,P) and M = f; F.dW, on (Q, F, P)
where [T ||F,||2ds < oo as. (P or P), then

P(M, =M forall t) = P(M; = M for all t) = 1.
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Thus (X;) is a solution to (5.2.1) on (, F, P) if and only if (X;) is a solution
to (5.2.1) on (2, F, P). Further, we have for all p < oo,

EP|| X|lP < 0.

Here is a version of Gronwall’s lemma which will be used in proving
existence and uniqueness results for the solution.

Lemma 5.2.1 i) Let f, g and § be nonnegative functions on [0,T]. Let
a € [0,00) such that [T e~ f(t)dt < 3. Suppose that either g is bounded or
g 1s integrable and 6 is bounded. If for allt < T,

90 < c+ [ F(5){ae = 9) +6(t - 9)}ds, (5.2.18)

then there ezists a nonnegative Borel measure p on [0,T] such that p[0,t] <

et and

g(t) <c(l+e) + /()t 8(t — s)u(ds). (5.2.19)

it) Let f, g be positive functions on {0,1,---,n}. Let a € [0, 00) such that
e (i) < % Ifforall0<i<mn

o) < e+ Y F(i)oli- 3), (5.2.20)
then . :
9(1) < c(1+e™). (5.2.21)

Proof: Iterating the inequality (5.2.18) we get
gt) < c+ /0 " F(50)8(t = s1)dsy + (5.2.22)
t t—s;
] f(s1) [c+ / F(s2){g(t — 51 — 53) +8(t — &1 _32)}d32] ds;
0 0
t
- c+/0 {c+6(t — 51)} f(51)ds1

t t
+/0 /0 {g(t — 51— s2) + 6(t — 51 — 52) } f(51) f(52) L5y 45, <td51d52

k t ¢
o 20 [[ e+ o6 us(as) ~eun(0,6) + [ ate— e

IA

IN

where

t t
ﬂj([O,t])=/0 /0 f(s1) -+ f(85) Loy 4tsj<tdsy - - -ds;.
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As

t t
p(08) < et [ [emelottnlfog) . fla;)dsy --ds,

1\7
< at _>
< e (3
w(C) = 32, 1;(C), C € B([0,T]) is a well-defined nonnegative Borel mea-

sure on [0,T] such that u[0,¢] < e**. Letting k£ — oo on the right hand side
of (5.2.22), we have

g(t) < c(1+e*t) + /;5(15 — s)u(ds) + lig'gcx’f /Otg(t — s)ur(ds). (5.2.23)

If g is bounded, then liminfz_ f(fg(t — s)pk(ds) = 0 and hence (5.2.19)
holds. If g is integrable and § is bounded, then

T t T ,t
/ lién inf / g(t — s)pr(ds)dt < liminf / / g(t — s)ux(ds)dt
0o k—oo Jo o Jo

k—oco0

T
f g(t)dtlim inf p ([0, T]) = O,
0 k—o0

IN

ie. liminfxoo f5 g(t — s)ux(ds) = 0 for a.e. t € [0,T] and hence, for a.e.
te[0,T]
9(t) < c(1+ ™) + [|6]loce™.

By (5.2.18), Vt € [0, T]

o) et [ Fe)ds (et ) (14+°7)

i.e. g is bounded and hence (5.2.19) holds. (5.2.21) can be proved similarly.
|

We will now obtain an estimate on the second moment of a solution.

Theorem 5.2.1 If (X;) is a solution to (5.2.1) satisfying E||Xo||? < oo,
then

SLITPEIIXMI2 < Cz3(1 + E|| Xo||’] (5.2.24)
t—

where C 3 is a constant depending only on the constants Cy 1, Ca 2.

Proof: Let (X;) be a solution to (5.2.1) satisfying (5.2.12). Then it follows
that

(Xt, ¢k> = e_Akt (Xo, ¢k> + \/: <e—>\k(t—s)G*(s’ Xs)¢k, dW,>

t
+/ e (=9 (A(s, X,), ¢r) ds (5.2.25)
0
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and hence that
d (X, dr) = (G (t, Xt) bk, AWe) + (A(E, Xe) — A X, o) dt. (5.2.26)
Fix n and define a stopping time 7, by
t
Tn = inf {t >0: / 1Xs|1%ds > n} AT (5.2.27)
0

and let
& = M) (X nr i) -

Note that 7, — T since (X;) is assumed to satisfy (5.2.12). It is easy to see
that

tATn
g = e+ [ (G (s X )b, W)
0
tATh
[T (A5, X), de) ds
0
and hence from (5.2.4) and (5.2.5) we have
tATR
BIEE < 3B|IgsP+ [ 6" (s, X.)ul s
0
tATR
+t / e (A(s, X,), dr)? ds]
0
t
< 3|BlgtP + [ @+ Tad)E {1+ 1P Lucr, } ]
0

From the inequality E[||X¢||*1icr,] < 3p e 2 E|EF|? we get

E[|| Xl Le<r,]

t
< 3 [Enxow + [T e 0+ Ta) B {1+ 1K, Lecrn} ds]
k

IN

t
3 |BIXOI + TCan+ Caat [ folt = ) B{IXIPLucr, o]

where fo(u) = fg(u)+ fa(w) is an integrable function (see (5.2.11), (5.2.14)).

Since fOT E[||X,]|*1s<r,]ds < n by the choice of 7,, § = 0 and there exists «

such that - s
Z Tay + by <

1
- 5.2.28
a+2 2’ ( )

k=1

we can use Lemma 5.2.1i) to conclude that

E[[|X4/|*1t<r,) < C[1 + E|| Xo|’]
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where the constant C does not depend on n. Now the result follows from
Fatou’s lemma by letting n — oo. [ |

The next result proves the existence and uniqueness of the solution to
(5.2.1).

Theorem 5.2.2 Suppose that L, A, G satisfy (5.2.2)-(5.2.9). Let Xo be an
Fo-measurable H-valued random variable and let (W) be an (F;)-cylindrical
Brownian motion. Then
(i) There exists a solution (X;) of (5.2.1) satisfying (5.2.12) with Xo = Xo.
(i) If {X:} and {U;} are solutions to (5.2.1) satisfying (5.2.12) such that
Xo = Uo, then

P(Xy=U) =1 forallt. (5.2.29)

Proof: (i) Let P be defined by (5.2.17). It suffices to construct a solution
on (,F,P). Forn > 1,let tf = T, 0 <1 < n. Let X§ = X, and define
{XP,t? <t <t} 4> 0 inductively as follows. For &7 <t <1, let

t
Xp = T oXp+ / Ty uG(u, X3)dW.,
1 t:], 1
t
+ / Ty uA(u, X3)du. (5.2.30)
7 :
As in (5.2.10), (5.2.13), V& < t <t ,, we have

B|1x2|

IA

~ t ~
3 [En BIP+ [ Y e 6+ T B+ X ) ds
T t:" k 1
< 3(1+4TCou+ Cog)(L+ E| X3P (5.2.31)
Let Y = X[ for t? <t <t2,;. Then
t t
XP = T,Xo+ / T, oG(u, Y™ AW, + / Ty uA(u, YP)du.  (5.2.32)
0 0
Proceeding as in (5.2.10), (5.2.13), it follows that
~ t ~
BIXFIP < 3 [BIX0IP + TCo + Caat [ fule = )BIY?IPas| (5239)
where fo = fa + fg. Let gn(i) = E|| ;%“2, 0 <i< n By (5.231) and
induction in %, it is easy to show that g,(¢) is a finite valued function on

1€ {0,1,---,n}. It follows from (5.2.33) that

(i) < 3[E||X0||2+T02,1+02,2
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1—1 tn
+3 [ S+ Tae —’>dsgn<j)]
J=0"%; k

< 3(E|Xo|> + TCo1 + Ca2) + Y fa(d)gn(i — 5) (5.2.34)

J=1
where

b2 nf 22
fa(d) = 32 k+Tak —2H (ezikT - 1) .

Let a be given by (5.2.28). Then

n

n N _oT; bk+Talc 2 T+aT, [ 20 m
e = Yy ke G

225 T
3ZTak+b e n —1

IN

Tak+b2 1
32 a+2\, ~ 5

and hence, by (5.2.34) and Lemma 5.2.1(ii)
BI|X3I” = 9n(5) < 3(E|Xoll* + TCoa + Ca) (1 + ).
It then follows from (5.2.31) again that

sup sup E||X7|? < C'[1+ E||Xo|?] = C". (5.2.35)
n>1 0<t<T

Using (5.2.32) for n, m and using the Lipschitz conditions on A, G we get
(the calculations are similar to those in (5.2.10), (5.2.13))

. . t
Bixr - xplP < 2B { [ 171G YD) - 6w YT du

t
AT [ ITemu(Aw, Y2) - A, ) P
0
t ~
< 2 [ folt - wEIYS - ¥ |Pdu.
0

Let gnm(t) = B X7 — X||? and bnm(t) = E|| X7 - Y7+ E| X7 - Y%
Then gnm, 6n,m are uniformly bounded (by (5.2.35)) and
gnm(t)

t ~
2 [ folt — WB(EIYS - XII +11X2 = XTI+ |1XT - Y

IN

IA

/ot 6 folt — u){Gn,m (1) + bnm (v) }du.
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Similar to (5.2.31), it follows from (5.2.30) and (5.2.35) that, for t < ¢ < 2,
BIXP -YPIP = EIXP - X3 (5.2.36)
s A 2.
<3y} (e‘“ﬁz _ 1) E < X, ¢ >
k=1

0 2 2
+3(1+0N Y TEER (1o )
k=1 k

It follows from (5.2.32) that
(X0 8 = e (Ko + [ € (G, V2 6, W)
- /0 e Mult-w) (A(u, Y1), ¢r) du
and then
E(XP k) < BE(Xo, k)

t ~
+3 [ (0F + TaD)e P41+ BIY2|P)du
0

b2 + Tal

< 3E(Xo,¢k)" +3(1+C") T3

Hence, by the dominated convergence theorem, it follows from (5.2.36) that
Onm(t) — 0. By Lemma 5.2.1(i) and the dominated convergence theorem
again,

(@ < [ Sum(E)pdt) 0.
Therefore
sup E||XP - X™||2 —» 0, supE||Y;* - Y™|2 - 0. (5.2.37)
t<T t<T
Note that since Y™ is a piecewise constant, left-continuous, adapted process

it is predictable. In view of (5.2.37) we can choose a subsequence {ny} such
that Z* = Y™ satisfies

sup B 7 — 2812 < 2%,

s<T
Then it follows that 3 || Z¥ — Z*¥*!|| < oo a.s. for all s. Thus Z¥ converges
a.s. for each s. Define

o | limgoo ZF(w) ifit exists in H
Xs(w) = { 0 otherwise.
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Then X, is a predictable process. Further, it follows from (5.2.37) that
sup E||Y: - X,|? =0, sup Eux: - X.|> —o0.
From this, it can be verified that X is a solution to (5.2.1) (on (R, F, P))
with Xo = X, and that (5.2.12) holds. This completes the proof of (i).
For (ii), again, let P be given by (5.2.17). Then {X:} and {Ut} are

solutions to (5.2.1) on (€, F, P) and in view of Theorem 5.2.1, T E||X, —
Us||*ds < co. Using the Lipschitz conditions on 4, G, we deduce that

~ t ~
E|X;-U* <2 [/0 fo(t — $)E|| X, — U||*ds| .
An application of Lemma 5.2.1, with ¢ = 0 and § = 0, yields

E|X: - U|* =0
for all t. Thus P(X; = U;) = 1 and hence (5.2.29) follows. |

We are now in a position to obtain an estimate on the growth of the p**
moment of the solution.

Theorem 5.2.3 Let {X;} be a solution to (5.2.1) satisfying (5.2.12). Then
for p > 2, there exists a constant C’;, depending only on the constant C, in
Theorem 3.3.2 and on Cy 1, Ca 2 such that if E|| Xo||P < oo, then

sup B X,[I” < C,l1+ E|| Xol[?]- (5.2.38)
s_

Proof: Let X7* be the approximation constructed in the proof of the previous
theorem. Using Theorem 3.3.2, it follows from (5.2.30) that for t7 < ¢ < t2,,,

2
t 2
BlxpP < 3 [En BlP +CoE (/t,,fc(t—s>ds(1+|| ;5,,,2))

'+E ( ]tt Fat — s)ds(1+ ||x;§||2)> ] (5.2.39)

B
< @7 [BIxpIP + (G0 + TCHEQ+ X3 IDE|.
Let h,(i) = E||X3||?, 0 < ¢ < n. By (5.2.39) and by induction in i, we see

that hy,(-) is a finite valued function. By (5.2.32), proceeding as in (5.2.39),
we have

t £
E|XpP < 3t [E||X0||P+CPE (/0 fet-s)(1+ “Y,"||2)ds)

+E ( /0 fat-s) 1+ ||Y;‘||2)ds)§] . (5.2.40)
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Using Holder’s inequality for the ds integrals, we get

BIxrlP < 3 BlxolP (5.2.41)
+0, ([ fote — 5)ds) T ([ o= )+ 1wriias)
+ ([ fate - s)as) 'p ([ 1ae- )0+ 1vmitas) |-

It then follows from similar arguments as in (5.2.33)-(5.2.35) that there exists
a constant C;, depending only on p and on Cy 1, C3 2 such that

sup sup E|XP|IP < C,[1+ E||Xol). (5.2.42)
n>10<t<T

As noted in the previous result, a subsequence of X[ converges to X s, Where
X is a solution to (5.2.1). Hence, using Fatou’s lemma, it follows that the
required moment estimate holds for X. The result follows from this as X ,
X have the same finite dimensional distributions by the uniqueness part of
the previous theorem. |

We now look at regularity of paths of the solution to (5.2.1).
In order to prove sample continuity of the solution, we impose a stronger
condition than (5.2.9):

Y i =Cra< 0 (5.2.43)
k=1

for some 0, 0 < 0 < 1.

Theorem 5.2.4 Let (X;) be a solution to (5.2.1). Then (X;) admits a
continuous modification, which is of course, a solution to (5.2.1).

Proof: Let P be defined by (5.2.17). It suffices to prove that X has a
continuous modification on (2, F, P). Let us write

X =T Xo+ Y1+ 2Z;

where Y; = fg Ti—uG(u, Xy)dW, and Z; = fot Ti—wA(u, Xy)du. Clearly,
TiXo(w) is continuous for all w. For 0 < s <t < T,

”Zt - Zs”2

s t 2
- I / (T — To—u) A, Xo)du + / Ty oA, Xu)du
0 s
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2

IN

2 [ /0 (Tiea = To_a) Al Xu)||du]2 +2 [ ] T A, Xu)||du]

. Rk
2 [ / {Z (7m0 — emlem) 21 4+ ||Xu||2)} duJ
0

k

1 2
t 2
+2 [/ {Ze—ZAk(t—U)ai(l + “Xu||2)} du]
s k

< 2 [ /0 i ||Xu||2)du] afs, ) (5.2.44)

IN

by Holder’s inequality where

Ol(S, t) = /3 Z (C_Ak(t—u) _ e_kk(s—u))z aidu
0 %

t
+/ Ze'”"(t'“)aidu.
Sk

It is easy to verify that a(s,t) < B(t — s) where
8 = = a'i 1 -8k 2 1 —286) 2.4
ﬁ()=k§.ﬁ;[(_e )+ (1- )] (5.2.45)
Clearly (5.2.8) implies 5(6) — 0 as § — 0. Using (5.2.12), it follows that

lim sup [|Z:—Z,||*=0 a.s.
§—-00<t—s<4

Thus {Z;} is continuous a.s.

It remains to show that {Y;} admits a continuous modification. We shall
achieve this via the Kolmogorov criterion. Choose p such that (1 —8)p > 2,
where 6 is as in (5.2.43). Recall that by the choice of P, E||Xo||P < oo and
hence by Theorem 5.2.3, sup, < E||X,||P < co. As before, E stands for the
integral with respect to P. For s < t < T, writing

s t
Y,—Y, = / (Tiu — Ts—)C(u, Xo)dWo + / T oG(u, X)W,
0 s

and using Theorem 3.3.2, we get
E|lY; - Y|P

s B
= 2771C,E [{ /0 |(Tm — To—u)G* (%, Xu)II%dU}z
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t B
+{ [ 15w xagen) |

2
s 2
{ D Gt B ) e ||X,,||2)d,u}
k

= 2°7ICE

* {/ DI uxuu?)du}z} . (5.2.46)
Sk

Let us write

Pi(w) = 3 (e - e—xk(s-u))z 5

k

and

a(u) = Y e o,
k

Now
B [ haw)a+ 1) :
g [(/o ’/’l(u)dU) a /0 hr(w)(1+ leun?)”d“]

IN

2

C(1+ ENXalP) ([ wr(wyau)”

IN

by Holder’s inequality and (5.2.38). Similarly, estimating the second term
in (5.2.46), we get

E|lY, - Y, [P < C(1 + B|| Xo|P) [( I %(u)du)g + ( I %(u)du) 5] .

(5.2.47)
Evaluating the integrals, one obtains

~ S o[ (528 ()
BIY.-YiP < CEQ+|Xoll? |3 g (1-e¢)
k

b2 _ . g
+(Zk:2—>"°k<1—e (t ))) }

Now using the obvious inequality 1 —e®* <z A1 < zd forz>0,0<6<1,
for § = % and § = 1 — 0 respectively, we get

E|Y; - Y|P
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2
’ o~ b2 2
< C,E(1+ | Xoll)? [(Z ﬁ(kk(t - 3))1-0)
2k
b2 NAY
+ (2}; ﬁ(zAk(t - 8)) )
' p(_1 1 A (1-6)p/2
< GEQ+Xol)?\ 57 + 572 ;3‘—’; (t-s) :

Recalling the assumption (5.2.43) and noting that by our choice of p, £(1 —
6) > 1, we conclude that

E||Y: - Y,|IP < Cys)t — s|' 0 (5.2.48)

with § = £(1 — 0) — 1, where Cy 5 depends only on p, Cy4. Thus {Y;} has a
continuous modification. [ |

Now the existence and uniqueness result, Theorem 5.2.2, can be recast
as follows.

Theorem 5.2.5 There ezxists a continuous solution X to the SDE (5.2.1).
Further, if X' is any other solution to (5.2.1) with continuous paths, then

P(X;=X, forallt, 0<t<T)=1.
Our next step is to prove uniqueness in law of solutions to (5.2.1).

Theorem 5.2.6 Let {X;} be a solution to (5.2.1) [on (Q,F,P)] and let
{X,} be a solution to (5.2.1) on (', F', P') with respect to some P'-c.B.m.
on H. Suppose that X, X' have continuous paths and suppose P o X;' =
P'oXy'. Then

PoX'=PoXx (5.2.49)

Proof: Let {X[*} be the approximation constructed in the previous theorem
and let {V;*} be the approximation defined analogously on (€', 7/, P) (with
X, in place of Xy and {W,} in place of {W;} in (5.2.30)). It is easy to see
that the finite dimensional distributions of {X}*} and {V;*} are the same.
Now E|| X — X,||> — 0 implies that P(|| X} — X;|| > §) — 0 for all § > 0.
Similarly, P'(||V;* — X,|| > §) — 0. Thus the finite dimensional distributions
of {X;} and {X,} are the same. Since X, X’ have continuous paths, this
yields (5.2.49). |

We will now consider the martingale problem corresponding to (5.2.1).
For f € C3(R"),n > 1,let U,f : H — R be defined by
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For f € C2(R™), we will write f; = (0/0z;)f and f;; = (8/0z;)fi. Let
D ={U.f:f€CR"),n>1}. (5.2.51)

Define L; on D by

Li(Unf)(h) = %f_: (G*(t, h) i, G*(t, h)$;) (Unfii)(h)
+ i (A(t, h) = Ashy ¢3) (Un f) (R)- (5.2.52)
=1

If {X:} is a solution to (5.2.1), then we have seen that (5.2.26) holds and
hence it follows that for all g € D,

9(X¢) — 9(Xo) — /0 t(Lsg)(Xs)dS (5.2.53)

is also a martingale. In other words, if {X;} is a solution to (5.2.1) then
{X:} is a solution to the {L;}-martingale problem. The converse is also true
is proved next.

Theorem 5.2.7 Let (X;) be a predictable process satisfying (5.2.12) such
that (5.2.52) is a martingale for all g € D. Then on an extension (Q, F, P,
Fy) of the stochastic basis (2, F, P, Fy) there ezists a H-cylindrical Brownian
motion (Wy) such that (a) (X;) is (Fi)-predictable and (b) (X;) is a solution
to (5.2.1).

Proof: Using (5.2.52) for ¢ = U, f, f € CZ(R"), we can first conclude that
(< Xt,¢i >,1 <1< n)has ar.cll. modification and then further it has a
continuous modification. (this follows using arguments in Theorem IV 3.6
in [9] and exercise 4.6.3 in [53].) Let us denote the continuous version of
< X4, ¢; > by Y*. Then we also deduce that

M =Y!-Y; - ] AiY,ds —/ < A(s, X,), ¢i > ds
0 0

is a continuous local martingale and that

(m,09), = [ (G (5, X1, G (5, X)) ds.

As a consequence, recalling the definition (5.2.27) of 7,, and using (5.2.9)
we have

E sup |Mf|* < 4E (M* M*) < b}(1+n). (5.2.54)
t<mn Tn
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Let NF = )\_l/thk. Then using (5.2.9) and (5.2.54) we get

ZN¢k

k=m

2

E sup
t<7n

—0 m,r — 00.

Hence Ny = Y22, Nf ¢y is an H-valued continuous local martingale. Hence
(N*, 7Y = j AT (G (5, X,y G (5, X)) ds
- /0 (e £15) ds

where f,(w) = L~'/2G(s, X,). Note that

T
| 1A @)IBds < 00

in view of the assumption (5.2.9). It follows from Theorem 3.3.5 that on
an extension (2, F, P, F) of (Q, F, P, F;), there exists an H-c.B.m W; such
that

t
N, = / FodW,.
0

Then NF = (Ny, éx) = J < \2*G*(s, X,)$k, dW, > and hence

M= /0 (G (5, X.) b, W)

From here, it follows that {X,} satisfies (5.2.26) and hence {X,} is a solution
to (5.2.1). N

In the light of Theorem 5.2.5, some of the results concerning the equa-
tion (5.2.1) proved earlier can be recast for the {L;}-martingale problem as
follows.

Theorem 5.2.8 (a) Let (X;) be a predictable process satisfying (5.2.12) and
suppose that (X;) is a solution to the {L;}-martingale problem. Then (X;)
admits a continuous modification.

(b) For all p € P(H), there exists a continuous process (X;) such that
(5.2.58) is a martingale for every g € D and such that the law of Xo is
u. Further, the law of the process X is uniquely determined.

(c) For 0 < s <T, ¢ € H, there is a unique measure Py, on C([0,T], H)
such that (writing the co-ordinate process on C([0,T], H) as 1),

(i) Psz(n(u)=2,0<u<s)=1.

(i) 9(ne) — [H(Lug)(nu)du, t > s is a P, z-martingale.
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(d) Further, (n:) is a time inhomogeneous Markov process on the probabil-
ity space (', F', P, z) (where Q' is C([0,T], H) and F' is the Borel o-field
on Q) for each (s,z) € [0,T] X H. The (common) transition probability
function P(r,y,t,C) is given by

P(T‘,y,t,C)Z Pr,y(nt € C)
forr <t<T,ye H, C Borel in H.

Proof: (a), (b) follow from Theorem 5.2.2, 5.2.4, 5.2.5 and 5.2.7. (c) is the
same as (b)-with a change of origin from 0 to s in the time variable. For (d),

let us note that if for each n, Cy, is a countable dense subset of C3(R"™) (in
the norm, || fllo = || fll + 2; 1 £ill +2; [1fislls [| - |, being sup norm) then

Do = {Unf: f €Cn}

is a countable set and for every g = U, f € D we can get g € Dy such that
gr — g and Lygx — Lig. Just take gy = U, fi where fi € C,, approximate
fin || - |Jo norm. Hence the Markov property of (1) under {P,.} and the
expression for the transition function follow from the uniqueness of solution
to the martingale problem. (See Theorem 6.2.2 in Stroock and Varadhan
[53]) n








