
SECTION 7 

Maximal Inequalities 

Let us now pull together the ideas from previous sections to establish a few 
useful maximal inequalities for the partial-sum process Sn. To begin with, let us 
consider an infinite sequence of independent processes {fi ( w, t)}, in order to see how 
the bounds depend on n. This will lead us to the useful concept of a manageable 
triangular array of processes. 

The symmetrization bound from Section 2 was stated in terms of a general 
convex, increasing function <I> on JR+. The chaining inequality of Section 3 was in 
terms of the specific convex function given by Ill ( x) = 1/5 exp( x2). 

Section 2 related the maximum deviation of Sn from its expected value, 

~n(w) =sup ISn(w, t)- Mn(t)l, 
t 

to the process u · f indexed by the random set 

:l'nw = { (JI(w, t), ... , fn(w, t)) : t E T}. 

If we abbreviate the supremum of lu·fl over :l'nw to Ln(u, w), the inequality becomes 

(7.1) 

We bound the right-hand side by taking iterated expectations, initially conditioning 
on w and averaging over u with respect to the uniform distrbution IP ,.. 

The chaining inequality from Theorem 3.5 bounds the conditional Ill norm of L 
by 

{Cn(w) 
Jn(w) = 9 Jo JlogD(x,:l'nw)dx, where On(w) = suplfl. 

~nw 

Here, and throughout the section, the subscript 2 is omitted from the £2 norm l·l2; 
we will make no use of the £1 norm in this section. Written out more explicitly, the 
inequality that defines the Ill norm becomes 

(7.2) IP,.exp(Ln(u,w)fJn(w)) 2 ~ 5. 

Because Jn is a random variable, in general we cannot appeal directly to inequal­
ity (7.1) with <I>(x) = exp(x2 j2J';,J, to get some sort of bound for the Ill norm of the 
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partial-sum process. We can, however, combine the two inequalities to get several 
most useful bounds. 

The simplest situation occurs when Jn(w) is bounded by a constant Kn. As we 
shall see soon, this often happens when the envelopes Fi are uniformly bounded. 
Increasing Jn to Kn in (7.2), then taking expectations we get, via (7.1), 

1P' exp( 4 A;/ K~) ~ 5. 

It follows that An has subgaussian tails: 

(7.3) IP'{An 2:: t} ~ 5exp(-4t2/K;) for all t > 0. 

This is not the best subgaussian upper bound; the constant Kn could be replaced 
by a smaller constant. 

If Jn(w) is not uniformly bounded, but instead has a finite Ill norm, we still get 
an exponential bound on the tail probabilities for An, by means of the inequality 

2Ln/C ~ J;jc 2 + L;/ f/, for constant C. 

With C = I!Jnll~~t this inequality implies 

IP'exp(An/C) ~ IP'exp(2LnfC) 

Consequently, 

(7.4) 

~ IP'w [exp(J;/C2 )1P'u exp(L;fJ;)] 

~ 25. 

for all t > 0. 

We have traded a strong moment condition on Jn for a rapid rate of decrease of 
the An tail probabilities. 

With weaker moment bounds on Jn we get weaker bounds on An· Remember 
that for each p with 1 ~ p < oo there is a constant Cp such that 

IIZIIP:::; CpiiZII~~t 
for every random variable Z. In particular, 

which gives 

(7.5) 

This inequality will be most useful for p equal to 1 or 2. 
The preceding inequalities show that the behavior of the random variable Jn(w) 

largely determines the form of the maximal inequality for the partial-sum process. 
In one very common special case, which is strongly recommended by the results 
from Section 4, the behavior of Jn is controlled by the envelope F n(w). Let us 
suppose that An ( ·) is a deterministic function for which 

(7.6) D(xiF n(w)l, 9"nw) :::; .>.n(x) for 0 < x :::; 1 and all w. 

Because 9"nw lies within a ball ofradius IF n(w)l, we could always choose .>.n(x) equal 
to (3/x)n. (We can pack D(xiF n(w)l, 9"nw) many disjoint balls of radius 1/zxiF n(w)l 
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into the ball of radius 3/21F n(w)I.J To be of any real use, however, the An function 
should not increase so rapidly with n. For example, if there is a fixed V such that 
each ~nw has pseudodimension V we could choose An(x) = Ax-w, with A and W 
depending only on V, which would lead to quite useful bounds. In any case, we 
may always assume that v' log An is integrable, which ensures that the function 
defined by 

An(t) = 1t ..jlogAn(x)dx for 0 ~ t ~ 1 

is well defined and finite. A simple change of variable in the integral that defines 
Jn(w) now gives 

(7.7) Jn(w) ~ 9IFn(w)IAn(8n(w)/IFn(w)i) 

~ 9An(1)1Fn(w)l because lfl ~ IFn(w)l for every fin ~nw· 

When expressed in terms of An the inequalities for ~n take a particularly simple 
form. Suppose, for example, the envelope functions F,(w) are uniformly bounded, 
say F,(w) ~ 1 for each i and each w. Then Jn(w) is bounded by 9y'nAn(1). If 
An(1) stays bounded as n--.. oo, the standardized processes 

1 1 
;;;:;-~n(w) = ;;;::;-sup ISn(w, t)- Mn(t)l 

yn yn t 

will have uniformly subgaussian tails. 
If instead of being uniformly bounded the random variables Fl have uniformly 

bounded moment generating functions in a neighborhood of the origin, and if An(1) 
stays bounded as n--.. oo, we get another useful bound on the Ill norms of the Jn. 
For suppose that 

for all i. 

Then there is a constant K', depending on K and f, such that 

lP'exp(sFl) ~ 1 + K' s for 0 ~ s ~ f and all i. 

With C = 9supnAn(1), independence of the F, gives, for C' ~ C 2 jnf, 

lP'exp(J~jnC') ~ IT !P'exp(C2 F,2 jnC') 

~ (1 +K'C2/nC')n. 

Certainly for C' ~ K' C2 I log 5 the last bound is less than 5. It follows that 

for some constant K", 

which guarantees a uniform exponential bound for the tail probabilities of the 
partial-sum processes with the usual standardization. 

Finally, even with only moment bounds for the envelopes we still get usable 
maximal inequalities. For 1 ~ p < oo, inequalities (7.5) and (7.7) give 

(7.8) lP'supiSn(·,t)- Mn(t)IP ~ (18Cp)PJPIFniPAn(8n/IFni)P 
t 
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In applications such moment bounds are often the easiest to apply, typically for p 
equal to 1 or 2. They show that, in some sense, the whole process is only as badly 
behaved as its envelope. 

The special cases considered above show that maximal inequalities for ~n can be 
derived from uniform bounds on the random packing numbers D(xiF n(w)J, ~nw). 
The concept of manageability formalizes this idea. To accommodate a wider range 
of applications, let us expand the setting to cover triangular arrays of random 
processes, 

Uni(w, t) : t E T, 1 ::; i ::; kn} for n = 1, 2, ... , 
independent within each row. Now Sn(w, t) denotes the sum across the nth row. To 
facilitate application of the stability arguments, let us also allow for nonnegative 
rescaling vectors. 

(7.9) DEFINITION. Call a triangular array of processes Uni(w, t)} manageable 
(with respect to the envelopes F n (w)) if there exists a deterministic function >., the 
capacity bound, for which 

(i) f0
1 Jlog >.(x) dx < oo, 

(ii) D(xJa 0 F n(w)J, a 0 ~nw) ::; >.(x) for 0 < x ::; 1, all w, all vectors a of 
nonnegative weights, and all n. 

Call a sequence of processes {fi} manageable if the array defined by f ni = fi for 
i ::; n is manageable. 

In the special case where >.(x) = A(1/x)w for constants A and W, the processes 
will be called Euclidean. Most of the the applications in the final sections of these 
notes will involve Euclidean processes. 

The inequalities developed in this section all carry over to the more general 
setting. In particular, for a manageable array there is a continuous, increasing 
function A with A(O) = 0, for which the analogue of (7.8) holds: for 1 ::; p < oo 
there exists a constant Kp such that 

(7.10) 

REMARKS. When specialized to empirical processes, the exponential inequal­
ity (7.3) is inferior to the results of Alexander (1984) and Massart (1986). By 
refinement of the approach in this section my inequality could be improved. How­
ever, a reader interested in better bounds would be well advised to first consult the 
book of Ledoux and Talagrand (1990). 
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