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and Chung Yuan Christian University, Taiwan

Abstract: Shape restricted regressions, including isotonic regression and con-
cave regression as special cases, are studied using priors on Bernstein polynomi-
als and Markov chain Monte Carlo methods. These priors have large supports,
select only smooth functions, can easily incorporate geometric information into
the prior, and can be generated without computational difficulty. Algorithms
generating priors and posteriors are proposed, and simulation studies are con-
ducted to illustrate the performance of this approach. Comparisons with the
density-regression method of Dette et al. (2006) are included.

1. Introduction

Estimation of a regression function with shape restriction is of considerable interest
in many practical applications. Typical examples include the study of dose response
experiments in medicine and the study of utility functions, product functions, profit
functions and cost functions in economics, among others. Starting from the classic
works of Brunk [4] and Hildreth [17], there exists a large literature on the problem
of estimating monotone, concave or convex regression functions. Because some of
these estimates are not smooth, much effort has been devoted to the search of
a simple, smooth and efficient estimate of a shape restricted regression function.
Major approaches to this problem include the projection methods for constrained
smoothing, which are discussed in Mammen et al. [24] and contain smoothing splines
methods and kernel and local polynomial methods and others as special cases, the
isotonic regression approach studied by Mukerjee [25], Mammen [22, 23] and others,
the tilting method proposed by Hall and Huang [16], and the density-regression
method proposed by Dette, Neumeyer and Pilz [11]. We note that both of the last
two methods enjoy the same level of smoothness as the unconstrained counterpart
and are applicable to general smoothing methods. Besides, the density-regression
method is particularly computationally efficient and has a wide applicability. In
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fact, the density-regression method was used to provide an efficient and smooth
convex estimate for convex regression by Birke and Dette [3].

This paper studies a nonparametric Bayes approach to shape restricted regres-
sion where the prior is introduced by Bernstein polynomials. This prior features
the properties that it has a large support, selects only smooth functions, can eas-
ily incorporate geometric information into the prior, and can be generated without
computational difficulty. We note that Lavine and Mockus [18] also discussed Bayes
methods for isotonic regression, but the prior they use is a Dirichlet process, whose
sample paths are step functions. In addition to the above desirable properties,
our approach can be applied to quite general shape restricted statistical inference
problems, although we consider mainly isotonic regression and concave (convex) re-
gression in this paper. To facilitate the discussion, we first introduce some notations
as follows.

For integers 0 ≤ i ≤ n, let ϕi,n(t) = Cn
i ti(1 − t)n−i, where Cn

i = n!/(i!(n − i)!).
{ϕi,n | i = 0, . . . , n} is called the Bernstein basis for polynomials of order n. Let
Bn = R

n+1 and B =
⋃∞

n=1({n} × Bn). Let π be a probability measure on B. For
τ > 0, we define F : B × [0, τ ] −→ R

1 by

F(n, b0,n, . . . , bn,n, t) =
n∑

i=0

bi,nϕi,n(
t

τ
), (1.1)

where (n, b0,n, . . . , bn,n) ∈ B and t ∈ [0, τ ]. We also denote (1.1) by Fbn(t) if bn =
(b0,n, . . . , bn,n). The probability measure π is called a Bernstein prior, and F is
called the random Bernstein polynomial for π. It is a stochastic process on [0, τ ]
with smooth sample paths. Important references for Bernstein polynomials include
Lorentz [20] and Altomare and Campiti [2], among others. It is well-known that
Bernstein polynomials are popular in curve design (Prautzsch et al. [28]).

Bernstein basis have played important roles in nonparametric curve estimation
and in Bayesian statistical theory. Good examples of the former include Tenbusch
[31] and some of the references therein. For the latter, we note that Beta density
β(x; a, b) = xa−1(1 − x)b−1/B(a, b) is itself a Bernstein polynomial and mixtures
of Beta densities of the kind

∑n
j=1 wjβ(x; aj , bj), where wj ≥ 0 are random with∑n

j=1 wj = 1, were used to introduce priors that only select smooth density func-
tions on [0, 1]; see Dalal and Hall [8], Diaconis and Ylvisaker [9], and Mallik and
Gelfand [21], and references therein. We also note that Petrone [26] and Petrone
and Wasserman [27] studied priors on the set of distribution functions on [0, 1] that
are specified by

∑n
i=0 F̃ (i/n)ϕi,n(t) with F̃ being a Dirichlet process; this prior was

referred to as a Bernstein-Dirichlet prior.
For a continuous function F on [0, τ ],

∑n
i=0 F (iτ/n)ϕi,n(t/τ) is called the n-th

order Bernstein polynomial of F on [0, τ ]. We will see in Section 2 that much of
the geometry of F is preserved by its Bernstein polynomials and very much of
the geometry of a Bernstein polynomial can be read off from its coefficients. This
together with Bernstein-Weierstrass approximation theorem suggests the possibility
of a Bernstein prior on a space of functions with large enough support and specific
geometric properties. These ideas were developed in Chang et al. [7] for Bayesian
inference of a convex cumulative hazard with right censored data.

The purpose of this paper is to indicate that the above ideas are also useful in
the estimation of shape restricted regressions. The regression model we consider in
this paper assumes that given Fbn satisfying certain shape restriction,

Yjk = Fbn(Xk) + εjk,
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where Xk are design points, Yjk are response variables and εjk are errors.
We will investigate isotonic regression and concave (convex) regression in some

detail. In particular, we will examine the numerical performance of this approach
and offer comparison with the newly-developed density-regression method of Dette
et al. [11] in simulation studies. We also indicate without elaboration that this
approach can also be used to study regression function that is smooth and unimodal
or that is smooth and is constantly zero initially, then increasing for a while, and
finally decreasing. We note that the latter can be used to model the time course
expression level of a virus gene, as discussed in Chang et al. [5]; a virus gene typically
starts to express after it gets into a cell and its expression level is zero initially,
increases for a while and then decreases.

That it is very easy both to generate the prior and the posterior for inference
with Bernstein prior is an important merit of this approach. Because the prior
is defined on the union of subspaces of different dimension, we adapt Metropolis-
Hastings reversible jump algorithm (MHRA) (Green [15]) to calculate the posterior
distributions in this paper.

This paper is organized as follows. Section 2 introduces the model, provides
statements that exemplify the relationship between the shape of the graph of (1.1)
and its coefficients b0, . . . , bn, and gives conditions under which the prior has full
support with desired geometric peoperties. Section 3 illustrates the use of Bernstein
priors in conducting Bayesian inference; in particular, suitable Bernstein priors are
introduced for isotonic regression and unimodal concave (convex) regression, and
Markov chain Monte Carlo approaches to generate posterior are proposed. Section
4 provides simulation studies to compare our methods with the density-regression
method. Section 5 is a discussion on possible extensions.

2. The Bernstein priors

2.1. Bernstein polynomial geometry

Let Fa(t) =
∑n

i=0 aiϕi,n(t/τ). This subsection presents a list of statements concern-
ing the relationship between the shape of Fa and its coefficients a0, . . . , an. This list
extends that in Chang et al. [7] and is by no means complete; similar statements
can be made for a monotone and convex or a monotone and sigmoidal function, for
example. They are useful in taking into account the geometric prior information for
regression analysis.

Proposition 1. (i) (Monotone) If a0 ≤ a1 ≤ · · · ≤ an, then F ′
a(t) ≥ 0 for every

t ∈ [0, τ ].
(ii) (Unimodal Concave) Let n ≥ 2. If a1−a0 > 0, an−an−1 < 0, and ai+1+ai−1 ≤

2ai, for every i = 1, . . . , n − 1, then F ′
a(0) > 0, F ′

a(τ) < 0, and F ′′
a (t) ≤ 0 for

every t ∈ [0, τ ].
(iii) (Unimodal) Let n ≥ 3. If a0 = a1 = · · · = al1 < al1+1 ≤ al1+2 ≤ · · · ≤ al2

and al2 ≥ al2+1 ≥ · · · ≥ al3 > al3+1 = · · · = an for some 0 ≤ l1 < l2 <
l3 ≤ n, then there exists s ∈ (0, τ) such that s is the unique maximum point
of Fa and Fa is strictly increasing on [0, s] and strictly decreasing on [s, τ ].
Furthermore,if l1 > 0, then F

(i)
a (0) = 0 for i = 1, . . . , l1, and if l3 < n − 1,

then F
(i)
a (τ) = 0 for i = 1, . . . , n − l3 − 1.

In this paper, derivatives at 0 and τ are meant to be one-sided. We note that,
in Proposition 1, (ii) provides a sufficient condition under which Fa is a unimodal
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concave function and (iii) provides a sufficient condition under which Fa is a uni-
modal smooth function whose function and derivative values at 0 and τ may be
prescribed to be 0. Let Fa satisfy (iii) with τ = 1 and l1 > 1, and let F be defined
by F (t) = Fa(t − τ1/τ − τ1)I(τ1,τ ](t) for some τ1 ∈ (0, τ), then F is a non-negative
smooth function on [0, τ ] and it is zero initially for a while, then increases, and
finally decreases. As we mentioned earlier, functions with this kind of shape restric-
tion are useful in the study of time course expression profile of a virus gene. We note
that the results presented here are for concave regressions or unimodal regressions
and similar results hold for convex regressions.

Proof. Without loss of generality, we assume τ = 1. Noting that the derivatives
F ′

a(t) = n
∑n−1

i=0 (ai+1 − ai)ϕi,n−1(t) and F ′′
a (t) = n(n − 1)

∑n−2
i=0 (ai+2 − 2ai+1 +

ai)ϕi,n−2(t), we obtain (i) and (ii) immediately. We now prove (iii) for the case
l1 = 1 and l3 = n − 1; the proofs for other cases are similar and hence omitted.

Let ϕ(x) =
∑n−1

i=0 Cn−1
i (ai+1 − ai)xi, then F ′

a(t) = n(1 − t)n−1ϕ( t
1−t ). Using

a0 = a1 < a2 ≤ · · · ≤ al and al ≥ al+1 ≥ · · · ≥ an−1 > an, we know ϕ is
a polynomial whose number of sign changes is exactly one. This together with
Descartes’ sign rule (Anderson et al. [1]) implies that ϕ has at most one root in
(0,∞), and hence, F ′

a has at most one root in (0, 1).
Using a0 = a1 and a2 − a1 > 0, we know F ′

a(ε) > 0 for ε being positive and
small enough. This combined with F ′

a(1) = n(an − an−1) < 0 shows that F ′
a has

at least one root in (0, 1). Thus, F ′
a has exactly one root s in (0, 1), and F ′

a is
positive on (0, s) and negative on (s, 1]. Therefore, the conclusion of (iii) follows.
This completes the proof.

The following proposition complements Proposition 1 and provides Bernstein-
Weierstrass approximations for functions with specific shape restrictions.

Let I
(1)
n = {Fa | a ∈ Bn, a0 ≤ a1 ≤ · · · ≤ an}, I

(2)
n = {Fa | a ∈ Bn, a1 − a0 >

0, an − an−1 < 0, ai+1 + ai−1 ≤ 2ai, for i = 1, . . . , n − 1}, and I
(3)
n = {Fa | a ∈

Bn, a0 = a1 < a2 ≤ · · · ≤ al, al ≥ al+1 ≥ · · · ≥ an−1 > an, for some l = 2, . . . , n −
1}. Then we have

Proposition 2. (i) (Monotone) Let D1 consist of linear combinations of ele-
ments in

⋃∞
n=1 I

(1)
n , with non-negative coefficients. Then the closure of D1 in

uniform norm is precisely the set of increasing and continuous functions on
[0, τ ].

(ii) (Unimodal Concave) Let D2 consist of linear combinations of elements in⋃∞
n=2 I

(2)
n , with non-negative coefficients. Let S denote the set of all contin-

uously differentiable real-valued functions F defined on [0, τ ] with F ′(0) ≥ 0,
F ′(τ) ≤ 0, and F ′ decreasing. For two continuously differentiable functions f
and g, define d(f, g) = ‖f − g‖∞ + ‖f ′ − g′‖∞, where ‖ · ‖∞ is the sup-norm
for functions on [0, τ ]. Then the closure of D2, under d, is S.

(iii) (Unimodal) Let D3 =
⋃∞

n=3 I
(3)
n . Let S denote the set of all continuously

differentiable real-valued functions F defined on [0, τ ] satisfying the properties
that F ′(0) = 0 and that there exists s ∈ [0, τ ] such that F ′(s) = 0, F ′(x) ≥ 0
for x ∈ [0, s], and F ′(x) ≤ 0 for x ∈ [s, τ ]. For two continuously differentiable
functions f and g, define d(f, g) = ‖f − g‖∞ + ‖f ′ − g′‖∞, where ‖ · ‖∞ is
the sup-norm for functions on [0, τ ]. Then the closure of D3, under d, is S.

Proof. We give the proofs for (i) and (ii), and omit the proof for (iii), because it is
similar to that for (ii).
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(i) It is obvious to see that the closure of D1 is contained in the set of increasing
and continuous functions. We now prove the converse. Let F be increasing and con-
tinuous. Taking ai = F (iτ/k), for i = 0, 1, . . . , k, we set F(k)(t) =

∑k
i=0 aiϕi,k(t/τ).

Then F(k) is in D1. It follows from Bernstein-Weierstrass approximation theorem
that F(k) converges to F uniformly. This completes the proof.

(ii) It follows from (ii) in Proposition 1 that D2 ⊂ S. Because S is complete
relative to d, we know D2 ⊂ S. Here D2 is the closure of D2. We now prove S ⊂ D2.

Let F ∈ S. Let d0 = F ′(0) + 1/n3, dn−1 = F ′(τ) − 1/n3, di = F ′(iτ/(n − 1)),
for i = 1, . . . , n − 2, and H1,n(t) =

∑n−1
i=0 diϕi,n−1(t/τ). Note that H1,n(0) > 0,

H1,n(τ) < 0. Using Bernstein-Weierstrass Theorem, we know H1,n converges to F ′

uniformly.
Let a0 = F (0)n/τ , ai = a0 + d0 + · · ·+ di−1, H0,n(t) = (τ/n)

∑n
i=0 ai ϕi,n(t/τ).

Then H ′
0,n(t) = H1,n(t) and H0,n(0) = F (0). Thus H0,n converges uniformly to F

(See, for example, Theorem 7.17 in Rudin [30]).
Using the fact that di is a decreasing sequence with d0 > 0, dn−1 < 0, and

ai+2 − 2ai+1 + ai = di+1 − di,

we know a1 − a0 > 0, an − an−1 < 0 and ai+2 + ai ≤ 2ai+1. Thus H0,n is in D2.
This shows that F is in D2. This completes the proof.

2.2. Bayesian regression

We now describe a Bayesian regression model with the prior distribution, on the
regression functions, introduced by random Bernstein polynomials (1.1).

Assume that on a probability space (B × R
∞,F ,P), there are random variables

{Yjk | j = 1, . . . , mk; k = 1, . . . , K} satisfying the property that, conditional on
B = (n, bn),

Yjk = Fbn(Xk) + εjk, (2.1)

with {εjk | j = 1, . . . ,mk; k = 1, . . . ,K} being independent random variables, εjk

having known density gk for j = 1, . . . , mk, B being the projection from B × R
∞

to B, Fbn being the function on [0, τ ] associated with (n, bn) ∈ B defined in (1.1),
X1, . . . , XK being constant design points, F being the Borel σ−field on B × R

∞.
We also assume the marginal distribution of P on B is the prior π.

Our purpose is to illustrate a Bayesian regression method and the above math-
ematical formulation is only meant to facilitate an simple formal presentation. In
fact, P is constructed after the prior and the likelihood are specified. A natural way
to introduce the prior π is to define π(n, bn) = p(n)πn(bn), with

∑∞
n=1 p(n) = 1

and πn a density function on Bn; in fact, πn(·) is the conditional density of π on
Bn and also denoted by π(· | {n} × Bn). Given B = (n, bn), the likelihood for the
data {(Xk, Yjk) | j = 1, . . . ,mk; k = 1, . . . , K} is

K∏
k=1

mk∏
j=1

gk(Yjk − Fbn(Xk)).

Thus the posterior density ν of the parameter (n, bn) given the data is propor-
tional to

K∏
k=1

mk∏
j=1

gk(Yjk − Fbn(Xk))πn(bn)p(n),
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where (n, bn) ∈ B. We note that, although we assume gk is known in this paper,
the method of this paper can be extended to treat the case that gk has certain
parametric form with priors on the parameters.

2.3. Support of Bernstein priors

The following propositions show that the support of the Bernstein priors can be
quite large.

Proposition 3. (Monotone) Let B
(1)
n = {bn ∈ Bn : Fbn ∈ I

(1)
n }. Assume p(n) > 0

for n = 1, 2, . . . , and the conditional density πn(b0,n, b1,n, . . . , bn,n) of π(· | {n} ×
B

(1)
n ) has support B

(1)
n for infinitely often n. Let F be a given increasing and contin-

uous function on [0, τ ]. Then π{(n, bn) ∈
⋃∞

n=2({n}×B
(1)
n ) : ‖Fbn −F‖∞ < ε} > 0

for every ε > 0.

Proof. Let F(n)(t) =
∑n

i=0 F (iτ/n)ϕi,n(t/τ). Using Bernstein-Weierstrass Theo-
rem, we can choose a large n1 so that ‖F(n1) − F‖∞ ≤ ε/2, P (n1) > 0, and
π(· | {n1} × B

(1)
n1 ) > 0 has support B

(1)
n1 . Combining this with ‖Fbn − F(n)‖∞ ≤

maxi=0,...,n{| bi,n − F (iτ/n) |} for bn ∈ Bn, we get

π{(n, bn) ∈ B : ‖Fbn − F‖∞ < ε}
≥ π{(n1, bn1) ∈ B : ‖Fbn1

− F(n1)‖∞ <
ε

2
}

≥ π{(n1, bn1) ∈ {n1} × B(1)
n1

: max
i=0,...,n1

|bi,n1 − F (
iτ

n1
)| <

ε

2
},

which is positive. This completes the proof.

Remarks. If we know c1 < F (τ) < c0, then it suffices to assume πn has support
{(b0,n, . . . , bn,n) ∈ B

(1)
n | c1 ≤ b0,n, bn,n ≤ c0} in Proposition 3. Statements similar

to Proposition 3 can also be made for concave functions. In fact, we have

Proposition 4. (Unimodal Concave) Let B
(2)
n = {bn ∈ Bn : Fbn ∈ I

(2)
n }. Assume

p(n) > 0 for n = 1, 2, . . . , and the conditional density πn(b0,n, b1,n, . . . , bn,n) of
π(·| {n} × B

(2)
n ) has support B

(2)
n for infinitely often n. Let F be a continuously

differentiable real-valued function defined on [0, τ ] with F ′(0) ≥ 0, F ′(τ) ≤ 0, and
F ′ decreasing. Then π{(n, bn) ∈

⋃∞
n=2({n}×B

(2)
n ) : ‖Fbn −F‖∞ + ‖F ′

bn
−F ′‖∞ <

ε} > 0 for every ε > 0.

Proposition 5. (Unimodal) Let B
(3)
n = {bn ∈ Bn : Fbn ∈ I

(3)
n }. Assume p(n) > 0

for n = 1, 2, . . . , and the conditional density πn(b0,n, b1,n, . . . , bn,n) of π(·| {n} ×
B

(3)
n ) has support B

(3)
n for infinitely often n. Let F be a continuously differentiable

real-valued function defined on [0, τ ] satisfying the properties that F ′(0) = 0 and that
there exists s ∈ (0, τ) such that F ′(s) = 0, F ′(x) ≥ 0 for x ∈ [0, s], and F ′(x) ≤ 0 for
x ∈ [s, τ ]. Then π{(n, bn) ∈

⋃∞
n=2({n}×B

(3)
n ) : ‖Fbn−F‖∞+‖F ′

bn
−F ′‖∞ < ε} > 0

for every ε > 0.

3. Bayesian inference

Instead of defining priors explicitly, we propose algorithms to generate samples from
the Bernstein priors that incorporate geometric information. We also propose algo-
rithms for generating posterior distributions so as to do statistical inference. We con-
sider only isotonic regression and unimodal concave (convex) regression in the rest
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of this paper, because we want to compare our method with the density-regression
method. Algorithms 1, 2 and 3 respectively generate prior for isotonic regression,
unimodal concave regression and unimodal convex regression. Both Algorithm 4, an
independent Metropolis algorithm (IMA), and Algorithm 5, a Metropolis-Hastings
reversible jump algorithm (MHRA), can be used to generate posterior for isotonic
regression. Algorithms generating posterior for unimodal concave (convex) regres-
sion can be similarly proposed; they are omitted to make the paper more concise.

Algorithm 1. (Bernstein isotonic prior)
Let p(1) = e−α + αe−α, p(n) = αne−α/n! for n = 2, . . . , n0 − 1, and p(n0) =

1 −
∑n0−1

n=1 p(n). Let q1 be a density so that its support contains F (0). Let q2 be
a density so that its support contains F (τ). The following steps provide a way to
sample from an implicitly defined prior distribution.

1. Generate n ∼ p.
2. Generate a0 ∼ q1, an ∼ q2.
3. Let U1, U2, . . . , Un−1 be a random sample from Uniform(a0, an). Let U(1),

U(2),. . . ,U(n−1) be the order statistics of {U1, U2, . . . , Un−1}. Set a1 = U(1),
a2 = U(2), . . . , an−1 = U(n−1).

4. (n, a0, . . . , an) ∈ B is a sample from the prior.

Algorithm 2. (Bernstein concave prior)
Let p(2) = (1 + α)e−α + α2e−α/2, p(n) = αne−α/n! for n = 3, . . . , n0 − 1, and

p(n0) = 1−
∑n0−1

n=2 p(n). Let q be a density with its support containing the mode of
the regression function. Let β1 be a lower bound of F (0). Let β2 be a lower bound
of F (τ). The algorithm has the following steps.

1. Generate n ∼ p.
2. Randomly choose l from {1, 2, . . . , n − 1}.
3. Generate al ∼ q.
4. Generate a0 ∼ Uniform(−al + 2β1, al) and an ∼ Uniform(−al + 2β2, al).
5. Let U1 ≤ U2 ≤ · · · ≤ Ul−1 be the order statistics of a random sample from

Uniform(a0, al). Denote by c1 ≤ c2 ≤ · · · ≤ cl the order statistics of {al −
Ul−1, Ul−1 −Ul−2, . . . , U2 −U1, U1 −a0}. Then set a1 = a0 + cl, a2 = a0 + cl +
cl−1, . . . , al−1 = a0 + cl + · · · + c2.

6. Let V1 ≤ V2 ≤ · · · ≤ Vn−l−1 be the order statistics of a random sample
from Uniform(an, al). Denote by c′1 ≤ c′2 ≤ · · · ≤ c′n−l the order statistics
of {al − Vn−l−1, Vn−l−1 − Vn−l−2, . . . , V2 − V1, V1 − an}. Then set al+1 =
al − c′1, al+2 = al − c′1 − c′2, . . . , an−1 = al − c′1 − · · · − c′n−l−1.

In the above algorithms, the conditional distributions of π(· | {n} × Bn) are de-
fined to be those of (a0, a1, . . . , an). Although these two algorithms might look a
little ad hoc, the main idea is to produce random sequence a0, a1, . . . , an satisfying
conditions in the propositions in Section 2. It is obvious that a0 ≤ a1 ≤ · · · ≤ an

in Algorithm 1 and that a1 − a0 > 0, an − an−1 < 0, and ai+2 + ai ≤ 2ai+1 in Al-
gorithm 2. It follows from Proposition 1 that the support of the prior generated by
Algorithm 1 (Algorithm 2) contains only monotone (unimodal concave) functions.
The following Algorithm 3 will be used in the simulation study.

Algorithm 3. (Bernstein convex prior)
Let p(2) = (1 + α)e−α + α2e−α/2, p(n) = αne−α/n! for n = 3, . . . , n0 − 1,

and p(n0) = 1 −
∑n0−1

n=2 p(n). Let q be a density with its support containing the
minimum value of the regression function. Let β1 be a upper bound of F (0), and
β2 be a upper bound of F (τ). The algorithm has the following steps.
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1. Generate n ∼ p.
2. Randomly choose l from {1, 2, . . . , n − 1}.
3. Generate al ∼ q.
4. Generate a0 ∼ Uniform(al, 2β1 − al) and an ∼ Uniform(al, 2β2 − al).
5. Let U1 ≤ U2 ≤ · · · ≤ Ul−1 be the order statistics of a random sample from

Uniform(al, a0). Denote by c1 ≤ c2 ≤ · · · ≤ cl the order statistics of {a0 −
Ul−1, Ul−1 −Ul−2, . . . , U2 −U1, U1 − al}. Then set a1 = a0 − cl, a2 = a0 − cl −
cl−1, . . . , al−1 = a0 − cl − · · · − c2.

6. Let V1 ≤ V2 ≤ · · · ≤ Vn−l−1 be the order statistics of a random sample
from Uniform(al, an). Denote by c′1 ≤ c′2 ≤ · · · ≤ c′n−l the order statistics
of {an − Vn−l−1, Vn−l−1 − Vn−l−2, . . . , V2 − V1, V1 − al}. Then set al+1 =
al + c′1, al+2 = al + c′1 + c′2, . . . , an−1 = al + c′1 + · · · + c′n−l−1.

Algorithm 4. (IMA for the posterior in isotonic regression)
This algorithm uses the independent Metropolis approach (see, for example,

Robert and Casella [29], page 276) to calculate the posterior distribution ν of (n, b).
Let x = (n, a0, . . . , an) be generated by the prior. We describe the transition from
the current state x(t) = (n′, a′

0, . . . , a
′
n′) to a new point x(t+1) by

x(t+1) =


x, with prob. min

{
1,

ν(x)πn′(a′
0, . . . , a

′
n′)p(n′)

ν(x(t))πn(a0, . . . , an)p(n)

}
,

x(t), o.w.

The posterior distribution ν of (n, a) in turn produces the posterior distribution of
Fa, and the Bayes estimate we consider is the mean of Fa.

Algorithm 5. (MHRA for the posterior in isotonic regression)
Let B(n) = {(n, a0, . . . , an) | (a0, . . . , an) ∈ B

(1)
n }. Let x(t) = (n, a0, . . . , an) ∈

B(n) be the current state. We describe the transition from x(t) ∈ B(n) to a new
point x(t+1) by the following algorithms.

Randomly select one of three types of moves H, H+, or H−. Here H is a tran-
sition of element in B(n), H+ a transition of element from B(n) to B(n+1), and
H− a transition of element from B(n) to B(n−1), respectively. Denote by Pn

H ,
Pn

H+ and Pn
H− the probabilities of selecting the three different types of moves

H, H+ and H− when the current state of the Markov chain is in B(n). We set
P 1

H− = Pn0
H+ = 0. Consider Pn

H = 1 − Pn
H+ − Pn

H− , Pn
H+ = c min{1, p(n+1)

p(n) } and

Pn
H− = c min{1, p(n−1)

p(n) }, where p is given in Algorithm 1 and c is a sample para-
meter. Suppose M1 ≤ F ≤ M2.
If the move of type H is selected, then

1. select k randomly from {0, 1, 2, . . . , n} so that there is 1/3 probability of
choosing 0 or n and 1/3(n − 1) probability of choosing any one of the rest;
generate V ∼ Uniform(ck−1, ck+1), with c−1 = M1, cn+1 = M2, and ck = ak

for k = 1, . . . , n;
2. let y(t) be the vector x(t) with ak replaced by V ;
3. set the next state

x(t+1) =


y(t), with prob. ρ = min{1,

ν(y(t))
ν(x(t))

},

x(t), o.w.

If the move of type H+ is selected, then
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1. generate V ∼ Uniform(a0, an) and assume ak ≤ V < ak+1;
2. let y(t) = (n + 1, a0, a1, . . . , ak, V, ak+1, . . . , an) ∈ B(n+1);
3. set the next state

x(t+1) =


y(t), with prob. ρ = min{1,

ν(y(t)) × p(n) × (an − a0)
ν(x(t)) × p(n + 1) × (n)

},

x(t), o.w.

If the move of type H− is selected, then

1. select k uniformly from {1, 2, . . . , n − 1};
2. let y(t) = (n − 1, a0, a1, . . . , ak−1, ak+1, . . . , an) ∈ B(n−1);
3. set the next state

x(t+1) =


y(t), with prob. ρ = min{1,

ν(y(t)) × p(n) × (n − 1)
ν(x(t)) × p(n − 1) × (an − a0)

},

x(t), o.w.

4. Numerical studies

We now explore the numerical performance of the Bayes methods in this paper.
Viewing the posterior as a distribution on regression functions, we can use the
posterior mean F̂ of the regression functions as the estimate; namely,

F̂ (t) =
1
m

m∑
j=1

Fb(j)(t),

where m is a large number, and b(1), b(2), . . . are chosen randomly according to the
posterior distribution. The performance of F̂ is evaluated by the L1-norm, sup-norm
and mean square error (MSE) of F̂ − F, as a function on [0, 1]. Here F denotes
the true regression function. We note that, in the studies of isotonic regression
and concave (convex) regression, F̂ is a reasonable estimate because monotonicity
and concavity (convexity) are preserved by linear combination with non-negative
coefficients, and when studying other shape restricted regression, it might be more
appropriate to use posterior mode as the estimate.

Numerical studies in this section include comparison between our method and
the density-regression method. In order to make the comparison more convincing,
we study in this section both isotonic regression and convex regression, instead of
concave regression, because they are studied by Dette and coauthors.

In this section, τ = 1; K = 100; X1, X2, . . . , X100 are i.i.d. from Uniform(0, 1);
mk = 1 for every k = 1, 2, . . . , 100; gk is Normal(0, σ2) with σ = 0.1 or 1 in the
data generation. When carrying out inference, σ is estimated from the data.

4.1. Isotonic regression

Our simulation studies suggest that compared with the density-regression method
of Dette et al. [11], our method performs comparably when the noise is large and
better when the noise is small. We studied all the regression functions in Dette et
al. [11], Dette and Pilz [12], and Dette [10], and all the results are similar; hence,
we only report the results for two of the regression functions, which are defined by

F<1>(t) = sin(
Π

2
t), (4.1)
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F<2>(t) =




2t for t ∈ [0, 0.25],
0.5 for t ∈ [0.25, 0.75],
2t − 1 for t ∈ [0.75, 1].

(4.2)

We note that these are not polynomials and our method usually performs bet-
ter for polynomials. We also note that the notation Π in (4.1) is the ratio of the
circumference of a circle to its diameter.

We use Algorithm 1 with n0 = 20, α = 10, q1 ∼ Uniform(q11, q12), q2 ∼
Uniform(q21, q22) to generate the prior distribution. Here q11, q12, q21 and q22

are defined as follows. Let X(1) < X(2) < · · · < X(100) be the order statistics
for {X1, X2, . . . , X100}. Let Y[i] = Yj if X(i) = Xj . Then q11 = min{Y[i] | i =
1, 2, . . . , 10}, q12 = q21 = 1

100

∑100
i=1 Yi and q22 = max{Y[i] | i = 91, 92, . . . , 100}. We

note that the choice of n0 = 20 and α = 10 makes it relatively uninformative in the
order of the polynomial.

We use Algorithm 5 (MHRA) with c = 0.35, M1 = q11, M2 = q22 and estimated
σ2 to generate the posterior distribution. We note that this choice of c allows rela-
tively large probabilities of changing the order of the polynomial and σ2 is estimated
by 1

198

∑99
i=1(Y[i+1] − Y[i])2, which is also used in the following density-regression

method. We run MHRA for 100,000 updates; after a burn in period of 10,000 up-
dates, we use the remaining 90,000 realizations of the Markov chain to obtain the
posterior mean. Starting from generating the data {Xi, Yi | i = 1, 2, . . . , 100}, the
above experiment is replicated 200 times; the averages of the resulting 200 L1-
norms, sup-norms and MSE of F̂ − F are reported in Table 1 and Table 2, which
also contain the corresponding results using the density-regression method; the
method of this paper is referred to as the Bayes method. Also contained in Table 1
and Table 2 are the posterior distributions of the polynomial order; these posterior
distributions seem to suggest that n0 = 20 in the prior is large enough. Figure 1
contains the autocorrelation plots of the L1-norm of Fb(j) for one of the 200 repli-
cates in the study of F<1>. Figure 1 indicates that MHRA behaves quite nicely.
Those for F<2> look similar and hence are omitted. The corresponding results us-
ing IMA are also omitted, because they are similar to those using MHRA, except
having larger autocorrelation values and smaller effective sample sizes. Concepts of
autocorrelation and effective sample size can be found in Liu [19], for example.

4.2. Convex regression

The main conclusion of our simulation studies regarding convex regression is sim-
ilar to that reported for isotonic regression; namely, compared with the density-
regression method for convex regression studied by Birke and Dette [3], our Bayes
method performs comparably when the noise is large and performs better when the
noise is small. To make the presentation concise, we only report the results for two
of the regression functions, which are defined by

F<3>(t) = (16/9)(t − 1/4)2, (4.3)

F<4>(t) =




−4t + 1 for t ∈ [0, 0.25],
0 for t ∈ [0.25, 0.75],

4t − 3 for t ∈ [0.75, 1].
(4.4)

We note that both F<3> and F<4> are examples in Birke and Dette [3].
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Table 1

Simulation study for F<1>(t) = sin( Π
2
t).

a

σ |F̂ − F | Bayes Density
-regression

L1-norm 0.0161 0.0238
0.1 Sup-norm 0.0532 0.0874

MSE 0.0004 0.0010

L1-norm 0.1148 0.1194
1 Sup-norm 0.2795 0.2651

MSE 0.0215 0.0233

b
σ n Posterior n Posterior n Posterior n Posterior

probability probability probability probability
1 0.0000 6 0.0797 11 0.0960 16 0.0139
2 0.0300 7 0.0994 12 0.0708 17 0.0076

0.1 3 0.0433 8 0.1009 13 0.0497 18 0.0037
4 0.0483 9 0.1109 14 0.0359 19 0.0016
5 0.0789 10 0.1044 15 0.0235 20 0.0015

1 0.0006 6 0.0673 11 0.1104 16 0.0200
2 0.0026 7 0.0950 12 0.0878 17 0.0113

1 3 0.0077 8 0.1164 13 0.0687 18 0.0068
4 0.0196 9 0.1308 14 0.0495 19 0.0042
5 0.0406 10 0.1252 15 0.0319 20 0.0036

We use Algorithm 3 with n0 = 20, α = 10, q ∼ Uniform(q01, q02), β1 = q3 and
β2 = q4 to generate the prior distribution, where q01, q02, q3 and q4 are defined as
follows. Let Y(1) < Y(2) < · · · < Y(100) be the order statistics for {Y1, Y2, . . . , Y100}.
Then q01 = 1

10

∑10
i=1 Y(i), q02 = |q01 + 1

100

∑100
i=1 Yi|/2. Let X(1) < X(2) < · · · <

X(100) be the order statistics for {X1, X2, . . . , X100}. Let Y[i] = Yj if X(i) = Xj .
Then q3 = max{Y[i] | i = 1, 2, . . . , 5} and q4 = max{Y[i] | i = 96, 97, . . . , 100}.

We use MHRA to generate the posterior distribution with similar parameters
given in Algorithm 5. Table 3 and Table 4 contain the main results. Entries in
Table 3 and Table 4 bear the same meanings of the corresponding entries in Table
1. Figure 2 carries similar information as Figure 1.

Table 1a gives comparison between the Bayes method and the density-regression
method. Table 1b gives the posterior probability of the order of the Bernstein
polynomial. The effective sample size for σ = 0.1 (1) is 5623 (461). The acceptance
rate for σ = 0.1 (1) is 0.2923 (0.6635).

Table 2a gives comparison between the Bayes method and the density-regression
method. Table 2b gives the posterior probability of the order of the Bernstein
polynomial. The effective sample size for σ = 0.1 (1) is 4913 (364). The acceptance
rate for σ = 0.1 (1) is 0.3779 (0.6943).

Table 3a gives comparison between the Bayes method and the density-regression
method. Table 3b gives the posterior probability of the order of the Bernstein
polynomial. The effective sample size for σ = 0.1 (1) is 1397 (344). The acceptance
rate for σ = 0.1 (1) is 0.2413 (0.3430).

Table 4a gives comparison between the Bayes method and the density-regression
method. Table 4b gives the posterior probability of the order of the Bernstein
polynomial. The effective sample size for σ = 0.1 (1) is 722 (216). The acceptance
rate for σ = 0.1 (1) is 0.2217 (0.3670).



198 I-S. Chang et al.

Table 2

Simulation study for F<2>(t) =

{
2t for t ∈ [0, 0.25],
0.5 for t ∈ [0.25, 0.75],
2t − 1 for t ∈ [0.75, 1].

a

σ |F̂ − F | Bayes Density
-regression

L1-norm 0.0353 0.0413
0.1 Sup-norm 0.1002 0.1415

MSE 0.0019 0.0030

L1-norm 0.1255 0.1267
1 Sup-norm 0.3035 0.3509

MSE 0.0244 0.0256

b
σ n Posterior n Posterior n Posterior n Posterior

probability probability probability probability
1 0.0000 6 0.0144 11 0.1481 16 0.0375
2 0.0000 7 0.0385 12 0.1730 17 0.0194

0.1 3 0.0000 8 0.0420 13 0.1571 18 0.0117
4 0.0000 9 0.0621 14 0.1142 19 0.0062
5 0.0005 10 0.1006 15 0.0692 20 0.0055

1 0.0004 6 0.0611 11 0.1169 16 0.0195
2 0.0016 7 0.0871 12 0.0992 17 0.0113

1 3 0.0062 8 0.1100 13 0.0794 18 0.0060
4 0.0177 9 0.1245 14 0.0539 19 0.0029
5 0.0379 10 0.1284 15 0.0335 20 0.0025

Table 3

Simulation study for F<3>(t) = (16/9)(t − 1/4)2.

a

σ |F̂ − F | Bayes Density
-regression

L1-norm 0.0157 0.0775
0.1 Sup-norm 0.0525 0.2296

MSE 0.0004 0.0101

L1-norm 0.1362 0.1366
1 Sup-norm 0.4247 0.3643

MSE 0.0319 0.0292

b
σ n Posterior n Posterior n Posterior n Posterior

probability probability probability probability
2 0.0001 7 0.1177 12 0.0452 17 0.0064
3 0.0609 8 0.1312 13 0.0346 18 0.0029

0.1 4 0.0826 9 0.1139 14 0.0230 19 0.0020
5 0.0931 10 0.0938 15 0.0147 20 0.0021
6 0.1015 11 0.0653 16 0.0090

2 0.0413 7 0.1094 12 0.0516 17 0.0062
3 0.0602 8 0.1175 13 0.0313 18 0.0028

1 4 0.0728 9 0.1110 14 0.0204 19 0.0015
5 0.0849 10 0.0886 15 0.0141 20 0.0014
6 0.1037 11 0.0717 16 0.0096
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Table 4

Simulation study for F<4>(t) =

{
−4t + 1 for t ∈ [0, 0.25],

0 for t ∈ [0.25, 0.75],
4t − 3 for t ∈ [0.75, 1].

a

σ |F̂ − F | Bayes Density
-regression

L1-norm 0.0405 0.1311
0.1 Sup-norm 0.1381 0.4663

MSE 0.0026 0.0282

L1-norm 0.1394 0.2265
1 Sup-norm 0.4603 0.7010

MSE 0.0338 0.0793

b
σ n Posterior n Posterior n Posterior n Posterior

probability probability probability probability
2 0.0000 7 0.0000 12 0.1710 17 0.0263
3 0.0000 8 0.0205 13 0.1301 18 0.0158

0.1 4 0.0000 9 0.1144 14 0.1130 19 0.0124
5 0.0000 10 0.1028 15 0.0778 20 0.0187
6 0.0000 11 0.1498 16 0.0474

2 0.0153 7 0.1194 12 0.0571 17 0.0068
3 0.0295 8 0.1254 13 0.0432 18 0.0041

1 4 0.0539 9 0.1153 14 0.0321 19 0.0013
5 0.0784 10 0.0953 15 0.0227 20 0.0014
6 0.1065 11 0.0786 16 0.0137

Fig 1. Autocorrelation plots for the MHRA in the data generation from the posterior distribution
for F<1>(t) = sin( Π

2
t).
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Fig 2. Autocorrelation plots for the MHRA in the data generation from the posterior distribution
for F<3>(t) = (16/9)(t − 1/4)2.

5. Discussion

We have proposed a Bayes approach to shape restricted regression with the prior
introduced by random Bernstein polynomials. In particular, algorithms for gener-
ating the priors and the posteriors are proposed and numerical performance of the
Bayes estimate has been examined in some detail. The usefulness of this approach
is successfully demonstrated in simulation studies for isotonic regression and con-
vex regression, which compares our method with the density-regression method.
We note that certain frequentist properties of this Bayes estimate are established
in Chang et al. [6]. The method of this paper can also be used to assess the validity
of the shape restriction on the regression function, by considering the predictive
posterior assessment proposed by Gelman et al. [14] and Gelman [13]; in fact, we
have implemented this assessment and found it quite satisfactory. We would like to
remark that this approach can be used to study other shape restricted statistical
inference problem. In fact, as pointed out by P. Bickel and M. Woodroofe in the
Vardi memorial conference, the geometry of Bernstein polynomials may be utilized
to propose a penalized likelihood approach to shape restricted regression; our pre-
liminary simulation studies (not reported here) do suggest that penalized maximum
likelihood estimate looks promising, and further investigation is underway.
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