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1. Introduction

The following principle (stated here in rough form) bears many applications
in the study of ecological and genetic systems.
PRINCIPLE I. If a system of transformations acting on a certain set (in finite

dimensional space) has a "stable" fixed point, then a slight perturbation of the
system maintains a stable fixed point nearby.
The theme of this principle is quite intuitive although care in its application

and interpretation is vital. Its validity does not require the stability hypothesis
to apply in a geometric sense. In fact, for numerous important nonrandom mating
genetic models the stability of the relevant equilibrium is manifested only in an
algebraic sense. The result is basic in the domain of global analysis and occurs
in many other mathematical contexts as well. With the aid of this principle, we
are able to establish the existence of equilibria for quite complicated genetic
models and these have interesting interpretations for population phenomena.
A converse proposition to Principle I of considerable value in ascertaining all

possible equilibria is also now stated in rough form. For a precise mathematical
statement the reader should consult Karlin and McGregor [9].

PRINCIPLE II. If f(x) is a differentiable transformation acting on a certain set
S (in finite dimensional space) having a finite number of fixed points, say yi, Y2,
* * *, y,, with the property that the linear approximation to f(x) in the neighborhood
of each fixed point has no eigenvalue of absolute value one, then a slight differentiable
perturbation of f(x) maintains at most a single fixed point zt E S in the neighbor-
hood of each y;. Moreover, zi is locally stable if and only if yi is locally stable.

It is worth noting that some fixed points of f(x) (but none of the stable ones)
may disappear under small perturbations.
We illustrate the scope of these principles by indicating the application to the

investigation of three types of population models subject to a variety of genetic
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factors. In Section 2, we treat the effect of small intermigration flow among
several genetic subsystems or niches with different selection forces operating in
the separate niches. Section 3 highlights the possibilities of mutation selection
balance for two locus haploid and diploid populations. The small perturbation
in this model arises due to the mutation pressure. The final section reviews results
emanating from Principles I and II applied to the study of multilocus viability
selection models with small recombination parameters. Some implications for
evolutionary theory are also noted.

2. Stable equilibrium for multipopulation systems with migration coupling

In this section, we present a general framework for application of Principles I
and II for population models involving slight intermigration flow among several
separate subpopulations. More specifically, suppose there exists a number (say p)
of ecological or genetic systems cP1, (P2, * ,* X 6), for example, separate communi-
ties, niches, with a finite number (say r) of possible types A1, A2, * - , Ar that may
be represented in each system. We generally denote the frequencies of types A1,
A2, * * , A, in population (or system) 6(P by pa = (pal, - , Par), and frequently
subscript a is suppressed when no ambiguity of interpretation is possible. Suppose
each system reproduces independently in some fashion such that the frequencies
P' = (pai. **, par) in the next generation are determined by the relations

(2.1) paj = faj(p-11 ... X Par), j = 1, 2, ***, r.
We sometimes write (2.1) in vector notation taking the form
(2.2) P.a = Pa(pa).
In most genetic models, the transformation (2.1) is displayed as a ratio of two
algebraic polynomials in the frequency variables. These transformations natu-
rally reflect mating and ecological behavior, segregation pattern, selection, mi-
gration and mutation pressures, temporal and spatial (cyclical or other) changes,
the influence of recombination when more than one locus is involved, and other
relevant factors of the process.

In each system (Pa there usually exist certain equilibria (invariant points under
the transformation (2.1)) which are locally stable. The collection of equilibria
include polymorphic (all types represented) and peripheral (that is, boundary
equilibrium) points, where in the latter case some types are not represented.
Local stability is to be understood in the following generalized sense. A frequency
vector p* is said to be locally stable if for any prescribed neighborhood U of p*
there exists another neighborhood V, p* E V C U such that f(V) C V (V de-
notes the closure of V), and therefore the iterates of Vfl)(P) = jfn1)(!a( )) for
any starting point p e V never depart from V. In most cases, local stability of
an equilibrium p* actually entails that if the initial frequency vector p5 is suffi-
ciently close to p*, the iterates ,,(p) indeed converge to p *.
The notion of stability prescribed above makes no stipulations on the rate of

convergence to the equilibrium. However, in most genetic and ecological systems
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when the equilibrium expresses a stable polymorphic balance, then convergence
takes place at a geometric rate. But on the other hand when the equilibrium is
of the boundary kind (mostly a population of a single type), then convergence
not uncommonly occurs at an algebraic rate.
Suppose now that the system ((PI, * * *, (Pp) is coupled by some form of inter-

action. To fix the ideas, we consider here the example when there are migration
coefficients map with the interpretation that after reproduction a proportion mas
of individuals from 6Xp migrate to (P.. The recursion relations describing the evo-
lution of type frequencies in the migration coupled system are then

P

(2.3) pat = E mapfpji(p, *** pp,r), a = 1*-p; i=1***r.
P- 1

It is naturally assumed that mp 2 0 and j= i mp = 1.
The migration specified by the p square matrix M = Imap II would be called

weak if M is sufficiently close to the identity matrix, that is, the mp with a #
are all sufficiently small. In this event, the flow between systems is slight. (All
subsystems are presumed in the present theory to be of large size.) If the un-
coupled system has a locally stable equilibrium point p* (that is, set of equilibrium
vectors pa), then we expect the coupled system to have a locally stable equilibrium
point q* near p* provided the migration coupling is sufficiently weak.
The above statement is a special case of the general Principle I.
We say a full polymorphism is attainable in the uncoupled system

(@1, 6'2, **, ) if there is a set of equilibrium frequency vectors p*, a = 1, 2,
* , p, where pa is a locally stable solution of

(2.4) pa = fa(pa), c = 1, 2, p,
such that for each i, 1 < i < r, p*j is positive for at least one ct (a may depend
on i). The set of equilibrium frequency vectors p* comprise a fixed point pa of
the uncoupled system in which every possible type is represented in at least one
subsystem. Now if q* is the nearby equilibrium point of the system under weak
coupling, then every type will still be represented in at least one subsystem pro-
vided the coupling is sufficiently weak. In the migration coupling example, there
is a simple condition which will guarantee that at the equilibrium state q* each
possible type is actually represented in every subsystem. The matrixM = Imap I|
is called irreducible if there is a power Mk whose elements are all strictly positive.
This means that a kth generation descendent of an individual from any sub-
system has a positive probability to be in any other subsystem.
Our first application of Principle I is the following. If a full polymorphism

(defined in paragraph above) is attainable in the uncoupled system and if the migra-
tion matrix is irreducible and sufficiently weak (that is, M close to I = identity
matrix), then the coupled system has a locally stable equilibrium state in which
actually every possible type is represented in every subsystem.
As a simple application of the assertion stated above, consider the case of a

simple genetic system involving two alleles A1 and A2 at a single locus with two
niches with selection coefficients 1, 1 -a, 1 for the genotypes A1A1, A1A2, and
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A2A2, respectively, or more generally, we can suppose that the fitness coefficients
of the genotypes are si, 82, S3 in niche 1; a1, O2, aa in niche 2, where S2 < min (s, S3)
and 2 < min (a,, a3). Thus, in each separate niche disruptive selection operates
and ordinarily the population would be fixed. However, invoking the above
result, we find that if a small fraction m (necessarily small) of the population
of each niche migrates to the other niche then there are possible sets of stable
polymorphisms with both alleles represented in each population. Of course, the
possibility of stable global fixations also exists.
The polymorphic equilibria of this example have the property that a pre-

ponderance of one homozygote occurs in one niche while a preponderance of the
alternative homozygote is maintained in the second niche. It is reasonable to
speculate that some forms of habitat selection confer an advantage, say on A2A2
in niche 2, on AIA1 in niche 1, while the heterozygote (or hybrid type) bears
marked disadvantage to both homozygotes in each of the niches, yet a global
balance is preserved.
What evolves depends crucially on the initial composition of all the subpopu-

lations. Thus, whether fixation transpires or polymorphism is attained could be
a function of founders and random fluctuation effects determining the initial
conditions. Small colonies of different homozygotes could inhabit neighboring
localities with selection favoring both homozygotes over the heterozygotes in
each locality. Subsequently, population size grows and presumably some slight
gene flow binds the two localities. A suitable application of the principle then
points to a polymorphism with most existing types being homozygotes (see
Karlin and McGregor [10] for a more detailed quantitative analysis of this two
niche model).
The extension to the case of three alleles is as follows. Consider a three allele

model involving alleles A1, A2, As with viabilities of A Aj specified by the matrix
with the obvious interpretation

/1 + >a1 1 -
1,

1

3,(2.5) 1 11l + a2 1- ai
1 - £2 1 - 168 1 + aX3

so that each homozygote is favored. Consider two replicate systems of the above
structure with slight migration between them. It can be proved that there exists
no stable polymorphism with all genotypes represented. (The proof involves the
converse version of Principle I, that is, Principle II.) However, if the above
three allele genetic population is replicated in three systems with slight gene
flow between them, then a stable polymorphism is possible involving all types.
(The proof is accomplished by application of Principle I.)

3. On mutation selection balance for two locus models with small mutation rate

The haploid model considered is the traditional one. The parameters are listed
in Table I. The recombination fraction is denoted by r. The mutation rate of



EQUILIBRIA FOR GENETIC SYSTEMS 83

TABLE I

Gamete AB Ab aB ab

Fitness coefficient 01 a2 a 1
Frequencies in a given

generation of haploid
individuals xI x2 X3 X4

a -+ A or b -- B is ,in both cases with mutations occurring independently at
each locus. (All our results carry over as well for different mutation rates at each
locus; specifically, rate ul for a -* A and /2 for b -- B.) Thus, we are assuming
unidirectional mutation to the AB gamete.

For definiteness, we postulate as in most of the literature cited (although ir-
relevant to the qualitative conclusions deduced in this paper) that the effects
occur in the order mutation -+ random union of gametes -+ segregation -+ selec-
tion. Thus, the population can be envisioned as consisting of mature haploids
who produce gametes to be fertilized at which stage mutations occur. After
segregation, selection operates.
The recursion relations connecting the gamete frequencies in two successive

generations (X1, X2, X3, X4) -- (X1, x2, X3, *4) are derived in the standard way
yielding

WXl ="oi{Xl + A(X2 + X3) + A2X4- r(l -)2D},
(3.1) Wx2 = q2{(1 -,A)x2 + u(1 - )X4 + r(l -,)2DI,

WX3 = qS{(1 - ti)X3 + JA(1 - /A)X4 + r(1 -)2D,
WXI = (1 - 1u)2X4 -r(1 2W4 =(-)X4- r(l- )D,

where D = x1x4 -x2x3 (the disequilibrium expression) and W, as usual, stands
for the sum of the right members of the four equations and is a quadratic func-
tion of the variables x1, X2, X3, X4.
We shall deal mostly with the situation

(3.2) 1 > a2, 1 > a3, 1< a1,

that is, a single mutation has a deleterious effect while a double mutantAB is
endowed with a selective advantage relative to the wild type ab. The assumption
(3.2) is a major case of interest in Crow and Kimura [2], Eshel and Feldman [3],
especially relevant to their discussions concerning the advantages of recombina-
tion in evolution.
Let the conditions (3.2) prevail; that is, 02 < 1, a3 < 1, al > 1. If

(1 - r)o-I < 1, then there exists a positive AO such that for A satisfying 0 < ,u < pAo
there exists a stable polymorphism x* = (xl, x2, x3, X4) of the system (that is,
x- > 0, i = 1, * , 4) satisfying x1 + XA + XA < co, where eo(Ao) tends to zero as
AO tends to zero. When (1 - r)o-i> 1 holds, fixation of the AB gamete occurs
independent of the rate of mutation.
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We can write the transformations (3.1) in the form

(3.3) Xt = fi(Xl, X2, X3) + Agi(XI, X2, X3, A); i = 1, 2, 3,

where 0 < gi(Xl, X2, X3, ,.) < C and C is independent of 1s and xi.
The proof then involves an appropriate application of Principles I and II. We

refer to Karlin and McGregor [8] for details and further discussion of the impli-
cations of the results. There are versions of the above result valid also in the
corresponding diploid model.
The result of our Theorem 1 also has relevance to the finding of Feldman [4]

that in a haploid two locus population, selection pressures alone cannot maintain
a stable polymorphism. Thus, to achieve polymorphism some other influences
apart from selection pressures should be operating.
Along these lines, it is implicit in the work of Raper and others that random

mating is not applicable to a number of haploid models of fungi populations. In
these cases, certain incompatibility mechanisms are in force. For such two locus
haploid populations, a stable polymorphism can be maintained by the balance
of the force of selection in conjunction with the incompatibility mating behavior.
We can also prove that selection coupled with certain assortative (and not

only disassortative or incompatability) patterns of mating can produce stable
polymorphisms for a two locus haploid population. Also, multiniche two locus
haploid populations subject only to selection forces can exhibit stable polymor-
phism (see Karlin and McGregor [9]).

4. Applications of the basic principle to the study of multilocus models with
small recombination parameters

We record some results on multilocus genetic models deduced by appropriate
application of Principle I. The rigorous proofs and further developments on
multilocus phenomena will be set forth in a separate publication.

Consider first a two locus diploid population. The notation adopted is the
traditional one (Bodmer and Felsenstein [1]). The selection parameters of the
ten genotypes are listed below

BB Bb bb
AA Wll W12 w22\

(4.1) Aa W13 W1 w24
W23 , ~W14 = W23,

aa W33 W34 W44

such that the subscripts 1, 2, 3, 4 refer to the gametes AB, Ab, aB, and ab,
respectively, and wij is the fitness parameter of the genotype composed from
gametes i and j. It is convenient to write the parameters in the form

(4.2) -2 1 1-
1 3-*41 B oa
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We will concentrate on the situation where 0 < as < 1, 0 < ,B < 1, i = 1, 2,
3, 4, so that the two double heterozygotes have equal viability and are most fit.
The unperturbed system is that where recombination is zero (complete linkage).
The model then reduces to a standard four allele viability set up. Principle I
can be applied where the small mixing parameter is the recombination fraction
r. The following result can be achieved.
THEOREM 1. If the viability matrix (4.2) satisfies one of the following:
(i) symmetric viability pattern (that is, a, = a4, a2 = a$, P1 = i4, j2 = Is, 50

that the viabilities are symmetric with respect to the two loci and the labeling
of the alleles);

(ii) multiplicative viabilities (that is, the selection coefficients are determined
as multiplicative effects of the viabilities at each locus);

(iii) additive viabilities (that is, the selection coefficients result as the addi-
tive effects of the viabilities at each locus), then for r sufficiently small there exists
at least one and at most two locally stable polymorphic equilibria; and

(iv) more generally, for r small enough and any viability pattern there exists at
most two stable polymorphic equilibria.

It is conjectured that the bound 2 on the number of stable polymorphic
equilibria persists for all r.
Some additional special information applies in the situations of (i) and (ii).
(a) In the additive viability model with overdominance (meaning here that

the double heterozygotes are most fit), there exists a unique interior stable
polymorphism exhibiting linkage equilibrium with global convergence to this
equilibrium occurring from any initial composition involving all gametes. This
occurs for all recombination values r > 0 (see Karlin and Feldman [7]).

(b) By appropriate choices of the selection parameters for the case of multi-
plicative viabilities, we always have two stable internal equilibria provided r is
near 0. On the other hand, when r is near Y2 Moran [12] established global
convergence to an internal equilibrium which is in linkage equilibrium.

Extensions to multilocus model. Consider the corresponding model of k loci
and assume all complete multiple heterozygotes have equal viability and are of
superior fitness to all other genotypes. The following general result prevails.
There exists a prescription of viability parameters leading to 2k-1 distinct locally
stable polymorphic equilibria. Moreover, for the multiplicative viability model if all
the pairwise recombination parameters are sufficiently small then there exists at most
2-1' distinct stable polymorphic equilibria. Any even number _ 2k-1 can occur.
These results suggest that there are generally more cases of stable polymor-

phism for multilocus selection models involving tight linkage than for weak link-
age. The relevant polymorphisms for small recombination parameters are usually
in substantial linkage disequilibrium, where a preponderance of a few special
chromosome types are abundantly present. These facts argue for the conclusion
that if variability (latent or actual) is desired for a population to cope with a
multitude of environments, then recombination reducing mechanism may be
favored in order to produce increased possibilities of polymorphism. Actually,
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tight linkage is a vehicle for maintaining diverse forms of polymorphism and, of
course, also serve for easy transcription of a series of actions (biochemical or
otherwise) controlled by a sequence of closley linked loci. On the other hand,
loose linkage or large recombinations parallel more the effects of mutation and
sexuality. Moderate recombination appears to serve less well both the objectives
of maintaining polymorphism and/or simple regular gene transcription.
The analysis of multilocus models provides an important application of the

general principle of Section 2. Principle I can be interpreted as a perturbation
or continuity theorem. Starting with a given genetic system for which the nature
of the equilibria can be fully delineated (for example, the classical multiallelic
viability model), it is desired to investigate a perturbed version of the model.
The perturbing factors can be in the form of small mutation and/or migration
pressures, weak selection effects, slight seed load or some other genetic carry
over from previous generations or small recombination effects superimposed on
a multiallelic selection model corresponding to a multilocus situation with no
recombination. In this last case, we have established the remarkable fact that
in a k locus genetic model with multiplicative viability selection coefficients, pro-
vided all pairwise recombination parameters are sufficiently small, there exist
at most 21-i stable polymorphic equilibria and for certain specifications of the
selection coefficients this upper bound is achieved. This result underscores the
increased potentialities for polymorphism corresponding to large cistrons or
supergene complexes with slight intragenic recombination present.
The validation of these assertions for multilocus selection genetic model is

not accomplished by determining explicitly the actual equilibria in the perturbed
system and testing their stability properties (undoubtedly a prohibitive task),
but rather the procedure exploits continuity methods coupled with the imnplicit
function theorem and certain fixed point theorems.
The assertions of this section, their proofs, and implications for evolutionary

theory will be elaborated elsewhere.
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