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Abstract: Consider the nonlinear regression model

Yi = g(xi, θ) + ei, i = 1, . . . , n (1)

with xi ∈ R
k, θ = (θ0, θ1, . . . , θp)′ ∈ Θ (compact in R

p+1), where g(x, θ) =
θ0 + g̃(x, θ1, . . . , θp) is continuous, twice differentiable in θ and monotone in
components of θ. Following Gutenbrunner and Jurečková (1992) and Jurečková
and Procházka (1994), we introduce regression rank scores for model (1), and
prove their asymptotic properties under some regularity conditions. As an
application, we propose some tests in nonlinear regression models with nuisance
parameters.

1. Introduction

Consider the nonlinear regression model

(1.1) Yi = g(xi,θ) + ei, i = 1, . . . , n

where Y = (Y1, . . . , Yn)′ is a vector of observations, xi ∈ X ⊂ R
q
+, i = 1, . . . , n are

given vectors, e1, . . . , en are i.i.d. errors with a positive (but generally unknown)
density f and θ = (θ0, θ1, . . . , θp)′ is an unknown parameter. We assume that θ0

is an intercept, i.e. that g(x,θ) = θ0 + g̃(x, θ1, . . . , θp). Koenker and Bassett [14]
introduced the α-regression quantile and α-trimmed least squares estimator for the
linear regression model. Their idea is very natural and regression quantiles soon
became very popular among applied statisticians and econometricians. Gutenbrun-
ner and Jurečková [3] showed that the variables, dual to regression quantiles in the
parametric linear programming sense, extend the rank scores to the linear regres-
sion model; such dual regression quantiles were called the regression rank scores
(RRS). They are invariant to the (linear) regression, and as such are suitable for
construction of tests in the presence of nuisance regression. Such tests were consid-
ered already by Gutenbrunner and Jurečková [3], and then Gutenbrunner et al. [4]
constructed a general class of tests of linear hypothesis based on regression rank
scores. Koul and Saleh [17] extended the regression quantiles and regression rank
scores to the linear autoregressive time series. The autoregression rank scores were
then used for testing by Hallin et al. [7], Hallin et al. [8], Hallin and Jurečková [6],
Kalvová et al. [12], among others.
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The basic definition of the α-regression quantile can be naturally extended to
other models, including nonlinear regression. Chen [1] used the technique of the lin-
earization of the regression function. Jurečková and Procházka [10] proved the con-
sistency and asymptotic normality of regression quantiles in model (1.1), covering
the logistic regression and a mixture of two exponentials as a regression function.
There already exists a rich literature on nonlinear regression quantiles and their
computation. We refer to Koenker and Park [15] and to Koenker [13], where many
other references are cited.

A natural idea is to define the nonlinear regression rank scores as some form of
duals to nonlinear regression quantiles. However, such dual variables do not retain
the advantages of the RRS in the linear model, mainly they are not invariant to
the (nonlinear) regression. Mukherjee [18], inspired by the dual steps of Koenker
and Park [15] in their interior point algorithm for nonlinear regression quantiles,
proposed the regression rank scores for a nonlinear time series model. His RRS are
not a straightforward extension of RRS of Gutenbrunner and Jurečková [3], but
under some further regularity conditions their asymptotic behavior is analogous
to that of the linear RRS. Mukherjee [18] proved the asymptotic representations
of the regression rank scores process and of the nonlinear rank statistics, but to
a construction of tests in models affected by a nonlinear regression with nuisance
parameters he missed the (even asymptotic) invariance of the regression rank scores
to this type of regression.

Following Jurečková and Procházka [10], Koenker and Park [15], Mukherjee [18],
and El-Attar et al. [2], we shall consider a possible version of regression rank scores
in model (1.1). Our ultimate goal is their possible application in testing with nui-
sance (nonlinear) regression.

2. Regression rank scores

We shall work with the model (1.1) under the conditions of Jurečková and
Procházka [10], namely:

(A.1) The function g(x,θ) : X × θ �→ R
1 has the form

g(x, θ) = θ0 + g̃(x, (θ∗), x ∈ X , θ∗ = (θ1, . . . , θp)′, (θ0,θ
∗′)′ ∈ Θ

with some function g̃ of x and of θ∗.
We assume that function g(x,θ) is strictly monotone and twice differentiable

in every component of θ = (θ0, θ1, . . . , θp)′. The first and second derivatives are
bounded by K, 0 < K < ∞, uniformly in X and Θ.

(A.2) The parameter space Θ and the space X of x are compact.
(A.3) (Identifiability). Every set (y1,x1), . . . , (yp+1,xp+1) of p + 1 different

points determines uniquely θ ∈ Θ such that

yi = g(xi,θ), i = 1, . . . , p + 1.

(A.4) The errors e1, . . . , en are independent, identically distributed with a sym-
metric, positive and bounded density f, that has a bounded derivative f ′.

(A.5) There exist finite positive constants k1, k2 such that, for n > n0,

k1‖θ2 − θ1‖2 ≤ 1
n

n∑
i=1

[g(xi,θ2) − g(xi,θ1)]
2 ≤ k2‖θ2 − θ1‖2

where ‖ · ‖ stands for the Euclidean norm.



Rank scores in nonlinear models 175

(A.6) Put

vij(θ) =
[
∂g(xi,θ + δ)

∂δj

]
δ=0

, i = 1, . . . , n; j = 0, 1, . . . , p

and denote Vn(θ) = V(θ) =
[
vij(θ)

]j=0,...,p

i=1,...,n
. We shall assume that

lim
n→∞

Qn(θ) = Q(θ)

where Qn(θ) = 1
nV′

n(θ)Vn(θ) and Q(θ) is a positively definite matrix of order
(p + 1) × (p + 1). Moreover, we assume that

(2.1)
1
n

n∑
i=1

‖vi(θ)‖4 = O(1) as n → ∞

where v′
i(θ) is the i-th row of Vn(θ), i = 1, . . . , n.

The motivation for and the validity of conditions (A.1)–(A.6) are discussed by
Jurečková and Procházka [10]; they are in correspondence with the practical prob-
lems studied by these authors. Conditions (A.3) and (A.6) are also assumed by
Mukherjee [18] with the difference that he replaces (2.1) with
max1≤i≤n ‖v′

i(θ)‖ = o(n
1
2 ). Mukherjee, considering the time series model, assumes

neither the monotonicity of g in the components of θ nor the positivity of x, but
other conditions suitable for the AR model; these conditions are also interpreted
by Koul [16].

The regression α-quantile θ̂nα of model (1.1) is the minimizer of

(2.2)
n∑

i=1

ρα(Yi − g(xi, t)) = min

with respect to t ∈ R
p+1, where

(2.3) ρα(z) = |z| {αI[z > 0] + (1 − α)I[z < 0]} , z ∈ R
1.

Regarding (2.2), θ̂nα can be also defined as a component t of the solution
(t, r+, r−) ∈ R

p+1 × R
n
+ × R

n
+ of the minimization

α

n∑
i=1

r+
i + (1 − α)

n∑
i=1

r−i := min

subject to r+
i − r−i = Yi − g(xi, t), i = 1, . . . , n.

We can also write
n∑

i=1

ρα(Yi − g(xi, θ̂nα)) =
n∑

i=1

(Yi − g(xi, θ̂nα))
(
I[Yi ≥ g(xi, θ̂nα)]

−(1 − α)
)

=
n∑

i=1

[
Eiα − [g(xi,θ + Tn) − g(xi,θ)]

]
(2.4)

·
[
I[Eiα ≥ g(xi,θ + Tn) − g(xi,θ)] − (1 − α)

]
= min,
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where

Eiα = ei − F−1(α), i = 1, . . . , n and(2.5)

Tn = θ̂nα − θα and θα = θ + e1F
−1(α), e1 = (1, 0, . . . , 0)′.

By El-Attar, Vidyasagar, and Dutta [2], if θ̂nα minimizes (2.2), then there exists a
vector an(α) ∈ [0, 1]n, 0 < α < 1, such that

ani(α) =

⎧⎨⎩ 1 if Yi > g(xi, θ̂nα)

0 if Yi < g(xi, θ̂nα), i = 1, . . . , n,
(2.6)

n∑
i=1

vij(θ̂nα)[ani(α) − (1 − α)] = 0, j = 0, 1, . . . , p,(2.7)

1
n

n∑
i=1

(Yi − g(xi, θ̂nα))[âni(α) − (1 − α)](2.8)

=
1
n

n∑
i=1

ρα(Yi − g(xi, θ̂nα)).

Remark 2.1. In fact, (2.6) follows from (2.8).
Hence, we can define the regression rank scores ân1(α), . . . , ânn(α) as one of the

vectors satisfying (2.6)–(2.8); because the set A of such vectors is convex, we can
define ân(α) as a ∈ A maximizing

∑n
i=1 Yiai. Unlike Mukherjee [18], we profit from

the equation (2.7). Notice that (2.7) among others implies

(2.9)
n∑

i=1

âni(α) = n(1 − α), 0 < α < 1,

hence, by the continuity,

(2.10) âni(0) = 1, âni(1) = 0, i = 1, . . . , n.

Regarding (2.4), we can rewrite (2.6)–(2.8) in the form

âni(α) =

{
1 if Eiα > g(xi,θ + Tn) − g(xi,θ)

0 if Eiα < g(xi,θ + Tn) − g(xi,θ), i = 1, . . . , n,
(2.11)

n∑
i=1

vij(θ̂nα)[ani(α) − (1 − α)] = 0, j = 0, 1, . . . , p,(2.12)

1
n

n∑
i=1

(
Eiα − [g(xi,θ + Tn) − g(xi,θ)]

)
[âni(α) − (1 − α)]

=
1
n

n∑
i=1

ρα

(
Eiα − [g(xi,θ + Tn) − g(xi,θ)]

)
.(2.13)

Jurečková and Procházka [10] proved that, under conditions (A.1)–(A.6),

θ̂nα − θα = Op(n−1/2) as n → ∞,(2.14)

n1/2(θ̂nα − θα)(2.15)

=
1

n1/2f(F−1(α))

n∑
i=1

vi(θ)ψα(Eiα) + op(1) as n → ∞
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uniformly in ε ≤ α ≤ 1 − ε, ∀ε ∈ (0, 1
2 ), where

(2.16) ψα(u) = I[u ≥ 0] − (1 − α), u ∈ R.

Expanding g(xi, θ̂nα) − g(xi,θα) around θ̂nα, we obtain for i = 1, . . . , n

g(xi, θ̂nα) − g(xi,θα) = θ̂0,nα − θ0 − F−1(α) + g̃(xi, θ̂
∗
nα) − g̃(xi,θ

∗)

= θ̂0,nα − θ0 − F−1(α) +
p∑

j=1

vij(θ̂j,nα)(θ̂j,nα − θj)(2.17)

−(θ̂
∗
nα − θ∗)′B(i)

∗ (θ̃n)(θ̂
∗
nα − θ∗)/2

with θ̃n between θ∗ and θ̂
∗
nα, and with

B(i)
∗ (θ̃n) =

[
∂2g(xi,θ)
∂θj∂θk

]p

j,k=1

∣∣∣∣
θ=θ̃

.

Inserting (2.17) in (2.13) and regarding (2.11), (2.14) and condition (A.1), we
obtain

1
n

n∑
i=1

(
Eiα − [g(xi,θ + Tn) − g(xi,θ)]

)
[âi(α) − (1 − α)]

=
1
n

n∑
i=1

Eiα[âi(α) − (1 − α)] + α(1 − α) · Op(n−1)(2.18)

uniformly in ε ≤ α ≤ 1−ε, ε ∈ (0, 1
2 ). On the other hand, it follows from Lemma 3.5

in Jurečková and Procházka [10] and its proof that

1
n

n∑
i=1

ρα

(
ei − [g(xi,θ + Tn) − g(xi,θ)]

)
=

1
n

n∑
i=1

ρα(Eiα) + α(1 − α) · Op(n−1)

=
1
n

n∑
i=1

Eiα

(
I[ei ≥ F−1(α)] − (1 − α)

)
+ α(1 − α) · Op(n−1)(2.19)

uniformly in ε ≤ α ≤ 1 − ε, ε ∈ (0, 1
2 ). Combining (2.11), (2.18) and (2.19) entails

(2.20)
1
n

n∑
i=1

Eiα

(
âi(α) − I[ei ≥ F−1(α)]

)
= α(1 − α) · Op(n−1)

uniformly in ε ≤ α ≤ 1 − ε, ε ∈ (0, 1
2 ). This, in turn, further implies

(2.21)
1
n

n∑
i=1

Eiα[âi(α)−(1−α)] =
1
n

n∑
i=1

Eiα[a∗
n(Rni, α)−(1−α)]+α(1−α)·O(n−1)

uniformly in ε ≤ α ≤ 1 − ε, ε ∈ (0, 1
2 ), where a∗

n(Rni, α) are Hájek’s rank scores,

(2.22) a∗
n(Rni, α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if Rni

n < α,

Rni − α if Rni−1
n ≤ α < Rni

n

1 if α < Rni−1
n
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and Rni is the rank of ei, i = 1, . . . , n (see, e.g., Hájek and Šidák [5], Sec-
tion V.3.5).

Consider a triangular array {zn1, . . . , znn} of vectors from R
r such that

(Z.1)
∑n

i=1 zni = 0 and 1
n

∑n
i=1 zniz′ni → C as n → ∞ where C is a positive

r × r matrix,
(Z.2) max1≤i≤n ‖zni‖ = o(n1/2),

and the nonlinear rank statistic process

(2.23) Zn(α) =
1
n

n∑
i=1

zni[âni(α) − (1 − α)], 0 < α < 1.

Let ϕ : (0, 1) �→ R be a monotone function. Fix ε ∈ (0, 1
2 ) and put

(2.24) ϕε(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(ε) if 0 ≤ u < ε

ϕ(u) if ε ≤ u ≤ 1 − ε

ϕ(1 − ε) if 1 − ε < u ≤ 1

and define the scores

(2.25) b̂ni =
∫ 1

0

âni(α)dϕε(α), i = 1, . . . , n.

For example, ϕ(u) = u − 1
2 (Wilcoxon score function) or

ϕ(u) =

⎧⎪⎪⎨⎪⎪⎩
−1 if 0 ≤ u < 1

2

0 if u = 1
2

1 if 1
2 < u ≤ 1

(median score function). The vector of nonlinear rank statistics

(2.26) Sn =
n∑

i=1

znib̂ni

will serve us as a basis for a construction of tests.
Remark 2.2. Gutenbrunner et al. [4] and Hallin and Jurečková [6] considered the
scores of type (2.25) with ϕε replaced by a nondecreasing, square-integrable score
function ϕ : (0, 1) �→ R, satisfying conditions of Chernoff–Savage type, including
the normal scores. However, they were not able to construct the tests with nui-
sance linear regression for f with heavy tails. Jurečková [9] admitted heavy-tailed
distributions, but her scores were truncated to (εn, 1 − εn) with εn ↓ 0. Under the
conditions (A.1)–(A.3) and using the methods of Jurečková and Procházka [10],
we are able to guarantee the uniformity in (2.15) only on [ε, 1 − ε] with a fixed
ε ∈ (0, 1

2 ). On the other hand, we do not restrict the tails of the distribution.
A possible extension of the subinterval [ε, 1− ε] to [εn, 1− εn] or to (0, 1) will be

an object of a further study.

3. Properties of nonlinear rank statistics

We shall first prove the lemma.
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Lemma 3.1. Let {zn1, . . . , znn} be a triangular array of vectors from R
r satisfying

(Z.1) and (Z.2), let

Zn =

⎡⎣ z′n1

· · ·
z′nn

⎤⎦ .

Then, under conditions (A.1)–(A.3),

sup
ε≤α≤1−ε

{
n−1/2

∥∥∥ n∑
i=1

[
zniψα(Eiα − [g(xi,θ + Tn) − g(xi,θ)])

−(zni − ẑni)ψα(Eiα)
∥∥∥}

p−→ 0(3.1)

as n → ∞, for any fixed ε ∈ (0, 1
2 ), where ẑ′ni is the i-th row of the projection Ẑn

of Zn in the space spanned by the columns of matrix Vn(θ), i.e.

Ẑn = Ĥn(θ)Zn,(3.2)

Ĥn(θ) = Vn(θ) [V′
n(θ)Vn(θ)′]−1 V′

n(θ).

Proof. It follows from Lemma 3.5 in Jurečková and Procházka [10] that

1
n

n∑
i=1

[ρα(Eiα − g(xi,θ + t)) − ρα(Eiα)] =
1
2
f(F−1(α))t′Qnt(3.3)

−t′
1
n

n∑
i=1

vi(θ)ψα(Eiα) + Op

(
n−1/2‖t‖3/2 + ‖t‖2

)
(3.4)

uniformly in ε ≤ α ≤ 1 − ε and in ‖t‖ ≤ rn, for every sequence {rn} of positive
numbers tending to 0. Now, extend the model (1.1) in the following way:

(3.5) Yi = g(xi,θ) + z′niϑ + ei, i = 1, . . . , n, ϑ ∈ R
r.

Then the conditions (A.1)–(A.3) are satisfied even for extended model (3.5), re-
placing θ by (θ′,ϑ′)′. The function ρα is absolutely continuous and convex; taking
the right derivative of (3.3) with respect to last r coordinates of t (evaluated when
the last r coordinates of t are zero), we obtain

sup
ε≤α≤1−ε

{
n−1/2

∥∥∥ n∑
i=1

[
zniψα(Eiα − [g(xi,θ + t) − g(xi,θ)])

−(zni − ẑni)ψα(Eiα)
]∥∥∥}

= op(1)(3.6)

uniformly in t ∈ R
p+1, ‖t‖ ≤ rn, for every sequence {rn} of positive numbers

tending to 0. Inserting t �→ θ̂nα − θα into (3.6), we arrive at (3.1).

The following corollary approximates the regression rank scores by an empirical
process.
Corollary 3.1. Under the conditions of Lemma 3.1,

(3.7) sup
ε≤α≤1−ε

{
n−1/2

∥∥∥ n∑
i=1

[
zniâni(α) − (zni − ẑni)I[ei ≥ F−1(α)]

]∥∥∥}
p−→ 0

for any fixed ε ∈ (0, 1
2 ).
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Proof. Notice that

sup
ε≤α≤1−ε

{
n−1/2

∥∥∥ n∑
i=1

zniI[Yi = g(xi, θ̂nα)]
∥∥∥}

p−→ 0;

hence, regarding (2.6), (3.7) follows from Lemma 3.1.

Corollary 3.2. Under the conditions of Lemma 3.1,

(3.8) sup
ε≤α≤1−ε

{
n−1/2

∥∥∥ n∑
i=1

[
zniâni(α) − (zni − ẑni)a∗

n(Rni, α)
]∥∥∥}

p−→ 0

as n → ∞, for any fixed ε ∈ (0, 1
2 ), where a∗

n(Rni, α) are Hájek’s scores defined in
(2.22).

Let ϕ : (0, 1) �→ R be a monotone function, fix ε ∈ (0, 1
2 ) and consider the scores

(2.25) and the nonlinear rank statistics (2.26). Then Corollaries 3.1, 3.2 imply
Corollary 3.3. Under the conditions of Lemma 3.1, for any fixed ε ∈ (0, 1

2 ),

n−1/2

∥∥∥∥∥
n∑

i=1

[
znib̂ni − (zni − ẑni)

∫ 1

0

I[ei ≥ F−1(α)]dϕε(α)
]∥∥∥∥∥ = op(1),

n−1/2
∥∥∥ n∑

i=1

[
znib̂ni − (zni − ẑni)b̂∗ni

]∥∥∥ = op(1),(3.9)

where

b̂∗ni =
∫ 1

0

a∗
n(Rni, α)dϕε(α), i = 1, . . . , n.

Hence, under the model (1.1), the nonlinear rank statistic (2.26) is asymptotically
equivalent to the linear rank statistic n−1/2

∑n
i=1(zni − ẑni)b̂∗ni pertaining to the

Hájek rank scores.

4. Application: Tests of linear regression in nonlinear regression model
with unknown parameters

Convenient properties of the nonlinear regression rank scores, proved in the former
sections, lead to an idea of their possible application in testing the significance of a
linear regression in the presence of a nonlinear regression with nuisance parameters,
or in testing other hypotheses with nuisance parameters of nonlinear regression. For
instance, we can compare two sets of observations affected by a nonlinear regression
with unknown parameters.

Let us illustrate possible applications on the nonlinear regression model

(4.1) Yi = g(xni,θ) + z′niβ + ei, i = 1, . . . , n

where β ∈ R
r is an unknown parameter and zni, i = 1, . . . , n, are known (or

observable) regressors. Denote

Zn =

⎡⎣ z′n1

. . .
z′nn

⎤⎦
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the matrix of order n × r and assume that it has rank r. The problem is that of
testing the hypothesis

H0 : β = 0

with g(·, ·) of known shape and with known xi, i = 1, . . . , n, but with θ and F
unspecified; we only assume that conditions (A.1)–(A.3) and (Z.1)–(Z.2) are
satisfied.

As an example consider the situation where the nonlinear regression describes the
concentration of the drug teofylin in the human blood, measured at times t1, . . . , tk
after the application. In such situation, the regression function is typically a mixture
of exponentials with unknown parameters (see Jurečková and Procházka [10] and
Schindler [19]). Treating two groups of patients (boys and girls), we want to compare
their reactions to the drug. This leads to a two-sample problem with a nuisance
nonlinear regression.

Let ân1(α), . . . , ânn(α), 0 ≤ α ≤ 1 denote the regression rank scores correspond-
ing to the submodel under H0,

(4.2) Yi = g(xi,θ) + ei, i = 1, . . . , n.

Let ϕ : (0, 1) �→ R be a nondecreasing, bounded score function such that ϕ(1−u) =
−ϕ(u), 0 < u < 1. Fix ε ∈ (0, 1

2 ), calculate the scores b̂ni, i = 1, . . . , n, defined in
(2.25), and the test criterion

(4.3) Tn = (A(ϕε))−2S′
nD−1

n Sn, Sn = n−1/2
n∑

i=1

znib̂ni

where

(A(ϕε))2 =
∫ 1

0

(ϕε(u) − ϕ̄ε)2du, ϕ̄ε =
∫ 1

0

ϕε(u)du

and
Dn =

1
n

(
Zn − Ẑn

)′ (
Zn − Ẑn

)
,

and Ẑn is the projection of Zn in the space spanned by the columns of matrix
Vn(θ̂n) with θ̂n being the nonlinear regression quantile of model (4.2) with α = 1

2 ,
i.e.

Ẑn = Ĥn(θ̂n)Zn,

Ĥn(θ̂n) = Vn(θ̂n)
(
V′

n(θ̂n)V′
n(θ̂n)

)−1

V′
n(θ̂n).

The test is based on the asymptotic distribution of Tn under H0. Regarding that

Vn(θ̂n) − Vn(θ)
p−→ 0 as n → ∞,

the asymptotic distribution of Tn under H0, due to the Corollary 3.1, in turn
coincides with the asymptotic distribution of the sequence

(A(ϕε))−2S∗′
n D−1

n S∗
n, S∗

n = n−1/2
n∑

i=1

(zni − ẑni)ϕε

(
Rni

n + 1

)
,

where Rni is the rank of ei, i = 1, . . . , n. Hence, the test of H0 in the presence of
nuisance nonlinear regression would coincide with the ordinary rank test under θ
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known, with score generating function ϕε and with the coefficients zni − ẑni, i =
1, . . . , n. The asymptotic null distribution of Tn under H0 is the central χ2 with r
degrees of freedom. The asymptotic distribution of Tn under the local alternative

Hn : βn = n−1/2β0 (β0 ∈ R
r fixed)

is the noncentral χ2 with r degrees of freedom and with noncentrality parameter

(A(ϕε))−2 β′
0Dβ0

[∫ 1

0

ϕε(u)df(F−1(u))
]2

, D = lim
n→∞

Dn.

If β ∈ R
1, i.e. r = 1, we can test H0 : β = 0 also against the one-sided alternative

H1 : β > 0, what is most interesting in the two-sample model. Then the test
criterion simplifies to

(4.4) T ∗
n = (A(ϕε))−1

[ n∑
i=1

(zni − ẑni)2
]−1/2 n∑

i=1

znib̂ni

and rejects H0 in favor of H1 on the asymptotic significance level τ provided T ∗
n

exceeds the (1− τ)-quantile of the standard normal distribution, i.e. T ∗
n ≥ Φ−1(1−

τ). The performance of such test on the real data is illustrated by Schindler [19],
who has also elaborated a suitable computation algorithm. Neither the Wilcoxon
nor the median tests indicate a difference in the dynamism of spreading the teofylin
between two groups of patients.

A general class of tests using the regression rank scores, including their numerical
behavior and the algorithms, is a subject of Schindler’s PhD Thesis (Schindler [20]).
Besides the multiple comparisons, we can also test for the independence of two
random variables, affected by a nonlinear regression with unknown parameters, or
test for the significance of an outward trend in a similar situation, and we have
various other applications.
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Nonparametric tests in AR models with applications to climatic data. Envi-
ronmetrics 8 651–660.
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[11] Jurečková, J. and Sen, P. K. (1996). Robust Statistical Procedures: As-
ymptotics and Inter-Relations. Wiley, New York.
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