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High dimensional Bernstein-von Mises:

simple examples

Iain M. Johnstone1,∗

Stanford University

Abstract: In Gaussian sequence models with Gaussian priors, we develop
some simple examples to illustrate three perspectives on matching of posterior
and frequentist probabilities when the dimension p increases with sample size
n: (i) convergence of joint posterior distributions, (ii) behavior of a non-linear
functional: squared error loss, and (iii) estimation of linear functionals. The
three settings are progressively less demanding in terms of conditions needed
for validity of the Bernstein-von Mises theorem.

The Bernstein-von Mises theorem is a formalization of conditions under which
Bayesian posterior credible intervals agree approximately with frequentist confi-
dence intervals constructed from likelihood theory. It is traditionally formulated in
situations in which the number of parameters p is fixed and the sample size n → ∞.
The situation is very different in high dimensional settings in which p is allowed to
grow with n. In this primarily expository paper, we use simple Gaussian sequence
models to draw some conclusions about when a version of Bernstein-von Mises can
hold.

We begin with a somewhat informal statement of the classical theorem. Sup-
pose that Y1, . . . , Yn are i.i.d. observations from a distribution Pθ having density
pθ(y) dμ(y) where θ ∈ Θ ⊂ R

p. The log-likelihood for a single observation

�θ = log pθ(y),

and, as usual, the score function vector and Fisher information matrix are given by

�̇θ = (∂/∂θ) log pθ(y); Iθ = Eθ �̇θ �̇
T
θ .

Writing Y n = (Y1, . . . , Yn) for the full data, the log-likelihood

Ln(θ) =
n∑

k=1

�θ(Yk),

and we write θ̂MLE for a maximizer of Ln(θ). Classical likelihood theory says that
any (nice) estimator satisfies the information bound

Varθ θ̂ ≥ n−1I−1
θ ,
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in the usual ordering of nonnegative definite matrices, and that the bound is as-
ymptotically attained by the MLE, which is also asymptotically Gaussian:

θ̂MLE |θ ∼ Np(θ, n−1I−1
θ ).

Now suppose that π(θ) is the density of a prior distribution with respect to
Legesgue measure. Then the posterior distribution of θ given Y n is given by Bayes’
rule; we denote it simply by Pθ|Y n .

The Bernstein-von Mises theorem says, informally, that this posterior distribu-
tion is, in large samples, approximately normal with mean approximately the MLE,
θ̂MLE and variance matrix approximately n−1I−1

θ0
(here θ0 is the ‘true’ value of θ

generating the observations Y1, . . . , Yn). Using the scalar case for simplicity, and
writing σ2

n = n−1I−1
θ0

and zα = Φ̃−1(α), we have that an approximate 100(1 − α)%
credible interval for θ would be given by θ̂MLE ± zα/2σ̂n. This is exactly the same as
the frequentist confidence interval based on asymptotic normality of the MLE. Thus
in large samples the effect of the prior density π disappears: “the data overwhelms
the prior”.

A somewhat more formal statement uses the notion of variation distance between
probability measures P and Q, and an equivalent expression in terms of the densities
p = dP/dμ and q = dQ/dμ relative to a dominating measure μ:

‖P − Q‖ = max
A

|P (A) − Q(A)| = 1
2

∫
|p − q| dμ.

Suppose that π(θ) is continuous and positive at the ‘true’ value θ0, and that θ → Pθ

is differentiable in quadratic mean and satisfies a further mild separation condition,
then

(1) ‖Pθ|Y n − N(θ̂MLE , n−1I−1
θ0

)‖ → 0.

in probability under Pn
θ0

.
In other words, the variation distance between posterior and the approximating

Gaussian distribution is a random variable depending on Y n, and which converges
to zero in probability under repeated draws from Pθ0 .

A development of the Bernstein-von Mises theorem as formulated above may
be found in [21, §10.2]. A proof due to Bickel is given in [17, §6.8]. Extension from
independent to dependent sampling settings are possible, see e.g. [1, 13]. For further
references and methods of proof of the classical results, see [12, §1.4 and §1.5].

1. Growing Gaussian location model

In nonparametric and semiparametric settings the situation is very different. Even
frequentist consistency of nonparametric Bayesian methods is a difficult issue with
a large literature of both positive and negative results (e.g. [12, 11]). One cannot
therefore expect Bernstein-von Mises phenomena in any great generality for the full
posterior.

In this largely expository paper, we do some simple calculations in symmet-
ric Gaussian sequence models. The Gaussian sequence structure makes possible an
elementary set of examples that avoid the technical challenges posed by, and sophis-
tication needed for, posterior Gaussian approximation in high dimensional settings
(see references in Section 5). Nevertheless, the Gaussian examples can conveniently
illustrate some of the issues related to validity of the Bernstein-von Mises theorem
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in high dimensional models. Depending on the frequentist or Bayesian perspective,
we assume that p = p(n) grows with n, and one, or both, of

(D) Data: Ȳ |θ ∼ Np(θ, σ2
nI), and

(P) Prior: θ ∼ Np(0, τ2
nI).

The notation Ȳ suggests an average (Y1+· · ·+Yn)/n of observations individually
of variance σ2

0 , so that in this case σ2
n = σ2

0/n. [If p were held fixed, not depending
on n, then σ2

n would match with the definition given in the introductory section.]
We also allow the prior variance τ2

n to depend on the sample size n.
Our goal is to compare the Bayesian posterior distribution L(θ|Y ) with frequen-

tist distributions, in particular those of the MLE L(θ̂MLE |θ) and of the posterior
mean Bayes estimator L(θ̂B |θ). A key simplification is that since both prior and
likelihood are Gaussian, so also is the posterior distribution, and hence all the be-
havior will be determined by centering and scaling. Thus from standard results, the
posterior is given by

θ|Ȳ = ȳ ∼ Np(wny, wnσ2
nI),

wn = τ2
n/(σ2

n + τ2
n).

(2)

Remarks. 1. The reference to Gaussian sequence models becomes clearer if, as
will be helpful later, we write out assumptions (D) and (P) in co-ordinates:

(Dseq) Data: ȳk = θk + σnεk, and
(Pseq) Prior: θk = τnζk,

with εk and ζk all i.i.d standard Gaussian, for k = 1, . . . , p(n).
Strictly speaking, the indexing by n of parameters σn, τn and p(n) creates a se-

quence of sequence models. However, one can, as needed for almost sure results,
think of the infinite sequences {(εk, ζk), k ∈ N} as being drawn from a single com-
mon probability space.

2. We also consider the infinite sequence Gaussian white noise model

(3) Yt =
∫ t

0

f(s) ds + σnWt, 0 ≤ t ≤ 1

or equivalently, when expressed in any orthonormal basis {ϕk(t)} for L2[0, 1],

(4) yk = θk + σnεk, εk
ind∼ N(0, 1),

where it is assumed that σn = σ0/
√

n. For some examples, it is helpful to use
doubly indexed orthonormal bases {ϕjk(t), k = 1, . . . , 2j , j ∈ N} such as arise with
systems of orthonormal wavelets.

The forthcoming book [14] will have more on estimation in such Gaussian se-
quence models.

We develop three perspectives on the Bernstein-von Mises phenomenon:

(1) global convergence of the posterior,
(2) behavior of a non-linear functional ‖θ − θ̂‖2, and of
(3) linear functionals Lf , in the white noise model (3)–(4).

We shall see that these situations are progressively “less demanding” in terms
of validity of the Bernstein-von Mises phenomenon. Indeed, case (1) requires that
wn → 1 at a sufficiently fast rate, while setting (2) needs only wn → 1. In case
(3), the formulation itself delivers wn → 1, and covers at least all bounded linear
functionals.
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2. Global convergence of posterior

The first calculation considers the p−dimensional posterior distribution (2) and
shows that the convergence in (1) occurs, even in the best possible case that θ0 = 0,
only if the shrinkage factor wn approaches 1 at a sufficiently fast rate.

Proposition 1. Let θ0 = 0. The variation distance between posterior distribution
Pθ|Y n and N(θ̂MLE , n−1I−1

θo
) converges to zero in Pθ0-probability if and only if√

pσ2
n/τ2

n → 0, or equivalently, if

(5) wn = 1 − o(1/
√

pn).

Proof. We introduce notation Py,n(dθ) for the posterior distribution of θ|Y n = y

and Qy,n(dθ) for the distribution centered at θ̂MLE = ȳ. Thus

Py,n(dθ) ↔ Np(wnȳ, σ2
nwnI),

Qy,n(dθ) ↔ Np( ȳ, σ2
nI).

(6)

Let ρ(P, Q) =
∫ √

p
√

q dμ denote the Hellinger affinity between two probability
measures P, Q having densities p, q with respect to a common dominating measure
μ. We recall an elementary bound [21, p. 212] for variation distance in terms of
Hellinger distance and hence Hellinger affinity:

(7) 2[1 − ρ(P, Q)] ≤ ‖P − Q‖ ≤
√

8[1 − ρ(P, Q)]1/2,

Thus ‖Py,n − Qy,n‖ → 0 if and only if ρ(Py,n, Qy,n) → 1. We recall also that affinity
commutes with products:

ρ
(∏

Pi,
∏

Qi

)
=

∏
ρ(Pi, Qi).

An elementary calculation shows that

(8) ρ2(N(θ1, σ
2
1), N(θ2, σ

2
2)) =

( 2σ1σ2

σ2
1 + σ2

2

)
exp

{
− (θ1 − θ2)2

2(σ2
1 + σ2

2)

}
.

When applied to Py,n and Qy,n, we set θ1i = wnȳi, θ2i = ȳi and σ2
1 = σ2

nwn, σ2
2 = σ2

n

to obtain

(9) ρ(Py,n, Qy,n) = exp
{

− p

2
log 1

2 (w1/2
n + w−1/2

n ) − (1 − wn)2

4(1 + wn)
‖ȳ‖2

σ2
n

}
.

Introduce rn = σ2
n/τ2

n = w−1
n − 1. Suppose first that pr2

n → 0. Since wn =
(1 + rn)−1, we have

log 1
2 (w1/2

n + w
−1/2
n ) = − 1

2 log(1 + rn) + log(1 + 1
2rn) ≤ 2c1r

3
n

for rn ≤ 1
2 , say. When p → ∞, we have with probability tending to one that

‖ȳ‖2/σ2
n < 2p, and so for rn ≤ 1

2 ,

(1 − wn)2

4(1 + wn)
‖ȳ‖2

σ2
n

≤ 2pr2
n

(1 + rn)(1 + rn/2)
≤ c2pr2

n.

Consequently, when pr2
n → 0,

ρ(Py,n, Qy,n) ≥ exp{ −c1pr3
n − c2pr2

n} → 1.
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Suppose now that pr2
n does not approach 0. Again with probability tending to

one, ‖ȳ‖2/σ2
n > p/2, and since 1

2 (w1/2
n + w

−1/2
n ) > 1, we have from (9) that

− log ρ(Py,n, Qy,n) >
p(1 − wn)2

8(1 + wn)
> c3 min{pr2

n, p}

which cannot converge to zero if pr2
n does not.

Remark. If θ0 = θ0n �= 0, so that the data mean differs from the prior mean, then
the rate condition is replaced by

wn − 1 = o(1/qn(θ0n)), qn(θ0n) =
√

pn + ‖θ0n‖/σn.

Example. We illustrate the result by considering estimation in the Gaussian white
noise model (3). When expressed in a suitable orthonormal basis of wavelets, we
obtain yjk

ind∼ N(θjk, σ2
n), for k = 1, . . . , 2j , and j ∈ N. Pinsker’s theorem [18]

describes the minimax linear estimator of f , or equivalently of (θjk), under squared
error loss when it is assumed that f has α mean square derivatives and shows that
such minimax linear estimators are asymptotically minimax among all estimators
as σn → 0.

Pinsker’s estimator is necessarily posterior mean Bayes for a corresponding
Gaussian prior. The mean square differentiability condition can be equivalently
expressed in terms of the coefficients as∑

j,k

22jαθ2
jk ≤ C2,

and the corresponding least favorable Gaussian prior puts

(10) θjk
ind∼ N(0, τ2

j ), τ2
j = σ2

n(μn2−jα − 1)+,

where μn = cαn(C/σn)2α/(2α+1). The constant cαn satisfies bounds independent of
n, c1α ≤ cαn ≤ c2α, whose precise values are unimportant here–for further details
see [14].

We consider the validity of the Bernstein-von Mises phenomenon for the collec-
tion of coefficients {θjk, k = 1, . . . , 2j } at a given level j = j(n)–possibly fixed, or
possibly varying with n.

The prior variances τ2
j decrease with j, and vanish above a “critical level” j∗ =

j∗(α, C; n). Since j∗ ∼ (2/(2α + 1)) log(C/σn) grows with n, so does the number of
parameters θj∗,k at the critical level. From (10), we conclude that

τ2
j∗ /σ2

n ≤ 2α − 1,

and hence that wn ≤ 1 − 2−α does not approach 1, so that the condition of Propo-
sition 1 fails.

On the other hand, at a fixed level j0, we have p = 2j0 fixed and τ2
j0

/σ2
n =

μn2−j∗α − 1 → ∞, so that
√

pσ2
n/τ2

j0
→ 0 and so Proposition 1 applies. Thus we

may say informally that the Bernstein-von Mises phenomenon holds at a fixed level
but fails at the critical level.
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3. Behavior of the squared loss

In this section, we pay homage to a remarkable paper by Freedman [6], itself stim-
ulated by Cox [4], which sets out the failure of the Bernstein-von Mises theorem in
a simple sequence model of function estimation in Gaussian white noise. To further
simplify the calculations, we use the growing Gaussian location model (D), (P),
yielding results parallel to, but not identical with, Freedman’s. Hence, define

Tn(θ, Y ) = ‖θ − θ̂B ‖2 =
p(n)∑
k=1

(θk − θ̂k)2.

The posterior distribution of θ|Y is described by (2); in particular the shrinkage
factor wn = τ2

n/(σ2
n + τ2

n) again plays a critical role.

Theorem 2 (Bayesian). The posterior distribution L(Tn|Y ) is given by

Tn = Cn +
√

DnZ1n,

where

Cn = pσ2
nwn,(11) √

Dn =
√

2pσ2
nwn(12)

and the random variable Z1n has mean 0, variance 1 and converges in distribution
to N(0, 1) as n → ∞.

Proof. From (2), the posterior distribution of Tn given Y is σ2
nwnχ2

(p) and in par-
ticular it is free of Y . Hence we have the representation

Tn = pσ2
nwn +

√
2pσ2

nwnZ1n,

and the theorem follows because (χ2
p − p)/

√
2p ⇒ N(0, 1) as p → ∞.

Turn now to the frequentist perspective, in which θ is a fixed and unknown
(sequence of) parameters. We will therefore use the decomposition yk = θk + σnεk,
with εk

iid∼ N(0, 1), c.f. (Dseq) above. Since θ̂B,k = wnyk, we have

(13) θk − θ̂B,k = (1 − wn)θk − wnσnεk.

Some of the conclusions will be valid only for “most” θ: to formulate this it is
useful to give θ a distribution. The natural one to use is (P), despite the possible
confusion arising because, for the frequentist, this is not an a priori law!

Theorem 3 (Frequentist). The conditional distribution L(Tn|θ) is given by

(14) Tn = Cn +
√

FnZ2n(θ) +
√

Gn(θ)Z3n(θ, ε),

where Cn is as in Theorem 2, while Z3n(θ, ε) has mean 0 and variance 1.
If θ is distributed according to (P), then Z2n(θ) has mean 0, variance 1 and

converges in distribution to N(0, 1) as n → ∞. In addition, if wn → w = 1 − cosω,√
Fn ∼

√
Dn cosω,√

Gn(θ) ∼
√

Dn sin ω,(15)

and

(16) Z3n(θ, ·) ⇒ N(0, 1).

Formulas (15) and (16) hold as n → ∞, for almost all θ’s generated from (P).
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Proof. Using (13), and (1 − wn)2τ2
n + w2

nσ2
n = σ2

nwn, we may write

Tn =
∑

k

[(1 − wn)θk − wnσnεk]2(17)

= pσ2
nwn +

√
2pτ2

n(1 − wn)2 ·
∑

θ2
k − pτ2

n√
2pτ2

n

+ Rn(θ, ε),

with
Rn(θ, ε) = −2wn(1 − wn)σn

∑
θkεk + w2

nσ2
n

∑
(ε2k − 1).

This leads immediately to the representation (14) after observing that τ2
n(1 − wn) =

σ2
nwn and setting√

Fn =
√

2pσ2
nwn(1 − wn),

Z2n(θ) =
∑

(θ2
k − τ2

n)/
√

2pτ2
n,

Gn(θ) = VarRn(θ, ε) = 4w2
n(1 − wn)2σ2

n

∑
θ2

k + w4
n · 2pσ4

n

= G1n(θ) + G2n.

Turning to the final assertions, we may rewrite

Rn(θ, ε) =
√

G1n(θ)Z4n(θ) +
√

G2nZ5n,

where

Z4n(θ) =
∑

θkεk/
(∑

θ2
k

)1/2

, Z5n =
(∑

ε2k − p
)
/
√

2p.

Using again σ2
nwn = τ2

n(1 − wn), we have

G1n(θ) = 2pσ4
n · w2

n(2wn − 2w2
n) · p−1

p∑
1

(θk/τn)2.

For almost all θ’s generated from (P), p−1
∑p

1(θk/τn)2 → 1, and since Gn(θ) =
G1n(θ) + G2n, (15) follows.

Clearly Z4n(θ) ∼ N(0, 1), free of θ, while Z5n ⇒ N(0, 1) and so (16) follows.

Remark. The doctrinaire frequentist would not contemplate the joint distribution
of (θ, Y ) in (D, P); but anyone else would observe that in that joint distribution,
Tn ∼ σ2

nwnχ2
(p), as follows easily in two ways, either from the proof of Theorem 2,

or from (17).

The Bernstein-von Mises theorem fails if limwn = w < 1, as may be seen
in Figure 1. For the Bayesian, conditional on Y , θ − θ̂B is a noise vector, and
Theorem 2 says that the distribution of ‖θ − θ̂B ‖2 is approximately normal with
mean Cn and standard deviation

√
Dn. For the frequentist, E[θ̂B |θ] = wnθ is biased

(also asymptotically), and some of ‖θ̂B − θ‖2 comes from this bias. As a result,
Theorem 3 says that, conditional on θ, ‖θ̂B − θ‖2 is approximately normal with
mean Cn +

√
FnZ2n(θ) and standard deviation

√
Gn(θ). Comparing (12) and (15)

shows that the frequentist SD is smaller than the Bayesian SD:
√

Gn(θ) <
√

Dn.

Under the assumption (P), θi
iid∼ N(0, τ2

n), the ‘wobble’ in the frequentist mean
can be arbitrarily large relative to

√
Dn: from the law of the iterated logarithm,

with probability one
lim inf Z2n(θ)/

√
2 log log p = 1.

By contrast, if limwn = 1, then the wobble disappears:
√

Fn = o(
√

Dn) and the
Bayesian SD equals the frequentist SD asymptotically:

√
Gn(θ) ∼

√
Dn.
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Fig 1. The top panel, for the Bayesian, has θ −θ̂B as a noise vector, and the posterior distribution
L(T |Y ) approximately N(Cn, Dn). The bottom panel, for the frequentist, shows the effect of the

bias of E[θ̂B |θ] for θ, with L(T |θ) approximately N(Cn +
√

FnZ2n(θ), G2n(θ)).

4. Linear functionals

We turn now to the least demanding of our three scenarios for the Bernstein-von
Mises theorem: the behavior of linear functionals. We change the setting slightly
to the infinite sequence Gaussian white noise model (3). We consider linear func-
tionals Lf such as integrals

∫
B

f or derivatives f (r)(t0): if f has expansion f(t) =∑
θkϕk(t), then on setting ak = Lϕk, we have

Lf =
∑

θkLϕk =
∑

θkak.

Again, for maximum simplicity, we consider Gaussian priors on the coefficients:

(18) θk
ind∼ N(0, τ2

k ).

In order that
∑

θ2
k < ∞ with probability 1, it is necessary and sufficient that∑

τ2
k < ∞.

Consequently, the posterior laws are Gaussian

θk |yk
ind∼ N(wknyk, wknσ2

n),

again with

(19) wkn = τ2
k/(σ2

n + τ2
k ),

so that the posterior mean estimate

L̂fn =
∑

k

akwknyk.

Centering at posterior mean

For the Bayesian, the posterior distribution

Lf |y ∼ N(L̂fn, Vyn), Vyn = σ2
n

∑
k

a2
kwkn
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while for the frequentist, the conditional distribution

L̂fn|f ∼ N(Ef L̂fn, VFn), VFn= σ2
n

∑
k

a2
kw2

kn.

The Bayesian might use 100(1 − α)% posterior credible intervals of the form L̂fn ±
zα/2

√
Vyn, while the frequentist might employ 100(1 − α)% confidence intervals

L̂fn ± zα/2

√
VFn. This leads us to consider the variance ratio

(20)
VFn

Vyn
=

∑
a2

kw2
kn∑

a2
kwkn

< 1,

from which we see that the frequentist intervals are narrower–because the frequen-
tist bias EfLf̂ − Lf is being ignored for now, along with the attendant implications
for coverage (but see below).

As sample size n → ∞, the noise variance σ2
n → 0 and so for a given Gaussian

prior (18), the weights (19) converge marginally: wkn → 1 for each fixed k. This
alone does not imply convergence of the variance ratio VFn/Vyn → 1, as a later
example shows. A sufficient condition is that the linear functional Lf be bounded
(as a mapping from L2[0, 1] to R.) This amounts to saying that Lf has the rep-
resentation Lf =

∫ 1

0
a(t)f(t) dt with

∫
a2(t) dt < ∞, or equivalently, in sequence

terms, that
∑

a2
k ≤ ∞.

Proposition 4. Let P
n
f denote the measure corresponding to (3). If Lf =

∫
af

is a bounded linear functional, then the variation distance between Bayesian and
frequentist distributions converges to zero:

(21) ‖N(L̂fn, Vyn) − N(L̂fn, VFn)‖
P

n
f−→ 0.

Proof. We again use the Hellinger affinity (7) and apply (8) to the laws P =
N(L̂fn, Vyn) and Q = N(L̂fn, VFn) to obtain

ρ2(P, Q) =
2
√

VFn/Vyn

1 + VFn/Vyn
.

In view of (7), the merging in (21) occurs if and only if

VFn/Vyn → 1.

When
∑

a2
k < ∞, this convergence follows from (20) and the dominated conver-

gence theorem.

Remarks. 1. Examples of bounded functionals include polynomials a(t) =∑K
k=0 cktk and “regions of interest” a(t) = I{t ∈ B}.
2. Examples of unbounded functionals are given by evaluation of a function (or

its derivatives) at a point: Lf = f (r)(t0). We shall see that the variance ratio does
not converge to 1, and so the Bernstein-von Mises theorem fails. Indeed, in the
Fourier basis

ϕ0(t) ≡ 1,

{
ϕ2k−1(t) =

√
2 sin 2πkt,

ϕ2k(t) =
√

2 cos 2πkt,
k = 1, 2, . . .
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we find that, ak = Lϕk = drϕk(t0)/dtr and an easy calculation shows that a2
2k−1 +

a2
2k = 2(2πk)2r. We use a Gaussian prior (18) with τ2

2k−1 = τ2
2k = k−2m and

2m > 2r + 1. It follows from (19) that, after writing V1n and V2n for Vyn and VFn

respectively, we have

Vjn = 2(2π)2rσ2
n

∑
k

k2r(1 + σ2
nk2m)−j .

As λ → 0, sums of the form
∞∑

k=0

kp(1 + λkq)−r ∼ κλ−(p+1)/q,

with κ = κ(p, r; q) =
∫ ∞
0

vp(1+vq)−r dv = Γ(r − μ)Γ(μ)/(qΓ(r)) and μ = (p+1)/q.
In the present case, with p = 2r, q = 2m and r = j, we conclude that

VFn

Vyn
→ 1 − 2r + 1

2m
< 1.

Centering at the MLE

For a bounded linear functional, the MLE Lf̂M =
∑

akyk is well defined and
unbiased, with mean E(Lf̂M ) = Lf and frequentist variance VMn = Var(Lf̂M ) =
σ2

n

∑
k a2

k. A frequentist might prefer to use 100(1 − α)% intervals Lf̂M ± zα/2

√
VMn

which will have the correct coverage property. However, extra conditions are re-
quired for the Bernstein-von Mises result to hold in this case.

Proposition 5. Assume that Lf =
∫

af is a bounded linear functional. Suppose
also that the coefficients of θk = 〈f, ϕk 〉 of the ‘true’ f , and the variances τ2

k of
the Gaussian prior together satisfy

∑
|akθk/τk | < ∞. Then the distance between

Bayesian and frequentist distributions

(22) ‖N(L̂fn, Vyn) − N(Lf̂M , VMn)‖
P

n
f−→ 0.

Proof. The argument is a slight elaboration of that used in the previous proposition.
We use (7) and P = N(L̂fn, Vyn) as before, but now Q = N(Lf̂M , VMn) and (8)
yields

ρ2(P, Q) =
2
√

VynVMn

Vyn + VMn
exp

{
− 1

2

(Lf̂M − L̂fn)2

Vyn + VMn

}
.

As before Vyn/VMn =
∑

a2
kw2

kn/
∑

a2
k → 1 by dominated convergence. Using this

and the expression VMn = σ2
n

∑
a2

k, and in view of the bounds (7), the conclusion

(22) is equivalent to σ−1
n |Lf̂M − L̂fn|

P
n
f−→ 0. We may write

σ−1
n (Lf̂M − L̂fn) D=

∑
k

akσ−1
n (1 − wkn)θk +

∑
ak(1 − wkn)εk.

The stochastic term has mean 0 and variance
∑

a2
k(1 − wkn)2 → 0, again by dom-

inated convergence. Thus we may focus on the deterministic term, and note that
the merging in (22) occurs if and anly if

σn

∑
k

akθk

σ2
n + τ2

k

→ 0.

The bound σnτk/(σ2
n + τ2

k ) ≤ 1
2 along with the dominated convergence theorem

then shows that
∑

|akθkτ −1
k | < ∞ is a sufficient condition for (22) as claimed.
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5. Related work

As remarked earlier, this paper avoids the important Gaussian approximation part
of the Bernstein-von Mises phenomenon by focusing on examples with Gaussian
likelihoods and priors. A growing literature addresses the approximation challenges;
we give a brief listing here, and refer to the books [12, 11] and the survey discussion
in [10, §2.7] for more detailed discussion.

Ghosal [7, 8, 9] developed posterior normality results for the full posterior in cases
where the dimension of the parameter space increases sufficiently slowly. In each
case, the emphasis is on conditions under which a non-Gaussian likelihood and
appropriate prior sequence can yield approximate Guassian posteriors. However
Ghosal [9, Section 4] specializes his results to our setting (D) with σ2

n = 1/n and
notes that one can choose priors–in general not Gaussian–so that the posterior
distribution centered by the MLE is approximately Gaussian if p3(log p)/n → 0.

In survival analysis, Bernstein-von Mises theorems for the cumulative hazard
function are established by Kim and Lee [16] and for the cumulative hazard and
fixed dimensional covariate regression parameter in a proportional hazards model
in [15].

Boucheron and Gassiat [2] develop a Bernstein-von Mises theorem for discrete
probability distributions of growing dimension, and consider application to func-
tionals such as Shannon and Renyi entropies.

In a semiparametric setting, where a finite dimensional parameter of interest
can be separated from an infinite dimensional nuisance parameter, Castillo [3] ob-
tains conditions leading to a Bernstein-von Mises theorem on the parametric part,
clarifying an earlier work of Shen [20].

Rivoirard and Rousseau [19] give conditions under which Bernstein-von Mises
holds for linear functionals of a nonparametrically specified probability density
function.

While this manuscript was in press, we learnt of the paper by DasGupta and
Lahiri [5], which does some calculations related to those in our Section 2 as part of
their study of the L1 error estimation of a Gaussian density in high dimensions.
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