
Inequalities in Statistics and Probability
IMS Lecture Notes-Monograph Series Vol. 5 (1984), 68-77
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AND ANALYSIS OF DIVERSITY
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Some natural conditions which a diversity measure (variability) of a probability distri-
bution should satisfy imply that it must have certain convexity properties, considered as
a functional on the space of probability distributions. It is shown that some of the well
known entropy functions, which are used as diversity measures do not have all the desirable
properties and are, therefore, of limited use. A new measure called the quadratic entropy
has been introduced, which seems to be well suited for studying diversity.

Methods for apportioning diversity (APDIV) at various levels of a hierarchically clas-
sified set of populations are described. The concept of analysis of diversity (ANODIV),
as a generalization of ANOVA, applicable to observations of any type, is developed and
its use in the analysis of cross classified data is demonstrated. The choice of a suitable meas-
ure of diversity for the above purpose is discussed.

1. Introduction. There is an extensive literature on the measurement and analysis of
diversity. A unified approach to these problems is given in Rao (1982a), and a complete
bibliography of papers on this subject is complied by Denis, Patil, Rossi and Taille (1979).
The choice of a diversity (DIV) measure for the analysis of given data poses a serious prob-
lem. An attempt is made in this paper to lay down some natural conditions which a diversity
measure should satisfy (Section 2) and discuss the methodology for data analysis through
an appropriate diversity measure. Some of the situations where such an analysis is needed
are as follows.

Geneticists are interested in comparing populations by the diversity exhibited in certain
measurements (Karlin, Kennett and Bonne-Tamir (1979)), and in apportioning diversity
(APDIV) in a substructured population as due to between and within groups (Lewontin
(1972), Nei (1973), Chakraborty (1974), Rao (1982a) and Rao andBoudreau (1982)).

In analysis of variance (ANOVA) of quantitative data, we choose the variance as a meas-
ure of diversity and partition it into a number of additive components. Of particular practi-
cal interest is the analysis of data classified by the levels of a number of factors, where
the total variability is partitioned as due to main effects and interactions of factors. A natural
question arises as to whether other measures of diversity such as mean absolute deviation
could be used for this purpose. Further, what is the natural extension of ANOVA to obser-
vations which are not quantitative in nature?

In this paper, the concept of ANOVA is extended to more general analysis of diversity
(ANODIV) applicable to observations belonging to any sample space by an appropriate
choice of a diversity measure satisfying some convexity properties.

The choice of the well known entropy functions due to Shannon (1948), Havrda and
Charvat (1967) and Renyi (1961) as diversity measures have only limited use as they do
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not have strong convexity properties (Section 3). A new measure called quadratic entropy

which is completely convex (Section 4) is introduced and shown to be a useful tool in

APDIV (Section 5) and ANODIV (Sections 6 and 7).

2. Measures of Diversity. Consider a measurable space (X, 73) and a convex set 7>

of probability measures defined on it. A function H mapping 7> into the real line R is said

to be a measure of diversity if

(2.1) Co: H(P) ^ 0 for every P e 7> and//(P) = 0 iff P is degenerate.

The condition C o is a natural one since a measure of diversity should preferably be non-

negative and take the value zero only when all the individuals of a population are identical.

Consider two measures P, and P2 and a mixture λ1P,+λ2^2> (λi^O, λ 2 ^0, λ , + λ 2

= l )

It is again a natural requirement that the amount of diversity in a mixture of populations

should not be smaller than the average of the diversities within the individual populations.

We may formulate this requirement (diversity is possibly increased by mixing populations)

as

(2.2) C

with > sign ifPι Φ P2. The condition Cλ is equivalent to saying that H is a strictly concave

function or -H is a strictly convex function.

Let us denote 7 ( 0 ) = -H and define

(2.3)

as the first Jensen difference between Px and P2. From the Condition Cl9 the first Jensen

difference 7 ( 1 ) is positive if the measures Pi and P 2 are different, and hence may be consid-

ered as a measure of dissimilarity (distance) between Pλ and P 2 . Now consider pairs of

measures (Pn,Pi 2 ), (^21,^22) and the mixture (μiPn + μ2^2i, μ i ^ 12+^2^22) all belong-

ing to 7* — 7> x CP. It is a natural requirement that the distance between the two mixed

populations μiPii + μ2^2i and μiPi2+μ2^22 should not be larger than the average of the

distances between P n and P J 2 and between P 2 1 and P 2 2 This requirement (dissimilarity

is possibly decreased by mixing) leads to

( 2 4 ) C2: μj W i i Λ a : λiΛ2)+μ2/
1)(/>2i,/>22: λ, A2)

- / 1 ) ( μ 1 P 1 1 + μ2/
>2i, μiPi2+μ2/>22:λiΛ2)^0

where the left side of (2.4) is defined on 7*=^x^.We denote this expression by

(2.5) /2)({Λy}:{λ,μ;})

observing that it can be alternatively written as

( 2 6 ) λ ^ P n Λ , : μi,μ2)+λ2/
1)(/)i2^22: μi,μ2)

-JfOW>ll+λ2f>12,λlP21 + M>22:μi,μ2)

exhibiting row and column symmetry. The condition C2 means that the first Jensen differ-

ence 7 ( ! } is a convex function on 7^.

Generalizing the above concepts, the need for which is demonstrated in Section 6, we

lay down a series of conditions

(2.7) Ci/'^O^U, ...

where /(/) is defined on T32' in a recursive way.

We use the following definitions:

Definition 2.1. A diversity measure H satisfying C o is said to be completely convex
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i/7 ( 0 )= -Hi, 7 ( 1 ), ... defined on appropriate spaces are all convex, or the conditions Cj

are satisfied/or all i.

Definition 2.2. A diversity measure is said to be j-th order convex if the conditions

C0,Ci, ... ,Cjaresatisfied.

3. Entropy as a Diversity Measure. A number of diversity measures have been in-

troduced through the concept of entropy and information and applied in different areas of

research. When CP is the simplex of all multinomial distributions in k cells

(3.1) ^ = f r = ( P i , - . , Λ ) ' , Λ ^ 0 , Σ Λ = l } ,

some of the well known measures of entropy are

(3.2) Hsip) = -Xpi log A , (Shannon (1948)),

(3.3) Ha(p) = l ~ ^ 9a>09aΦ 1, (HavrdaandCharvat( 1967)),

(3.4) HR(p) = λ θ g ^ T , α > 0 , α * 1, (Renyi(1961)).

All these measures are non-negative and take the value zero only when one of the pt is

unity and the rest are zero. They all attain the maximum when p( = I/A: for every i. Thus

they satisfy the condition Co.

It is easy to verify that Hs and Ha for any α > 0 satisfy the concavity condition Cλ, while

HR satisfies Cλ only for 0 < α < 1.

Burbea and Rao (1982a, 1982b) have shown: (i) Hs satisfies C2 but not C3,C4, ... , and

(ii) Ha satisfies C2 for 1 =^α^2 when k>2 and for α e[l ,2] U [3,11/3] when k=2 and does

not satisfy C3,C4, ... except when α = 2 . It is not known whether HR satisfies C2 or not.

It may be noted that the continuous analogues of (3.2)-(3.4) are not necessarily nonnega-

tive functionals and their interpretation as diversity measures poses some difficulties.

4. Quadratic Entropy. Let us consider a measurable space (J^^) and a function

d defined on X2 such that

( 4 1 ) = d(X29Xl)>0 ifX,^X2

=0 ifX,=X 2

Using such a nonnegative function (kernel), we may define the diversity of a probability

measure P defined on pf , J$) by

(4.2) H{P) = Jd(Xι 9X2)P(dXι)P(dX2).

The motivation for such a definition in a biological context was given in Rao (1982a). The

expression (4.2) is the average difference (as defined by 4.1) between two individuals (ob-

servations) drawn at random from the population specified by the probability measure P.

The functional (4.2) satisfies the condition Co for a diversity measure. The condition

Cx requires

(4.3) J(l\PuP2:λ]9λ2) = 2λ]λ2[H(P]9P2)-V2H(P])-V2H(P2)]^0

where H(PUP2) is the average difference between two randomly drawn individuals, one

from Pi and another from P2. The concavity of H or nonnegativity of 7 ( 1 ) reflects the intui-

tive requirement that two individuals drawn from different populations are on the average

more different than those coming from the same population. The expression

(4.4) D(PUP2) =
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which provides the excess variability, represents the amount of dissimilarity between the

populations defined by Pλ andP 2.

Not all nonnegative kernels, d(x\ ,JC2), lead to concave diversity measures H(P) as defined

in (4.2). We shall investigate the conditions under which this happens. For this purpose

we introduce the concept of a conditionally negative definite (C.N.D.) function studied

by Schoenberg (1938), Wells and Williams (1975) and Parthasarathy and Schmidt (1972).

Definition. A nonnegative function <i( , ) on X2 is said to be conditionally negative

definite (C.N.D.) if

(4.5) Σ'Σ^X^H^O

for any n and choices of real numbers au ... , an such that Σ atr = 0. If (4.5) is satisfied

for alla]9 ... , any then d is said to be a negative definite function.

The following is a well known theorem of Schoenberg (1938).

THEOREM 4.1. Let d(-, ) be a nonnegative symmetric function on X2. Then (i) d is

C.N.D. iff p = dλl2 is a metric (i.e., satisfies the postulates of a distance function), and

there is an isometry which embeds the metric space (X,p) into a Hilbert space, (ii) If d

is C.N.D., then dβ is also C.N.D. for O<0<1. (iii) // X is a set of not more than four

points, then for any metric d, (X, dP), O^β^ί/2, can be isometrically embedded into the

Euclidean space of dimension 3.

The following theorem is given in Parthasarathy and Schmidt (1972).

THEOREM 4.2. Let d( ,-)bea nonnegative symmetric function on X2. Then the follow-

ing conditions are equivalent: (i) d is C.N.D. (ii) For any fixed XoeX, the kernel defined

by

do(X, 9X2)=d(Xι ,X2W(*i Xohd(XoM+d(XoXώ for every X, ,X2

is negative definite, (iii) For every t>0, e~id is positive definite.

The following theorem gives the conditions under which the diversity measure (4.2) is

concave.

THEOREM 4.3. The diversity measure H defined in (4.2) is concave if d is a C.N.D.

function.

The result follows by observing (see Rao (1982a, 1982b)) that

7 ( 1>(P1,P2:λ1,λ2)

Theorem 4.3 shows that when d is chosen as a conditionally negative definite function,

the condition Cλ for the diversity measure H defined in (4.2) is satisfied. What further prop-

erty should d satisfy in order that C2,C3, ... hold? Fortunately, no further condition seems

to be necessary as demonstrated in the following theorem (see Rao (1982a)).

THEOREM 4.4. If d is C.N.D., then -H, where H is as defined in (4.2), is completely

convex, i.e., H satisfies all the conditions C\,C2, .

Consider two different pairs of probability measures Pλ λ ,P\2:P2\ ,P22. Then 7 ( 2 ) as de-

fined in (2.4) is seen to be, apart from a constant,

where P(1_2χi_2)
 = P\ 1 +^22-^12-^21 Then 7 ( 2 ) ^0, since the total measure of P(i_2)(i_2)

is zero and J i s C.N.D. Similarly, all higher order Jensen differences are convex, which
proves the theorem.
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A diversity measure H defined as in (4.2) and completely convex in the sense of Theorem

4.4 is called quadratic entropy.

The quadratic entropy seems to have better properties as a measure of diversity than the

traditional entropy measures considered in Section 3. Now, we raise the question as to

whether a completely convex diversity measure is a quadratic entropy. The following

theorem due to Lau (1982) provides the answer in the affirmative, and thus gives a

characterization of the quadratic entropy of Rao (1982a).

THEOREM 4.5. Let Xbea normed topological space and CP be the space of probability

measures on (X,7$) with weak topology. Let H: P-> R+ bea continuous function such that

(i) H(P)=0 if? is degenerate, and (ii) -H is completely convex. Then there exists a unique

C.N.D. function don X2 such that

(4.6) H(P) = ίd{Xλ 9X2)P(dXι)P(dX2)

i.e., His a quadratic entropy.

Note 1. For example, if X = R*, then

(4.7) d(Xι,X2) = (Xi-X2)
2forcvcryXuX2,eRι

is a C.N.D. function, and the diversity measure associated with it

(4.8) f(Xι-X2)
2P(dXι)P(dX2) = 2<ή

is the variance functional of P. It is well known that the variance functional is completely

convex.

Note 2. It follows from Theorem 4.1, result (ii), that if X= Rλ,

(4.9) H(P) = f\Xι-X2\^P(dXι)P(dX2)

is completely convex for 0^β=^2, and in particular the city block distance functional

(4.10) S\Xλ-X2\P{dXλ)P{dX2)

is completely convex.

Note 3. If X is a space of not more than four points, then the quadratic entropy based

on any function d which is a metric on X is completely convex. [Note that this may not

be true when X has more than four points.]

Note 4. Let X be a space of n points and

(4.11) d(Xl9X2)=l, HXιΦX2 and = 0, ifXj =X>.

Then the diversity measure (4.2) based on (4.11) is completely convex.

5. Apportionment of Diversity (APDIV). Biologists are interested in apportioning

the total diversity in a population as due to differences between and within subpopulations.

A concave diversity measure H is ideally suited for this purpose. If Pi, ... , Pk are probabil-

ity distributions in k subpopulations with prior probabilities \x, ... , λk, then we have the

decomposition of the total diversity (T).

(5Λ)

T = W + B

where the components W and B are nonnegative. In (5.1), W is the average diversity within

subpopulations and B may be interpreted as the diversity between the subpopulations. The

ratio

(5.2) |
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called the index of diversity between subpopulations compared to the total has been used

in genetic studies (see for instance Lewontin (1972), Nei (1973) and Chakraborty (1974)).

Different diversity measures give different values of G, which raises the problem of choos-

ing an appropriate measure in practical applications. For a discussion of this problem and

some illustrative examples, the reader is referred to Rao (1982a) and Rao and Boudreau

(1982). It is seen that if the object is APDIV (apportionment of diversity), we need only

a concave diversity measure, i.e., one which satisfies only the condition C\.

More generally, let us consider a number of populations grouped in a hierarchical classi-

fication such as populations within regions and regions within species and so on. If the

distributions within populations and their apriori probabilities are known, then the distribu-

tions of groups at any level of classification and the associated apriori probabilities can be

computed. This would enable us to compute the average diversity within groups at any level

of classification. Then we have the apportionment of the total diversity Ho (for all popula-

tions mixed together) as is shown in Table 1.

TABLE 1. APDIV for a hierarchical classification

due to

within populations

between populations (within regions)

within regions
between regions (within species)

within species
between species

Total

diversity

HP

HR-HP

HR

Hs

Ho-Hs

Ho

ratio

(HR-HP)IHR

(Hs-HR)IHS

(H<r-HS)IHO

The only property required of a diversity measure for APDIV is concavity.

Note 1. It is interesting to note that if we use a quadratic entropy for APDIV, the de-

composition (5.1) can be written as

(5.3) ff(Σ λΛ) = 2 λ;//(P,)+ XX \,\

where

= H(PitPj) -

is the dissimilarity between the populations i and/ The second term on the right hand side

of (5.3) is the average dissimilarity between populations. Such an interpretation is avail-

able only if a quadratic entropy is used.

Note 2. Let Pλ = N(μ^ ,σ2) and 7*2 = Mμ2>σ2). If we use the variance functional (4.8),

then H(Pλ) = 2σ2 = H(P2) and H(PlfP2) = (μ,-μ 2 ) 2 +2 σ 2 so that the dissimilarity be-

tween Pi andP2is

(5.4)

D 1 2 = H{PuP2)-ViH{Pλ)-ViH{P2) = (μ,-μ 2) 2 = δ2.

On the other hand, if we use the city block functional (4.10)
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H(PUP2) = {2σl\Γh)e*^ + 2δψ(-δ/σV2) - δ

and the dissimilarity is

(5.5) D12 = {2σlVτr)e^2ι^- 1) + 2δφ(-δ/σΛ/2) - 8

6. ANODIV: Generalization of ANOVA. Apportionment of diversity corresponds

to analysis of variance (ANOVA) of one-way classified data, where the populations are

identified by the levels of a single factor. Let us now consider two factors Ax and A2 and

represent the probability distribution associated with the z-th level of Ax and they-th level

of A2 by Pij with apriori probability λjl)λj2\ ι = l , ... ,. p; j=l9 ... , q (X λ, 1 ) = l , X

λf > = 1). Define

where P.. is the overall distribution and PL and Pj are the marginal distributions for the

levels of the individual factors Ax and A2 respectively. Consider the analysis of diversity

(ANODIV), i. e., a decomposition of the overall diversity, H(P..), as in Table 2, using any

measure of diversity.

TABLE 2. ANODIV for two way data

row no. due to diversity

1 factor(Λ,)
2 factor(Λ,)
3 interaction (A}A2)

4 between populations
5 within populations

Total

Rows (4) and (5) provide the analysis of diversity as between and within populations

defined by the/?<? cells of the two way classification.

Rows (1) and (2) measure the diversities in the marginal distributions or the main effects

of the factors Aλ and A2. The residual diversity in row (3) represents the interaction between

the factors Aλ and A2. Thus the rows (l)-(3) and (5) provide an analysis of (6), the total

diversity, as assignable to different causes. For a two way ANODIV, the diversity measure

(H) need only satisfy the conditions Cλ and C2 to ensure that 7 ( 1 ) and 7 ( 2 ) representing the

main effects and interation are nonnegative.

If we have three way data, we can obtain a similar decomposition. The main effects are

computed from one factor marginal distributions, two factor interactions from two factor

marginal distributions, while the three factor interaction, the third order Jensen difference,

is obtained by the formula

( 6 l
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as in the case of analysis of variance with balanced data.

In order that all main effects and interactions are nonnegative in the ANODIV of three

way classified data it is necessary to choose a diversity measure for which J(l\ J(2) and

/ 3 ) are nonnegative, i.e., which satisfies the conditions C\, C2 and C3. The results are eas-

ily generalized to analysis of w-way data for which we need a diversity measure whose

Jensen differences up to order m are nonnegative. Note that 7 ( m ) represents the m factor

interaction.

The generalization of ANOVA to ANODIV suggested above is quite general and can

be applied on any type of data with observations in any space, by choosing a diversity meas-

ure with the appropriate order of convexity. Thus, if we have two way classified qualitive

data, Shannon's entropy could be used, but not for higher order classified data.

7. Sampling Problems. In Section 6, we have discussed ANODIV in terms of popula-

tion distributions, which provided various diversity components. In practice we have only

observations from different populations, in which case we have problems of estimating the

diversity components and testing hypotheses concerning them. We shall briefly describe

how the appropriate methodology could be developed for this purpose.

To indicate how ANODIV provides a unified approach to the analysis of different types

of data, let us consider the familiar analysis of variance of one way classified data as in

Table 3.

TABLE 3. Populations and observations

XU X2\

xknk

We estimate the probability distribution function F. for the i-th population by the empirical

distribution function Fi based on the observations xn, ... , xin.. Let us choose λ, = njn.

(where n. = X/ι, ) as the apriori probability of the i-th population. Further let us consider

the variance functional

(7.1) H(F) = ί(Xι-X2)
2dF(Xι)dF(X2)

as the diversity measure. Substituting F, for Ft and λ, = njn. in the basic decomposition

formula (5.1), we have

(7.2) H<X{nJn.)Pϊ) = Σ(AZl /«.)//(Fl )+7(1)({Fί-}:{λl }).

Computing the various expressions in (7.2), using (7.1) for theH function, we obtain

(7.3) nrXϊ/xy-x.)2 = Ϊi(niln.)nj%{xirxi)
2+nrλ%ni(xi-x.)2

which is the usual ANOVA as within and between populations. The decomposition (7.3)

is used in testing the hypothesis that the populations are the same, and in estimating the

magnitude of differences between populations when the null hypothesis is rejected.

Instead of the variance functional, we can also use the city block distance functional

(7.4) H(F) = / \Xι-X2\dF(Xι)dF(X2).
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This leads to the decomposition

nΓ2%£rs\xiΓxrs\ = Mni/n.)rς2^X\xir-

which could provide valid tests of significance for non-normal populations.

The ANODIV for one way classified categorical data (two way contingency table) using

the second order entropy (1 - Σ pf), also called the Gini-Simpson index, is already illus-

trated in a paper by Light and Margolin (1971). We shall extend the analysis to two way

classified categorical data using a more general quadratic entropy for a multinomial distri-

bution with/?,, ... ,pk as cell probabilities

(7.5) H(p) = X2,ppjdy

where dtJ are chosen such that the (k-1) x (k-l) matrix

(dik+djk-dirdkk)J,j=\9 ... ,*-l

is nonnegative definite to ensure complete convexity of the diversity measure (7.5). For

further details and a characterization of (7.5), reference may be made to Rao (1982c).

Let us represent the observed numbers for k different categories in the (i j)-th cell by

Πijr, r = 1, ... , k, and the estimated probabilities by pijr = nijrJnijm where nijm =

Πiji + ...+nijk. If the cell numbers satisfy the conditons

(7.6) riij, = n..Λίυλj2 ), λ< υ = nUn..., λj 2 ) = «,/«..

then we can obtain the ANODIV using the diversity measure (7.5) as shown in Table 4.

TABLE 4. ANODIV: Two way categorical data

due to

factor (A])
factor (A2)
interaction (A,Λ2)

between populations
within populations

total

diversity

ΣΣ drsP. ,p,.s-% λPΣΣ drspirPί.s

ΪXdj>..#...-ϊψ)22.drj>j0j,
* (by subtraction)

* (by subtraction)

Xtdrj>..φ..s

If riij do not satisfy the conditions (7.6), we can still carry out the ANODIV by choosing

appropriate values of \\λ) and λj 2 ) (see Rao (1982c) for example).

The sampling distributions of the various expressions in Table 4 are likely to be

complicated even in large samples. Their use in tests of significance and estimation of

diversity components is under investigation.
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