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FDR step-down and step-up procedures

for the correlated case

Paul N. Somerville1

University of Central Florida

Abstract: Controlling the false discovery rate has been increasingly utilized
in high dimensional screening studies where multiplicity is a problem. Most
methods do not explicitly take the correlation between the data or the test
statistics into account, with consequent loss of power. In this paper, we use
least favorable configurations to obtain critical values for both step-down and
step-up procedures, valid for both dependent and independent hypotheses.
The concept of a “minimum critical value” (MCV) is introduced. For the step-
down case with MCV = 0, our step-down procedure is the same as that of
Troendle (2000). It is conjectured that, for a given MCV, there is no uniformly
more powerful step-down FDR procedure. Empirical results suggest that, for
maximizing power, the “optimum” MCV is a decreasing function of the number
of false hypotheses. Various tables are given, with a special “condensed” table
valid for numbers of hypotheses from 30 to 10,000 and ρ = .5 specifically
designed for the case where few false hypotheses are anticipated or where a
satisfactory outcome is the discovery of a few false hypotheses. Intermediate
values for the latter table may be obtained by interpolation. An application to
high dimensional genomic data is given.

1. Introduction

Suppose we wish to simultaneously test m hypotheses. A traditional method has
been to control the familywise error (FWE) rate. The familywise error rate is defined
as the probability of committing a type I error for at least one of the m hypotheses.
An alternative, recently proposed for a number of situations, is to control the false
discovery rate (FDR). The false discovery rate is defined to be the expected value
of the proportion of rejected hypotheses which are true, with the understanding
that if no hypotheses are rejected, the proportion is zero.

Benjamini and Hochberg (1995) introduced a step-up FDR (SU) valid when the
hypotheses are independent. Benjamini and Liu (1999) introduced a step-down FDR
(SD), valid also for independent hypotheses. Benjamini and Yekutieli (2001) proved
that the approach of Benjamini and Hochberg (1995) controls the FDR if the joint
distribution of the test statistics is positive regression dependent on each one. In
addition, the authors introduced a slight deviation of the original procedure, which
was shown to control the FDR under any correlation structure. However, these
methods lack in power in that they do not take the possible correlation among
the test statistics into account. Yekutieli and Benjamini (1999) applied resampling
techniques to include the underlying distributional characteristics. Benjamini and
Yekutieli (1999) gave a distribution-free FDR-control multiple test procedure. Ben-
jamini and Liu (2001) presented another distribution-free FDR-control multiple
test procedure. Under the assumption of normality, powerful test statistics both for
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the step-up and the step-down cases were derived by Troendle (2000). His method
was shown to control the FDR asymptotically. A different approach to that of
Benjamini and Hochberg making use of positive regression dependency was intro-
duced by Kwong, Holland and Cheung (2002). Sarkar (2002) extended some of the
above results. Horn and Dunnett (2004) conducted a study comparing the power
of several FWE and FDR controlling methods. Korn, Troendle, McShane and Si-
mon (2003) proposed two step-wise permutation based procedures to control, with
specific confidence, the actual number of false discoveries, and approximately, the
actual proportion of false discoveries.

In this paper we develop step-down and step-up FDR procedures which are
valid for dependent or independent hypotheses. We conjecture that there are no
step-down FDR procedures which, for a given MCV, are uniformly more powerful.
We also introduce a “condensed” FDR step-down procedure especially designed for
the case where few false hypotheses are anticipated.

2. Problem

Suppose we have m hypotheses H1, H2, . . . , Hm to be tested. Let the correspond-
ing test statistics be T1, T2, . . . , Tm. Denote the hypotheses as H(1), H(2), . . . , H(m)

corresponding to the ordered test statistics T(1) ≤ T(2) · · · ≤ T(m). Denote the m
critical values as d1 ≤ d2 ≤ · · · ≤ dm. For the step-down procedure, beginning with
i = m, then m−1, etc., compare T(i) with di stopping when T(i) < di, and rejecting
the m− i hypotheses H(i+1), H(i+2), . . . , H(m). If T(m) < dm, reject no hypotheses.
If T(i) ≥ di for all m test statistics, reject all the m hypotheses.

For the step-up procedure, beginning with i = 1, then 2, etc., compare T(i) with
di, stopping when T(i) ≥ di, and rejecting the m − i + 1 hypotheses H(i), H(i+1),
. . . , H(m). If T(i) < di for all m test statistics, reject no hypotheses.

We require that the false discovery rate (FDR), that is, the expected value of
the proportion of number of rejected hypotheses which are true, to be ≤ q. Let
Q = V/R where V is the number of true hypotheses which are rejected and R
is the number of hypotheses which are rejected. When R = 0, we define Q = 0.
E(Q) = E(V/R) is the false discovery rate FDR.

In what follows, we will use nT to be the number of hypotheses which are true
(T ) and nF the number which are false (F ), except in graphs where nT and nF
will be used.

3. Calculation of the critical values for the step-down case

We first define Ai to be the probability that exactly i hypotheses are rejected.

A0 = P
[
T(m) < dm

]

A1 = P
[
T(m) ≥ dm, T(m−1) < dm−1

]

. . .

Am−1 = P
[
T(m) ≥ dm, . . . , T(2) ≥ d2, T(1) < d1

]

Am = P
[
T(m) ≥ dm, . . . , T(2) ≥ d2, T(1) ≥ d1

]
.

To obtain the critical values, we use m least favorable configurations (see Sec-
tion 9.) of the location parameters of the test statistics. Define LFCi as the config-
uration where i of the location parameters are zero and the remainder are infinite.
The case where all m hypotheses are T corresponds to LFCm.
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Under LFCm, set A0 = 1 − q, and solve for dm.

A0 = P
[
T(m) < dm

]

= P
[
all Ti < dm

]

= 1 − q.

To obtain d1, use LFC1. Then, with probability 1, T(m), T(m−1), . . . , T(2) are infinite
and A0, A1, . . . , Am−2 are zero. We have

E(Q) = Am−1 ∗ (0/(m − 1)) + Am ∗ (1/m) ≤ q

or P [T(1) ≥ d1] ≤ mq.
To maximize power considerations, we choose the smallest value for d1 which

satisfies the equation. When we calculate critical values (or E(Q)) in this paper,
we assume the test statistics have a joint multivariate t distribution and a common
correlation coefficient ρ. For convenience, we discuss only the one-sided case.

To obtain di (1 < i < m), given the values for d1, . . . , di−1, use LFCi. With
probability 1, T(m), T(m−1), . . . , T(i+1) are infinite and A0, A1, . . . , Am−i−1 are zero.
We may then write, using the basic expectation algorithm,

E(Q) = Am−i ∗
(
0/(m − i)

)
+ Am−i+1 ∗

(
1/(m − i + 1)

)
+ · · · + Am ∗ i/m

where

Am−i+1 = P
[
T(i) ≥ di, . . . , T(m−i+1) ≥ dm−i+1, T(m−i) < dm−i

]

. . .

Am−1 = P
[
T(i) ≥ di, . . . , T(2) ≥ d2, T(1) < d1

]

Am = P
[
T(i) ≥ di, . . . , T(2) ≥ d2, T(1) ≥ d1

]
.

Since Am−i+1, . . . , Am are each decreasing functions of di, we choose di as the
smallest value such that

E(Q) ≤ q.

We note that larger values will satisfy the FDR requirement, but of course at the
expense of “power”.

On close examination, A0 = 1−q, and the m−1 equations E(Q) = q for obtain-
ing the m critical values, are, in spite of completely different notations, equivalent
to the corresponding k (= m) equations (4) of Troendle (2000). Troendle’s equa-
tions are based on multivariate normal assumptions and “asymptotic FDR control”.
Troendle uses the fact that T1, . . . , Tk are consistent for testing H1, . . . , Hk. Thus,
as the sample size for each of the test statistics increases without limit, “under
any parameter configuration” the values of the test statistics corresponding to the
true null hypotheses are less than values of the test statistics corresponding to the
false hypotheses. No true hypothesis can then be rejected unless all of the false
hypotheses are rejected, and equations (4) follow from (3).

Our equations are based on least favorable configurations of the population
means of the test statistics which are assumed to have a multivariate-t distribution.

Theorem 3.1. If mq ≥ j, d1, d2, . . . , dj → −∞.

Proof. Suppose the theorem is true for j = i − 1. Then d1, d2, . . . , dj → −∞ im-
plies Am−1, . . . , Am−i+1 → 0. Using LFCi to solve for di, we have in addition,
Am−i−1, . . . , A0 → 0 and Am = P [T(i) ≥ di].
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Then E(Q) = i ∗ Am/m, and E(Q) ≤ q implies P [T(i) ≥ di] ≥ mq/i. If mq ≥
i, dj → −∞.

If j = 1, using LFC1, we have T(m), . . . , T(2) → ∞, A0, . . . , Am−2 → 0 and
Am = P [T(1) ≥ d1]. Then E(Q) ≤ q implies P [T(1) ≥ d1] ≤ mq and d1 → −∞ if
mq > 1, and the theorem is proved.

When mq ≥ 1, Troendle (2000) arbitrarily chooses d1 = 0.

4. Calculation of the critical values for the step-up case

As before, denote the m critical values as d1 ≤ d2 ≤ · · · ≤ dm, noting that the
critical values are in general different from those for the step-down case. Define Bi

to be the probability that exactly i hypotheses are rejected.

Bm = P
[
T(1) ≥ d1

]

Bm−1 = P
[
T(1) < d1, T(2) ≥ d2

]

. . .

B1 = P
[
T(1) < d1, . . . , T(m−1) < dm−1, T(m) ≥ dm

]

B0 = P
[
T(1) < d1, . . . , T(m−1) < dm−1, T(m) < dm

]
.

We should like to follow a regime similar to that for the step-down case. That is,
to obtain d1, assume the least favorable configuration LFC1 and find the smallest
value of d1 which solves the equation E(Q) ≤ q. To obtain di, given d1, . . . , di−1,
assume LFCi, and solve for the smallest value di for which E(Q) ≤ q.

Assuming LFC1, with probability 1, T(2), . . . , T(m) are infinite, and B0, . . . , Bm−2

equal 0. Then
E(Q) = Bm(1/m) ≤ q

or
P [T(1) ≥ d1] ≤ mq.

To obtain di, given the values for d1, . . . , di−1, assume the least favorable configura-
tion LFCi. Then with probability 1, T(i+1), . . . , T(m) are infinite, and B0, . . . , Bm−i−1

are 0. Then

E(Q) = Bm−i+1

(
1/(m − i + 1)

)
+ · · · + Bm(i/m).

Bm−i+1 is a decreasing function of di, and no other term depends on di. Choose di

as the smallest value such that E(Q) ≤ q.
When mq ≥ 1, the smallest value of d1 which is a solution of P [T(1) ≥ d1] ≤ mq

is −∞. Use of that value would result in rejection of all hypotheses. When mq < 1,
it is not difficult to find examples where, having obtained the smallest value of d1,
there are values of i for which it is not possible to obtain a sufficiently large value
di such that E(Q) ≤ q. For these cases we may choose the smallest value c such
that if d1 = c, the regime is such that E(Q) ≤ q under all LFCi. That such a value
may always be obtained may be seen by setting d1 = d2 = · · · dm = θ. (As θ → ∞,
E(Q) → 0.)

As an example, for m = 14, q = .05, ν = ∞, solving P [Ti ≥ d1] = mq for d1

gives d1 = −.5244. However, the smallest values of d1 for which the higher critical
values can be obtained such that E(Q) ≤ .05, are approximately −.1, .6 and 1.8
for values of ρ = .1, .5 and .9 respectively.
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Table 5.1: Critical values for FDR step-down one-sided tests m = 10, q = .05,
ρ = .5, ν = ∞
MCV 1 2 3 4 5 6 7 8 9 10

0.0 0.0 0.921 1.222 1.432 1.597 1.748 1.891 2.039 2.211 2.448
0.5 0.5 0.799 1.223 1.431 1.597 1.747 1.891 2.039 2.211 2.448
1.0 1.000 1.000 1.090 1.420 1.592 1.746 1.890 2.041 2.211 2.448
1.5 1.5 1.5 1.5 1.5 1.5 1.720 1.884 2.037 2.212 2.448
1.645 1.645 1.645 1.645 1.645 1.645 1.647 1.876 2.035 2.210 2.448
2.0 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.201 2.448
2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448

Table 5.2: Critical values for FDR step-up one-sided tests m = 10, q = .05, ρ = .5,
ν = ∞
MCV 1 2 3 4 5 6 7 8 9 10

0.28 0.280 1.419 2.396 2.489 2.499 2.580 2.635 2.717 2.830 3.020
0.5 0.500 .872 1.699 1.787 1.888 2.007 2.122 2.250 2.406 2.634
1.0 1.000 1.000 1.097 1.637 1.753 1.882 2.011 2.150 2.313 2.553
1.5 1.5 1.5 1.5 1.5 1.5 1.795 1.961 2.110 2.285 2.529
1.645 1.645 1.645 1.645 1.645 1.645 1.647 1.959 2.108 2.282 2.526
2.0 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.246 2.519
2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448 2.448

5. Minimum critical values (MCV’s)

For step-down FDR we obtained d1 as the smallest value satisfying P [T(1) ≥ d1] ≤
mq. For step-up FDR, a larger value for d1 was sometimes required. For either step-
down or step-up FDR , the resulting value of d1 may not be looked on with favor
by all potential users. We doubt that many users would look with favor on an FDR
procedure with the critical value d1 = −∞. Similarly, we suspect that some of those
users might look with suspicion on any procedure which would allow an hypothesis
to be rejected when the test statistic was less than tq,ν (the critical value for rejection
of a 1-sided hypothesis using level q when the standard deviation is estimated using
ν degrees of freedom). In that case they might prefer to set d1 = c = tq,ν .

The value we set for c, we define to be the Minimum Critical Value (MCV).
Table 5.1 shows the resulting critical values for 7 different MCV’s for step-down
FDR when m = 10, q = .05 and ρ = .5, ν = ∞. Table 5.2 shows the resulting critical
values for 7 different MCV’s for step-up FDR for the same parameter values.

6. “Optimum” critical values

For each of per pair, all pairs and any pair power, for SD and SU FDR, compu-
tations were made for m = 14 and 100, q = .05, ρ = .5, ν = ∞, all values of
nF , various MCV’s and ∆ = 1.732 and 3.464. (We define ∆ to be the common
location parameter of the nF F test statistics. The value ∆ = 1.732 is equivalent to
a standardized mean difference of 1 between the population means of the F treat-
ments and the control in the comparisons with the control problem when the sample
means are estimated with a sample size of 6. (See Horn and Dunnett (2004))). The
graphs for m = 100, ∆ = 1.732 for the three different powers for both step-down
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Table 6.1: MCVs for which per pair power is largest (Step-down FDR)

nF MCV

1 to 11 All equal (3 decimals)
12 to 35 2.0
36 to 60 1.645
61 to 85 1.0
86 to 95 0.0
95 to 100 −∞

Table 6.2: Probability that all nF hypotheses are rejected (E(Q) on second line)
FDR (Step-down) m = 10, q = .05, ρ = .5, ν = ∞

nF

MCV 10 9 8 7 6 5 4 3 2 1

0.28 .926 .866 .808 .759 .720 .689 .666 .654 .659 .710
(.000) (.049) (.049) (.050) (.048) (.049) (.049) (.050) (.050) (.050)

0.5 .918 .878 .809 .759 .720 .688 .666 .654 .660 .710
(.000) (.031) (.049) (.049) (.050) (.049) (.049) (.050) (.050) (.050)

1. .859 .858 .831 .763 .722 .689 .666 .654 .660 .710
(.000) (.016) (.034) (.050) (.049) (.050) (.050) (.050) (.050) (.050)

1.5 .695 .710 .725 .740 .747 .698 .668 .655 .660 .710
(.000) (.007) (.014) (.024) (.035) (.048) (.050) (.050) (.050) (.050)

1.645 .631 .647 .666 .685 .706 .718 .672 .656 .660 .710
(.000) (.005) (.011) (.018) (.026) (.037) (.049) (.050) (.050) (.050)

2. .461 .479 .500 .524 .553 .586 .625 .667 .663 .710
(.000) (.002) (.005) (.008) (.012) (.018) (.024) (.034) (.047) (.050)

2.448 .258 .274 .293 .316 .344 .378 .422 .482 .569 .710
(.000) (.001) (.002) (.003) (.004) (.006) (.008) (.012) (.017) (.026)

and step-up are shown in Appendix I. Graphs and tables for all cases are given
in Somerville (2003). The MCV for which the calculated power was largest, was
always a decreasing function of nF . This suggests that a “small” value for MCV
should be used when most hypotheses are anticipated to be false and a “large”
value for MCV should be used when few are expected to be false. An additional
advantage of selecting an MCV related to an expected number of false hypotheses
is that there may be a significant reduction in E(Q) or the “false discovery rate”. If
nF = 1, then an FDR procedure is not needed, and Dunnett’s (1955) procedure is
indicated. For the step-down procedure, Table 6.1 shows the MCVs resulting in the
largest per pair power when m = 100, q = .05, ρ = .5, ν = ∞, ∆ = 1.732. MCVs
used were −∞, 0, 1, 1.645, 2.

Tables 6.2 and 6.3 give the probability that the step-down and step-up proce-
dures will result in all nF false hypotheses being rejected for one-sided tests when
m = 10, q = .05, ρ = .5, ∆ = 5.196, and ν = ∞. The corresponding values of E(Q)
are given in parentheses. The value in bold in each nF column is the maximum
probability over all MCV values. (Values in the tables are given to three decimal
places. There may be error in the 3rd place).
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Table 6.3: Probability that all nF hypotheses are rejected (E(Q) on second line)
FDR (Step-up) m = 10, q = .05, ρ = .5, ν = ∞

nF

MCV 10 9 8 7 6 5 4 3 2 1

0.28 .975 .771 .401 .341 .343 .335 .349 .370 .408 .496
(.000) (.039) (.050) (.051) (.050) (.050) (.050) (.050) (.050) (.050)

0.5 .956 .906 .670 .632 .609 .586 .575 .573 .588 .644
(.000) (.032) (.050) (.050) (.050) (.051) (.050) (.051) (.048) (.052)

1. .867 .875 .861 .704 .669 .642 .624 .617 .627 .674
(.000) (.016) (.034) (.051) (.048) (.050) (.050) (.050) (.049) (.052)

1.5 .695 .710 .727 .745 .765 .682 .647 .634 .639 .682
(.000) (.007) (.014) (.024) (.036) (.049) (.049) (.050) (.048) (.050)

1.645 .631 .648 .666 .687 .710 .736 .650 .635 .640 .683
(.000) (.005) (.011) (.018) (.027) (.037) (.049) (.049) (.052) (.048)

2. .461 .479 .500 .524 .553 .586 .627 .678 .655 .686
(.000) (.002) (.005) (.008) (.012) (.018) (.024) (.032) (.046) (.048)

2.448 .258 .274 .293 .316 .344 .378 .422 .482 .569 .710
(.000) (.001) (.002) (.003) (.004) (.006) (.008) (.012) (.017) (.024)

7. Tables

Tables 7.1 and 7.2 are for step-down and step-up FDR respectively. They give crit-
ical values for m = 20 when MCV = tq,ν , ρ = .1(.2).9 and ν = 15, 30 and ∞. The
tables suggest that the critical values (particularly the larger ones) are decreasing
functions of both ρ and ν. The tables, and intuition, suggest that underestimating
ρ (the assumed common correlation) leads to a conservative rejection (discovery)
procedure.

Table 7.3 gives FDR step-down critical values for values of m ranging from 30 to
10,000 for ρ = .5, ν = ∞ and the specified MCV. The MCV is chosen as the smallest
value c for which d1 = d2 = . . . = dm−7 = c results in E(Q) ≤ .05. It is designed for
situations where relatively few false hypotheses are expected, or situations where a
user is satisfied to find a few false hypotheses (make a few “discoveries”). Critical
values for m not included in the table can be obtained by interpolation. Each critical
value di is approximately linear in ln(m). A more accurate value for arbitrary values
of m can be obtained by using the equation obtained by regressing dm−i on ln(m),
[ln(m)]2 and 1/ ln(m) (see Section 9.)

8. Some observations on the use of fewer than m critical values in
step-down FDR

A considerable amount of simulation suggests that using a reduced number of crit-
ical values in step-down FDR results in a reduced FDR with a small subsequent
reduction of power. Table 8.1 gives an example for the case m = 14, q = .05,
∆ = 3.464 and ρ = .5. The notation r/s is used to denote that at least r out of
s false hypotheses were rejected. The five sets of rows gives powers and FDR (in
parentheses) for 14, 4, 3, 2 or 1 critical values used. The powers when all 14 critical
values are used are in bold and are underlined. The powers when the number of
critical values used is equal to the number of false hypotheses are also underlined
and in bold. These suggest that use of more critical values than the number of false
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Table 7.1: Step-down FDR critical values for m = 20 and q = .05

d20 d19 d18 d17 d16 d15 d14 d13 d12 d11 d10 to d1

ρ ν = ∞

0.1 2.79 2.55 2.39 2.26 2.15 2.06 1.97 1.88 1.81 1.64 1.64
0.3 2.74 2.52 2.36 2.24 2.15 2.06 1.96 1.88 1.79 1.64 1.64
0.5 2.65 2.45 2.31 2.20 2.11 2.02 1.94 1.85 1.72 1.64 1.64
0.7 2.48 2.32 2.21 2.12 2.04 1.96 1.88 1.77 1.64 1.64 1.64
0.9 2.18 2.08 2.01 1.94 1.88 1.81 1.67 1.64 1.64 1.64 1.64

ρ ν = 30
0.1 2.98 2.70 2.52 2.38 2.26 2.15 2.05 1.95 1.86 1.72 1.70
0.3 2.91 2.65 2.48 2.35 2.24 2.13 2.04 1.95 1.84 1.70 1.70
0.5 2.79 2.57 2.42 2.30 2.20 2.10 2.01 1.92 1.77 1.70 1.70
0.7 2.60 2.43 2.31 2.21 2.12 2.03 1.95 1.82 1.70 1.70 1.70
0.9 2.26 2.16 2.08 2.01 1.94 1.87 1.71 1.70 1.70 1.70 1.70

ρ ν = 15
0.1 3.20 2.87 2.66 2.50 2.37 2.25 2.14 2.03 1.93 1.77 1.75
0.3 3.10 2.81 2.62 2.47 2.34 2.23 2.12 2.02 1.90 1.75 1.75
0.5 2.95 2.71 2.54 2.41 2.29 2.19 2.09 1.98 1.82 1.75 1.75
0.7 2.74 2.54 2.41 2.30 2.20 2.11 2.02 1.88 1.75 1.75 1.75
0.9 2.36 2.25 2.16 2.09 2.01 1.93 1.76 1.75 1.75 1.75 1.75

Table 7.2: Step-up FDR critical values for m = 20 and q = .05

d20 d19 d18 d17 d16 d15 d14 d13 d12 d11 d10 to d1

ρ ν = ∞
0.1 2.81 2.56 2.40 2.27 2.16 2.07 1.98 1.89 1.85 1.64 1.64
0.3 2.78 2.54 2.39 2.27 2.17 2.07 1.99 1.90 1.82 1.64 1.64
0.5 2.71 2.50 2.36 2.27 2.17 2.02 1.98 1.90 1.73 1.64 1.64
0.7 2.59 2.43 2.31 2.22 2.13 2.06 1.97 1.83 1.64 1.64 1.64
0.9 2.44 2.28 2.06 1.87 1.87 1.87 1.87 1.87 1.87 1.87 1.87

ρ ν = 30
0.1 3.01 2.72 2.53 2.39 2.27 2.16 2.06 1.97 1.89 1.72 1.70
0.3 2.96 2.69 2.52 2.38 2.26 2.16 2.07 1.98 1.87 1.70 1.70
0.5 2.87 2.63 2.47 2.35 2.25 2.15 2.06 1.97 1.78 1.70 1.70
0.7 2.74 2.55 2.42 2.32 2.23 2.14 2.05 1.87 1.70 1.70 1.70
0.9 2.58 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10

ρ ν = 15
0.1 3.24 2.90 2.68 2.52 2.38 2.26 2.15 2.05 1.96 1.77 1.75
0.3 3.17 2.86 2.66 2.50 2.37 2.26 2.15 2.05 1.93 1.75 1.75
0.5 3.05 2.79 2.61 2.47 2.35 2.25 2.15 2.05 1.83 1.75 1.75
0.7 2.92 2.70 2.55 2.44 2.33 2.23 2.13 1.92 1.75 1.75 1.75
0.9 2.64 2.31 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10
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Table 7.3: Step-down FDR critical values for m for q = .05, ρ = .5, ν = ∞
m dm dm−1 dm−2 dm−3 dm−4 dm−5 dm−6 MCV(dm−7 to d1) ln(m)

30 2.752 2.567 2.459 2.339 2.280 2.191 2.114 1.983 3.401
40 2.830 2.649 2.536 2.439 2.379 2.300 2.231 2.110 3.689
50 2.883 2.715 2.602 2.510 2.450 2.376 2.316 2.195 3.912
60 2.930 2.763 2.656 2.571 2.499 2.438 2.375 2.265 4.094
70 2.964 2.798 2.702 2.616 2.546 2.488 2.425 2.320 4.248
80 2.995 2.838 2.736 2.644 2.598 2.528 2.470 2.365 4.382
90 3.021 2.868 2.758 2.718 2.643 2.564 2.506 2.403 4.500

100 3.047 2.897 2.766 2.731 2.650 2.595 2.538 2.437 4.605
200 3.200 3.069 2.956 2.900 2.839 2.788 2.736 2.641 5.298
300 3.291 3.154 3.056 3.011 2.936 2.892 2.842 2.750 5.704
400 3.350 3.213 3.119 3.081 3.011 2.962 2.914 2.825 5.991
500 3.395 3.260 3.192 3.107 3.063 3.015 2.967 2.881 6.215

1000 3.526 3.410 3.334 3.261 3.206 3.173 3.126 3.044 6.908
5000 3.816 3.700 3.622 3.592 3.561 3.535 3.472 3.388 8.517

10000 3.940 3.834 3.781 3.696 3.682 3.641 3.552 3.546 9.210

Table 8.1: Effects on power and FDR of using only the larger critical values (cv s)
Step-down FDR

cv s
used nF = 1 nF = 2 nF = 3 nF = 4

1/1 1/2 2/2 1/3 2/3 3/3 1/4 2/4 3/4 4/4
14 .821 .925 .785 .958 .904 .778 .973 .945 .898 .781

(.050) (.050) (.050) (.050)

4 .821 .925 .785 .958 .904 .778 .973 .945 .898 .781
(.049) (.046) (.042) (.032)

3 .821 .925 .785 .958 .904 .777 .973 .945 .898 .777
(.048) (.043) (.032) (.024)

2 .820 .925 .785 .958 .859 .729 .973 .945 .868 .683
(.045) (.018) (.022) (.022)

1 .820 .925 .715 .958 .859 .643 .973 .915 .804 .590
(.027) (.018) (.013) (.010)
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hypotheses is counter productive since power increase, if any, is negligible and FDR
is increased.

This suggests the utility of tables which limit the number of “unique” critical
values such as Table 7.3. One convenient way of accomplishing this is by the use of
sufficiently large MCVs.

9. Calculation of critical values and powers

Fortran 90 programs SEQDN and SEQUP can sequentially calculate the critical
values d2 to dm for step-down and step-up FDR, respectively, for arbitrary values
of m, q, ρ, and ν. N random normal multivariate vectors of size m are used to
obtain each critical value.

Fortran 90 programs FDRPWRDN and FDRPWRUP calculate powers, E(Q),
P [u ≤ 1, 2, . . . , 7], and P [γ ≤ .05, .10, .15] where u and γ are the number and
proportion of false discoveries respectively. Inputs are m, ρ, ν, ∆, nF and a set
of m critical values. N random normal multivariate vectors of size m are also used.
Three kinds of power are always calculated: per pair, all pairs and any pair (see
Horn and Dunnett (2004)), and also E(Q). The probability of rejecting at least
one of the false hypotheses is called any pairs power. The probability of rejecting
all false hypotheses is called all pairs power. Considering a specific hypothesis, the
probability of its rejection is called the per pairs power. Since our calculations
assume all the test statistics corresponding to the F hypotheses have the same
location parameter, the per pair power is identical to the average power.

The Fortran 90 program FDRBIG calculates dm for step-down FDR for arbi-
trary values of m, q, ρ and ν. The value dm is also the critical value for Dunnett’s
(1955) comparisons with a control.

Graph 9.1:

For both step-down and step-up FDR, critical values were calculated using m =
14, q = .01, .05 and .10, values of ρ equal to 0, .05, .1, .5 and .9, various values
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for MCV, and degrees of freedom for the test statistics equal to ∞. Additional
computations were done using various values of m from 3 to 20, and for some
special cases with m = 9000. The value of N was 107. Because, in many cases, the
partial derivative of E(Q) with respect to di is small, moderately large changes in di

are required to effect a small change in E(Q). This, combined with the dependence
of the calculated values on d1, . . . , di−1, make accurate estimates, and assessments
of their standard error of estimate, difficult to obtain. Error in the third decimal
place should be expected. FDRPWRDN and FDRPWRUP were used to obtain not
only the various powers, but to obtain E(Q), to assure that the FDR requirement
that E(Q) ≤ q was met.

FDRPWRDN and FDRPWRUP were used to calculate E(Q) for 0 < nT < m−1
for ∆ = 0(.2)2, 3, 4 and sometimes 8. The values for N were 106 or 107. Calculation
of critical values, E(Q) and various powers for m = 14 and 100 , ρ = .5 were
previously given in Somerville (2003).

When ρ was equal to .1, .5 or .9, and q equaled .01, .05 or .10, computations
for step-down FDR suggested E(Q) to be an increasing function of nT for a given
∆. An example is given in Graph 9.1. Every computations did not show E(Q) ≤ q,
but the maximum value of E(Q)−q was .0037, which occurred for m = 14, q = .10,
ρ = .9, nT = 4, MCV = −1000 and ∆ large. For a given nT , E(Q) was typically,
but not always an increasing function of ∆. Given the standard error of estimates
for the critical values, and the programs which make extensive use of simulation,
the calculations are not inconsistent with:

i) Using the m “least favorable configurations” for the calculation of critical
values result in E(Q) ≤ q.

ii) For a given ∆, E(Q) is an increasing function of nT for step-down FDR.
We again note that when MCV=0, the FDR step-down equations for the critical

values are equivalent to those of Troendle (2000). We conjecture that, for a given
MCV, no step-down FDR procedure is uniformly more powerful.

For Table 7.3, the values for dm were obtained using Fortran 90 program FDR-
BIG. The other critical values were obtained using SEQDN with N = 107 for
m ≤ 500, and N = 106 for m = 1,000, 5,000 and 10,000. The values were then
“smoothed” using the regression of dm−i on ln(m), [ln(m)]2 and 1/ ln(m). “Large”
residuals (as defined by MINITAB regression calculations) were, except for one
value, restricted to m = 1, 000, 5,000 and 10,000. Except for the residuals .0070,
.0041 and .0049, none exceeded .0025. The value of R2 for each of the regression
equations was 100.0%.

Values in Table 7.3 should have small standard errors, restricted to the third
decimal. The critical values dm have known standard error and N = 108 was used
in FDRBIG. The values dm−7 were also calculated using N = 108. The small
residuals resulting from the MINITAB regression on the calculated values gives
further evidence of small error.

10. Comparisons with other procedures

Per pair and all pairs powers were calculated for m = 100 for the step-up procedure
of Benjamini and Hochberg (1995), the stepdown procedure of Benjamini and Liu
(1999) and the sequentially rejective procedure of Holm (1979). Graphs comparing
the procedures with step-down procedures using 6 different MCV values are given
in APPENDIX II. Also included, for the same procedures, is a graph comparing
E(Q).
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11. Example

Korn, Troendle, McShane and Simon (2003) recently proposed two new procedures
which control, with specified confidence, the actual number of false discoveries, and
the actual proportion of false discoveries, respectively. They applied their proce-
dures to analyze a microarray dataset consisting of measurements on approximately
9000 genes in paired tumor specimens, collected both before and after chemother-
apy on 20 breast cancer patients. Their study, after elimination of cases of missing
data included 8029 genes for analysis. Their Table 3 showed the genes with the 28
smallest “unadjusted paired t-test p-values for testing the null hypotheses that the
mean pre and post chemotherapy expression of genes is the same”.

Their Procedure A identified 28 genes where u, the number of false discoveries,
was ≤2, with confidence .05. Procedure B identified the same 28 genes where γ, the
false discovery proportion, was ≤ .10.

We have used the Fortran program SEQDN to obtain stepdown FDR constants
for m = 8029, q = .05, ν = ∞, ρ = 0 and .1, and MCVs which result in 8 and 31
“unique” critical values. Table 11.1 gives the 34 smallest unadjusted p-values , and
the corresponding critical p-values for the four cases. Table 11.2 gives the number
of genes identified, and the minimum probabilities for P [u ≤ 2] over all possible
values of nF for the four cases. The values for P [u ≤ 2] were obtained using the
Fortran program FDRPWRDN.

Note that as expected, decreasing MCV (increasing the number of “unique”
critical values) increased the number of genes identifies. The price paid was an
increased probability of false discoveries.

12. Summary and conclusions

Step-up and step-down FDR procedures are developed which are valid for de-
pendent or independent hypotheses. The concept of a “Minimum Critical Value”
(MCV) is introduced. The methodology (but not the computation) is independent
of population distributions and uses least favorable configurations. The formulas
developed produce a vector d of critical values, each element of which is the small-
est possible, given the previously calculated values. We conjecture that there are
no uniformly more powerful step-down FDR procedures. For the step-down case,
the FDR procedure is the same as that of Troendle (2000) when the MCV = 0. For
the step-up case, use only of least favorable configurations is sometimes insufficient,
and for those cases, MCV’s are also utilized.

Tables giving the critical values for step-up and step-down FDR when m = 20,
q = .05 for several values of ρ and ν are given. A table of critical values when m is
between 30 and 10,000 and ρ = .5 is given, designed for the case when the number
of false hypotheses is small or when a satisfactory result is the selection of a small
number of false hypotheses (discoveries).

An example of the use of the methodology, with data taken from the literature,
is given.

Use of large values of MCV makes feasible the use of FDR for very large values
of m, since fewer critical values are needed. Using fewer critical values reduces the
expected number of discoveries, but is compensated by smaller expected numbers
and proportions of false discoveries. Numerous calculations suggest that the “op-
timum” MCV (the one which results in the highest powers), is one for which the
number of “unique” critical values is approximately equal to nF , the number of
false hypotheses.
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Table 11.1: Unadjusted and critical p-values for ρ = 0 and .1 (8 and 31 “unique”
critical values) Multiply all p-values by 10−6

Unadjusted ρ = 0 ρ = .1 ρ = 0 ρ = .1
Rank p-values MCV = 3.879 MCV = 3.850 MCV = 3.535 MCV = 3.506

1 0.2 6.23 7.13 6.40 7.13
2 0.5 12.45 13.71 12.53 13.79
3 0.6 18.77 20.09 18.89 20.51
4 1.1 25.15 27.49 25.23 26.48
5 1.1 31.52 33.52 31.56 32.52

6 1.2 37.87 39.97 37.91 39.71
7 2.1 43.61 47.81 44.24 46.03
8 2.7 52.53 58.94 50.67 52.91
9 5.2 . . 56.67 58.04

10 5.7 . . 63.37 65.95

11 5.7 . . 69.32 71.60
12 6.7 76.16 80.01
13 6.7 81.41 84.34
14 7.7 88.83 88.50
15 9.7 94.80 96.33

16 11.0 100.10 106.04
17 11.9 107.28 111.77
18 22.1 113.48 115.37
19 29.3 119.39 120.32
20 32.5 125.64 130.70

21 58.2 132.32 131.73
22 60.0 138.05 146.20
23 65.8 143.35 149.97
24 97.4 151.53 156.43
25 105.0 156.52 164.59

26 115.0 161.82 164.59
27 120.9 169.09 179.02
28 130.9 178.92 187.75
29 151.9 178.92 189.17
30 184.7 178.92 189.17

31 193.4 . . 203.83 227.05
32 222.1 . . . .
33 222.8 . . . .
34 255.9 52.53 58.94 203.83 227.05

Table 11.2: Table of P [u ≤ 2] and # of genes identified

8 “unique” 31 “unique”
critical values critical values
ρ = 0 ρ = .1 ρ = 0 ρ = .1

# genes identified 20 21 29 33
P [u ≤ 2] .99 .96 .78 .78
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A forthcoming paper will include tables of FDR step-down critical values for
m between 50 and 10000, assuming common correlations of .0, .1 and .5, and for
MCVs which result in 8 or 31 “unique” critical values. Also included will be a study
of the effects of assuming a correlation of 0 when the data has higher correlations
(robustness with respect to correlation).
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