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Large sample asymptotics for the

two-parameter Poisson–Dirichlet process

Lancelot F. James1,∗

Hong Kong University of Science and Technology

Abstract: This paper explores large sample properties of the two-parameter
(α, θ) Poisson–Dirichlet Process in two contexts. In a Bayesian context of es-
timating an unknown probability measure, viewing this process as a natural
extension of the Dirichlet process, we explore the consistency and weak conver-
gence of the the two-parameter Poisson–Dirichlet posterior process. We also
establish the weak convergence of properly centered two-parameter Poisson–
Dirichlet processes for large θ + nα. This latter result complements large θ
results for the Dirichlet process and Poisson–Dirichlet sequences, and com-
plements a recent result on large deviation principles for the two-parameter
Poisson–Dirichlet process. A crucial component of our results is the use of
distributional identities that may be useful in other contexts.
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1. Introduction

In this work, for 0 ≤ α < 1 and θ > −α, we are interested in the two-parameter
class of random probability measures that are formed by

(1.1) Pα,θ(·) d=
∞∑

k=1

Vk

k−1∏
j=1

(1 − Vj)δZk
(·)

where the Vk are independent beta(1−α, θ+kα) random variables and, independent
of these, the (Zk) are an i.i.d. sequence with values in some Polish space I with com-
mon (non-atomic) distribution H. That is to say Pα,θ is a random probability mea-
sure taking values in PI , where PI is the set of all probability measures on I. We will
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simply say that a random probability measure P is a two-parameter (α, θ) Poisson–
Dirichlet process, having law say Πα,θ on PI , suppressing dependence on H, if P can

be represented as in (1.1). That is P (·) d= Pα,θ(·). For shorthand we write P ∼ Πα,θ.
We denote the expectation operator corresponding to the law Πα,θ as Eα,θ, which
is such that Eα,θ[P (·)] = H(·). We note that the Vk are obtained by size-biasing
a ranked sequence of probabilities known as the two-parameter Poisson–Dirichlet
sequence. It follows that by permutation invariance Pα,θ may also be represented
in terms of this sequence. Many properties of the two-parameter Poisson–Dirichlet
sequence, as it primarily relates to Bessel and Brownian phenomena, were discussed
in [36]. This sequence has gained in importance as it is seen to arise in a number
of different areas including, for instance, Bayesian statistics, population genetics
and random fragmentation and coalescent theory connected to physics. See [34] for
some updated references and [19] for some connections to Dirichlet means.

When α = 0 then P is a Dirichlet process in the sense of Ferguson [9]. Pitman [35]
showed that within a Bayesian context, these random probability measures can be
seen as natural and quite tractable extensions of the Dirichlet process. In particular
Pitman [35] showed that if random variables X1, . . . , Xn given P are i.i.d. P and P
has prior distribution Πα,θ, then the posterior distribution of P |X1, . . . , Xn, denoted
as Π(n)

α,θ, corresponds to the law of the random probability measure,

P
(n)
α,θ (·) = Rn(p)Pα,θ+n(p)α(·) + (1 − Rn(p))Dn(·)

where

Dn(·) =
n(p)∑
j=1

ΔjδYj (·).

(Δ1, . . . ,Δn(p)) is a Dirichlet(e1 −α, . . . , en(p) −α) random vector. All the random
variables appearing on the right hand side are conditionally independent given the
data. Rn(p) is a beta(θ+n(p)α, n−n(p)α) random variable and {Y1, . . . , Yn(p)} de-
notes the 1 ≤ n(p) ≤ n unique values of {X1, . . . , Xn.} Furthermore, Pα,θ+n(p)α ∼
Πα,θ+n(p)α. ej is the number of Xi equivalent to Yj for j = 1, . . . , n(p)., When
α = 0 one obtains the posterior distribution derived in Ferguson [9]. The notation
ej and n(p) are taken from Lo [29], as discussed in Ishwaran and James [17]. Fur-
thermore, a generalization of the Blackwell–MacQueen [4] prediction rule is given
by

(1.2) P (Xn+1 ∈ · |X1, . . . , Xn) =
θ + n(p)α

θ + n
H(·) +

n(p)∑
j=1

(ej − α)
θ + n

δYj (·).

Note also that
P (Xn+1 ∈ · |X1, . . . , Xn) = E[P (n)

α,θ (·)].

We also write

F̃n(·) =
n(p)∑
j=1

(ej − α)
n − n(p)α

δYj (·)

which importantly reduces to the empirical distribution when α = 0, or when
n(p) = n.

Let P∞
0 denote a product measure on I∞ making Xi for i = 1, . . . ,∞ indepen-

dent with common (true) distribution P0. In this paper, extending the known case
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of the Dirichlet process, we show that as n → ∞ the posterior distribution Π(n)
α,θ

behaves as follows. When P0 is discrete then Π(n)
α,θ converges weakly to a point mass

at P0 a.s. P∞
0 . When P0 is continuous, that is, non-atomic, Π(n)

α,θ converges weakly
to a point mass at the mixture αH + (1 − α)P0. Thus when P0 is discrete/atomic
the posterior distribution is consistent. However, when P0 is non-atomic the poste-
rior distribution is inconsistent, unless either α = 0 which corresponds to the case
of the Dirichlet process, or more implausibly one chooses H = P0. In addition to
this result we establish a functional central limit theorem, for the case where P0

is non-atomic, by showing that the process P
(n)
α,θ centered at its expectation (1.2),

indexed over classes of functions, converges weakly to a Gaussian process. This is in
line with nonparametric Bernstein–Von Mises results of for instance, [31], [30], [28],
[5] and [22]. Additionally, we note that the weak convergence of the two-parameter
Poisson–Dirichlet process may be of interest in other fields. In particular, in order
for us to discuss the posterior weak convergence, when P0 is non-atomic, we will
need to address the weak convergence of the centered process

να,θ+nα(·) =
√

n(Pα,θ+nα − H)(·),

as n → ∞, which poses additional challenges. Note this process does not depend on
the data, except through the sample size n. Furthermore, the study of να,θ+nα is
more in line with the literature on the behavior of Dirichlet processes and Poisson–
Dirichlet sequences when θ → ∞. See, for instance, [21], [7] and [32]. Additionally,
our work is complementary to a recent result of [8] on large deviation principles for
the two-parameter Poisson–Dirichlet process.

Returning to the consistency result, in terms of estimating the true P0 in a non-
parametric statistics setting, our result shows that unlike the case of the Dirichlet
process, it is perhaps unwise to use Πα,θ as a prior. However we should point out
that Ishwaran and James [17, 18], owing to the attractive results in [35], suggested
that one could use Πα,θ in a mixture modeling setting analogous to the case of the
Dirichlet process in Lo [29]. In this more formidable setting one can deduce strong
consistency of the posterior density, induced by the priors Πα,θ on the mixing dis-
tribution, by using the results of Lijoi, Prünster and Walker [25]. In fact, in a work
subsequent to ours, this was recently shown by Jang, Lee and Lee [20]. We also note
that those authors also obtain our consistency result as a special case. For some
more results on the modern treatment of Bayesian consistency in nonparametric
settings one may note, for instance, the works of Ghosal, Ghosh and Ramamoorthi
[11], Barron, Schervish and Wasserman [2] and Ghosal, Ghosh and van der Vaart
[12]; and the book of Ghosh and Ramamoorthi [13].

2. Consistency

This section describes the consistency behavior of the posterior distribution in the
case where the true distribution P0 is either continuous or discrete. First we note
the following fact;

Lemma 2.1. Let f and g denote measurable functions on I, then for 0 ≤ α < 1
and θ > −α,

Eα,θ[P (f)P (g)] =
θ + α

θ + 1
H(g)H(f) +

1 − α

θ + 1
H(fg).
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Proof. The proof proceeds by using disintegrations. First the joint distribution of
(X1, P ) can be written as,

P (dx1)Πα,θ(dP ) = Πα,θ(dP |x1)H(dx1)

where Πα,θ(dP |x1) = Π(1)
α,θ(dP ). Then,

P (dx2)Πα,θ(dP |x1) = Π(2)
α,θ(dP )E[P (dx2)|X1 = x1]

where Π(2)
α,θ(dP ) = Πα,θ(dP |x1, x2) and

E[P (dx2)|X1 = x1] =
θ + α

θ + 1
H(dx2) +

1 − α

θ + 1
δx1(dx2).

Now this gives

Eα,θ[P (dx1)P (dx2)] = H(dx1)
[
θ + α

θ + 1
H(dx2) +

1 − α

θ + 1
δx1(dx2)

]
.

which by writing P (g)P (f) =
∫

I

∫
I
g(x1)f(x2)P (dx1)P (dx2) completes the result.

We proceed as in Diaconis and Freedman[10] by showing that the posterior dis-
tribution concentrates around the prediction rule. First using Diaconis and Freed-
man ([10], p. 1117), we define a suitable class of semi-norms such that convergence
under such norms implies weak convergence. Let A =

⋃∞
i=1 Ai be a partition of I.

Then define the semi-norm between probability measures

(2.1) | P − Q |A=

√√√√ ∞∑
i=1

[P (Ai) − Q(Ai)]
2
,

for a suitable generating sequence of partitions A where, naturally for any Q,∑∞
i=1 Q(Ai) = 1. Now similar to ([10], Equation 14) for the Dirichlet process,

we will show that the posterior distribution concentrates around the prediction
rule (1.2).

In order to do this one only needs to evaluate the posterior expectation, express-
ible as,

(2.2) E
[
| P

(n)
α,θ − E[P (n)

α,θ ] |2A
]

where E[P (n)
α,θ ] equates with the prediction rule probability given in (1.2). We obtain,

Lemma 2.2.
E

[
| P

(n)
α,θ − E[P (n)

α,θ ] |2A
]
≤ 1

θ + n + 1
.

Proof. First using basic ideas we expand, for each set Ai,

(P (n)
α,θ (Ai) − E[P (n)

α,θ (Ai)])
2
.

Furthermore,

(P (n)
α,θ (Ai))2 = R2

n(p)P
2
α,θ+n(p)α(Ai)

+ 2Rn(p)(1 − Rn(p))Pα,θ+n(p)α(Ai)Dn(Ai) + (1 − Rn(p))
2
D2

n(Ai).
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Now from Lemma 2.1

E[P 2
α,θ+n(p)α(Ai)] =

θ + n(p)α + α

θ + n(p)α + 1
H2(Ai) +

1 − α

θ + n(p)α + 1
H(Ai).

Additionally,

E[R2
n(p)] =

(θ + n(p)α)(θ + n(p)α + 1)
(θ + n)(θ + n + 1)

,

E[(1 − Rn(p))
2] =

(n − n(p)α)(n − n(p)α + 1)
(θ + n)(θ + n + 1)

and

E[ΔlΔj ] =
(ej − α)(el − α)

(n − n(p)α)(n − n(p)α + 1)
.

It follows that

E[(P (n)
α,θ (Ai))

2
] =

(θ + n(p)α)(θ + n(p)α + α)
(θ + n)(θ + n + 1)

H2(Ai)

+ 2
(θ + n(p)α)(n − n(p)α)

(θ + n)(θ + n + 1)
F̃n(Ai)H(Ai)

+
(n − n(p)α)2

(θ + n)(θ + n + 1)
F̃ 2

n(Ai).

Now

(E[P (n)
α,θ (Ai)])

2
=

(θ + n(p)α)2

(θ + n)2
H2(Ai)

+ 2
(θ + n(p)α)(n − n(p)α)

(θ + n)2
F̃n(Ai)H(Ai)

+
(n − n(p)α)2

(θ + n)2
F̃ 2

n(Ai).

Taking differences and using the fact that
∑∞

i=1 Fn(Ai)H(Ai) ≤ 1 and similar
arguments completes the result.

Proposition 2.1. If P0 is continuous then the posterior distribution Π(n)
α,θ converges

weakly to point mass at the distribution

αH(·) + (1 − α)P0(·) a.e. P∞
0 .

Hence the posterior is consistent only if either P is a Dirichlet process or H = P0.

Proof. From Lemma 2.2 it follows that the posterior distribution must concentrate
around the prediction rule. Now, under P0 (assuming a continuous P0) the predic-
tion rule becomes,

(2.3) P (Xn+1 ∈ · |X1, . . . , Xn) =
θ + nα

θ + n
H(·) +

n∑
j=1

(1 − α)
θ + n

δXj (·).

It is clear that under P0, that P (Xn+1 ∈ · |X1, . . . , Xn) converges uniformly over
appropriate Glivenko–Cantelli classes to

αH(·) + (1 − α)P0(·)

for almost all sample sequences. One gets this by simple algebra and classical results
about empirical processes (the second term in (2.3)) appropriately modified.
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The previous results says that the posterior distribution is inconsistent for all
non-atomic P0 unless α = 0 or one has chosen H = P0. The behavior in the case
where P0 admits ties is quite different and is summarized in the next result

Proposition 2.2. Suppose that P0 is a discrete law such that n(p)/n → 0 then the
posterior distribution Π(n)

α,θ converges weakly to point mass at P0, a.e. P∞
0 , for all

0 ≤ α < 1 and θ > −α.

Proof. Since, n(p)/n → 0, it follows that

(2.4) P (Xn+1 ∈ · |X1, . . . , Xn) =
θ + n(p)α

b + n
H(·) +

n(p)∑
j=1

(ej − α)
θ + n

δYj (·),

converges uniformly to P0 for almost all sample sequences X1, X2, . . . ,. This is true
since,

n(p)∑
j=1

(ej − α)
θ + n

δYj =
n∑

i=1

1
θ + n

δXi −
n(p)∑
j=1

α

θ + n
δYj

where the second term on the right converges to zero.

2.1. Some more limits

Note that one obtains some information on the limit behavior of the random prob-
ability measure Pα,θ+n(p)α which has law Πα,θ+n(p)α. This type of result is more in
line with large θ type asymptotics. In this case large θ is replaced by large n(p)α.

Proposition 2.3. Suppose that P0 is such that n(p) → ∞, then the two-parameter
Poisson–Dirichlet law Πα,θ+n(p)α converges weakly to point mass at H.

Proof. The proof proceeds by again utilizing the semi-norm in (2.1). We have that
Eα,θ+n(p)α[P ] = H. Furthermore, from Lemma 2.1. the variance of P (A) under
Πα,θ+n(p)α is, for each A, equal to,

1 − α

θ + n(p)α + 1
H(A)(1 − H(A)).

Hence if P has law Πα,θ+n(p)α, then,

Eα,θ+n(p)α

[
|P − H|2A

]
≤ 1 − α

θ + n(p)α + 1
,

completing the result.

3. Bernstein–von Mises and functional central limit theorems

In this section we address the more formidable problem of establishing functional
central limit theorems for centered versions of the two-parameter process. We will
restrict ourselves to the case where P0 is continuous which presents some difficul-
ties. In particular, in that setting, we are interested in the asymptotic behavior in
distribution, as n → ∞, of the posterior process

ν
(n)
α,θ(·) =

√
n(P (n)

α,θ − E[P (n)
α,θ ])(·)
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conditional on the sequence X1, X2, . . ., and the asymptotic behavior of the process,

να,θ+nα(·) :=
√

n(Pα,θ+nα − H)(·),

uniform over classes of functions F . For clarity, we first mention some elements
of the (modern) framework of weak convergence of stochastic processes on general
function indexed Banach spaces. There is a rich literature on this subject, here we
use as references [39], [38], Ch. 10, and [14]. Let F denote a collection of measurable
functions f : I → � and let �∞(F) denote the set of all uniformly bounded real
functions on F . Now for a random probability measure Qn, and the probability
measure defined as its expectation E[Qn] := Q, we consider the maps from F → �
given by the linear functional

f → Qn(f) =
∫

I

f(x)Qn(dx)

and
f → Q(f) =

∫
I

f(x)Q(dx).

Gn(·) =
√

n(Qn−Q)(·) denotes its centered process and let GQ denote a Gaussian
process with zero mean and covariances

(3.1) E[GQ(f)GQ(g)] = Q(fg) − Q(f)Q(g).

A Gaussian process with covariance (3.1) is said to be a Q-Brownian bridge. We will
assume that F possesses enough measurability for randomization and write, as in
([37], p. 2056), F ∈ M(Q). The notation L2(Q) represents the equivalence class of
square integrable functions. Furthermore, a function F (x) such that |f(x)| ≤ F (x)
for all x and f ∈ F is said to be an envelope.

We are interested in the cases where the sequence of processes {Gn(f) : f ∈
F} ∈ �∞(F) converges in distribution to a Gaussian process GQ uniformly over F .
In that case we write

Gn � GQ in �∞(F).

Furthermore, because we are interested in the convergence of posterior distribu-
tions, if Gn depends on data X1, X2 . . ., we will need the more delicate notion of
conditional weak convergence of Gn(·) for almost all sample sequences X1, X2 . . . ,
and we write

Gn � GQ in �∞(F) a.s. .

More formally, one may say that the processes converge in the sense of a bounded
Lipschitz metric outer almost surely (see [14] and [39]).

The rich theory of weak convergence of empirical processes addresses the cases
where Qn = Pn = n−1

∑n
i=1 δXi(·) is the empirical measure, and Q = EP0 [Pn] = P0

is the true underlying distribution of the data. Hence one has,

(3.2)
√

n(Pn − P0) � GP0 in �∞(F)

for many classes of F . The classes are said to be P0-Donsker. The classical case
of the empirical distribution function, Fn(t) =

∑n
i=1 I(Xi≤t)/n arises by setting

ft(x) = I(−∞<x≤t) for t ranging over �; see ([38], Example 19.6).
The most notable results for convergence conditionally on the data, center around

the bootstrap and its exchangeably weighted extensions where

Qn(·) := PW (·) =
∞∑

i=1

WiδXi(·)
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for (Wi) an exchangeable sequence of positive weights summing to 1. In particular,
we will use the following result of ([37],Theorem 2.1),

(3.3)
√

n(PW − Pn) � cGP0 in �∞(F), a.s.

provided that (3.2) holds, P0(F 2) < ∞, and the weights satisfy certain conditions
as given in [37]. The constant c is determined by the weights. The result generalizes
the result of [16] for Efron’s bootstrap empirical measure. In the case of Efron’s
bootstrap and the Bayesian bootstrap c = 1. For results on the real line see [3], [27]
and [33].

As mentioned at the beginning of this section, we will consider the behavior of
the process ν

(n)
α,θ in the case where P0 is continuous. We shall see that we can handle

part of the weak convergence of ν
(n)
α,θ by utilizing results in [37]. This is very much

in the spirit of [27], [26] and [5]. However we will also need to deal with the behavior
of the process να,θ+nα. This process is considerably more challenging to handle as
it is not obviously related to an empirical-type measure. However, in Section 4, we
will exploit an important distributional identity that allows us to treat να,θ+nα, as
a measurelike sum of i.i.d. processes in the sense of [1], [39], Section 2.11.1.1, and
[41]. Throughout we will assume that F ∈ M(H) and that there exist an envelope
F (x) satisfying H(F 2) < ∞.

We shall also have need of the (unconditional) multiplier central limit theorem
on Banach spaces for i.i.d. random variables in the Lorentz L2,1 space, which is
found in [24]. More details may be found in [39] (see also [15] and [14]). A random
variable ξ (see [39], Section 2.9) is said to be in L2,1 if

‖ξ‖2,1 =
∫ ∞

0

√
P (|ξ| > x)dx < ∞.

Finiteness of ‖ξ‖2,1 requires slightly more than a second moment but is implied by
a 2 + ε absolute moment. In our case, the L2,1 condition is easily satisfied as the
variables we shall encounter are gamma random variables having all moments.

3.1. Continuous case

We now address the case of weak convergence of ν
(n)
α,θ when P0 is continuous. Here we

will need to consider the process να,θ+nα. Because, we will not be working strictly
with empirical-type processes, but actually measure-like processes, we will restrict
ourselves to the quite rich class of F that constitute a Vapnik–Chervonenkis graph
class (VCGC) (see for instance [41], p. 239). This avoids the need to otherwise state
uniform entropy-type conditions. We now present the result below for ν

(n)
α,θ . We will

present a partial proof of this result and then address the behavior of να,θ+nα, in
the next section.

Theorem 3.1. Let F be a VCGC subclass of L2(P0) and L2(H) with envelope F

such that P0(F 2) < ∞ and H(F 2) < ∞. For 0 ≤ α < 1, and θ > −α, let ν
(n)
α,θ(·)

denote the posterior, Π(n)
α,θ, process centered at its mean and scaled by

√
n. Then

when P0 is continuous, conditional on the sequence X1, X2, . . . ,

ν
(n)
α,θ �

√
1 − αGP0 +

√
α(1 − α)GH +

√
αÑ(P0 − H) in �∞(F) a.s.

Where GP0 and GH are independent Gaussian processes, independent of Ñ which
is a standard Normal random variable.
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Proof. The process ν
(n)
α,θ is equivalent to

√
n(1 − Rn)(Dn − F̃n) +

√
n(Rn − θ + nα

θ + n
)(H − F̃n) + Rnνα,θ+nα.

Now since P0 is continuous it follows that F̃n equates with the empirical measure
Pn(·) = n−1

∑n
i=1 δXi(·), and Dn = PW where PW has weights

Wi =
G1−α,i∑n
l=1 G1−α,l

where G1−α,i are i.i.d. gamma(1 − α, 1) random variables. Furthermore, Rn is
beta(θ + nα, n(1 − α)) and hence converges in probability to α as n → ∞. So
the first term is asymptotically equivalent to the process

√
n(1 − α)(PW − Pn)

and it follows that the result of ([37], Theorem 2.1) applies. Hence the process,
without the (1 − α) term, satisfies (3.3) with c = 1/

√
1 − α. It is easy to see that

Rn centered by its mean and scaled by
√

n converges to a Normal distribution,
hence the second term converges in distribution to

√
αÑ(H−P0). Finally, the limit

of να,θ+nα will be verified in the next section.

4. Asymptotic behavior of a Poisson–Dirichlet (α, θ + nα) process

In this last section we establish the weak convergence of the process να,θ+nα.
Since Pα,θ+nα is closely associated with various properties of Brownian and Bessel
processes we expect that this result will be of interest in those settings. The es-
tablishment of this result requires a few non-trivial maneuvers as Pα,θ+nα does
not appear to have any similarities to an empirical process. We first establish an
important distributional identity

Proposition 4.1. Let Pα,θ+nα denote a random probability measure with law
Πα,θ+nα, then

Pα,θ+nα(·) d=
Gθ

Gθ+nα
Pα,θ(·) +

n∑
i=1

Gα,i

Gθ+nα
P (i)

α,α(·)

where P
(i)
α,α are i.i.d. Πα,α random probability measures independent of Gθ, (Gα,i),

where Gα,i are i.i.d. gamma(α, 1) random variables, Gθ is gamma(θ, 1), independent
of (Gα,i) and Gθ+nα = Gθ +

∑n
i=1 Gα,i.

Proof. It is enough to establish this result for Pα,θ+nα(g), for an arbitrary bounded
measurable function g. The result follows by noting that for any θ > 0,

E[e−λGθPα,θ(g)] =
[∫

I

(1 + λg(x))α
H(dx)

]−θ/α

which is equivalent to the Cauchy–Stieltjes transform of order θ of Pα,θ(g), whose
form was obtained by [40]. It follows that,

E[e−λGθ+nαPα,θ+nα(g)] =
[∫

I

(1 + λg(x))α
H(dx)

]−θ/α−n
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which is the same as

E[e−λGθPα,θ(g)]
n∏

i=1

E[e−λGα,iP
(i)
α,α(g)].

Thus we can conclude that

Gθ+nαPα,θ+nα
d= GθPα,θ +

n∑
i=1

Gα,iP
(i)
α,α(·).

Now, using the fact that Gθ+nα = Gθ +
∑n

i=1 Gα,i is gamma(θ + nα, 1), it follows
using the calculus of beta and gamma random variables that

Gθ+nαPα,θ+nα(·) d= Gθ+nα

[
Gθ

Gθ+nα
Pα,θ(·) +

n∑
i=1

Gα,i

Gθ+nα
P (i)

α,α(·)
]

where on the right hand side, Gθ+nα is independent of the term in brackets. Now we
use the fact that gamma random variables are simplifiable to conclude the result.
See Chaumont and Yor ([6], Sections 1.12 and 1.13) for details on simplifiable
random variables.

Proposition 4.1 now allows us to write

να,θ+nα =
√

n
Gθ

Gθ+nα
Pα,θ(·) +

√
n

∑n
i=1 Gα,i

Gθ+nα

n∑
i=1

Gα,i∑n
i=1 Gα,i

P (i)
α,α(·) −

√
nH(·).

Additionally one has for θ > 0, the covariance formula

cov(
Gθ

θ
(Pα,θ − H)(f),

Gθ

θ
(Pα,θ − H)(g)) =

1 − α

θ
[H(fg) − H(f)H(g)],

which follows from Lemma 2.1. Using these points we obtain the next result.

Theorem 4.1. Let F be a VCGC subclass of L2(H) with envelope F such that
H(F 2) < ∞. Let, for 0 < α < 1 and θ > −α, Pα,θ+nα denote the random
probability measure with Poisson–Dirichlet law Πα,θ+nα, and define να,θ+nα(·) :=√

n(Pα,θ+nα − H)(·). Then as n → ∞,

να,θ+nα �
√

1 − α√
α

GH in �∞(F).

Proof. The key to this result is of course Proposition 4.1, which allows us to express
να,θ+nα, in terms of i.i.d. processes P

(i)
α,α having mean H and variance for each A,

as
1 − α

1 + α
H(A)[1 − H(A)].

In particular, it follows that the asymptotic distributional behavior of να,θ+nα is
equivalent to that of

√
n

n∑
i=1

Gα,i∑n
j=1 Gα,i

(P (i)
α,α − H)(·).

Appealing, again, to the law of large numbers we may instead use the process

1√
n

n∑
i=1

Gα,i

α
(P (i)

α,α − H)(·)
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which decomposes into the sum of two asymptotically independent pieces,

1√
n

n∑
i=1

(
Gα,i

α
− 1)(P (i)

α,α − H)(·) +
1√
n

n∑
i=1

(P (i)
α,α − H)(·).

The second term is a measure-like process in the sense of [1] and [39], Section
2.11.1.1. However since we have chosen the class to be VCGC, convergence of this
process follows by using arguments similar to that in [41], Section 7.8. The first term
then converges by the multiplier CLT in Banach spaces ([24] or [23], Proposition
10.4).

4.1. Dirichlet process asymptotics for θ → ∞

The next result describes weak convergence of a centered Dirichlet process as θ →
∞.

Theorem 4.2. Let F be a VCGC subclass of L2(H) with envelope F such that
H(F 2) < ∞. Let, for θ > 0, P0,θ denote a Dirichlet Process with law Π0,θ, having
mean H, and define τθ(·) :=

√
θ(P0,θ − H)(·). Assume without loss of generality

that θ = nκ, for κ a fixed positive number. Then as n → ∞,

τθ � GH in �∞(F),

where GH is a H-Brownian bridge. Furthermore the limit does not depend on κ.

Proof. By an argument similar to Proposition 4.1, one can write

GθP0,θ
d=

n∑
i=1

Gκ,iP
(i)
0,κ.

Hence τθ is asymptotically equivalent to

√
κ√
n

n∑
i=1

(
Gκ,i

κ
− 1

)
(P (i)

0,κ − H)(·) +
√

κ√
n

n∑
i=1

(P (i)
0,κ − H)(·).

The result then follows analogous to Theorem 4.1.
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