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LORENZ ORDERING OF ORDER STATISTICS
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The Lorenz order is a natural tool for comparison of the variability of non-
negative random variables. In many contexts (especially reliability) variability
comparison of order statistics is of interest. A survey is provided of available
results regarding the Lorenz order of order statistics.

1. Introduction. Let X{:n denote the ith order statistic from a sample
of size n from the distribution Fχ(i = 1,2,..., n; n = 1,2,...). Yang (1982)
and David and Groeneveld (1982) have identified certain situations in which
the Xi-.nS are ordered with respect to variability as measured by the variance.
In many contexts, a more basic variability ordering is that provided by the
Lorenz order. In a reliability context, the lifetime of a A; out of n system is
Xn_fc+i:n? the waiting time until less than k components are still function-
ing. Attention is focussed on controlling not only the mean life but also the
variability. Predictable life length is desirable. The engineering may choose
how to build his k of n system out of exchangeable components. He is con-
sequently concerned with choosing k and n to reduce variability in the life
length, subject to given mean life constraints; a natural scenario for Lorenz
order comparisons.

Lorenz ordering relations among uniform order statistics are first de-
veloped. Analogous relations are developed involving more general common
distributions for the X's. We begin with a brief survey of characterizations of
the Lorenz order.

2. The Lorenz Order. A convenient survey of relevant material is
available in Arnold (1987).

Let C denote the class of all non-negative random variables with finite
positive expectations. For a random variable X in C with distribution function
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Fx, we define its inverse distribution function F^1 by

Fχ\y) = sup{a: : Fχ(x) < y}. (2.1)

The Lorenz curve L,χ associated with the random variable X is then defined

by

Lχ{u) = Γ Fχ

Λ{y)dyl I Fχ

Λ{y)dy, u 6 [0,1] (2.2)
Jo Jo

(cf. Gastwirth (1971)). The Lorenz partial order <L on C is defined by

X <L Y & Lχ(u) > Lγ{u). Vn6[0,1]. (2.3)

If X <LY we say that X exhibits no more inequality than Y (in the Lorenz
sense).

The following sufficient conditions for Lorenz ordering are useful for our

purposes.

THEOREM 2.1. (Strassen (1965)). Suppose X,Y G C% X <L Y if and

only if there exist random variables Y;, Z1 defined on some probability space

such that Y=Yf and X= cE(Y' \ Z') for some c > 0. (Here and henceforth =

denotes "has the same distribution as").

THEOREM 2.2. (Shaked (1980)). Suppose that X and Y are absolutely

continuous members of C with E(X) = E(Y) and densities fx and fy. A

sufficient condition for X <L Y is that fχ(x) - fγ(x) changes sign twice on
(0, oo) and the sequence of signs of fx — fy is —, +, —.

A useful if trite observation is that X <L Y implies and is implied by
cX <L dY for any c,d € (0,oo). Rather than compare two random variables
X and Y with possibly different expectations, it is sometimes convenient to
compare E(Y)X and E(X)Y which necessarily have equal expectations.

THEOREM 2.3. Suppose that g : Et+2 -> R + is such that g(z,x)/x |
as x t for every z. Suppose that X and Z are independent random variables
with X eC andY = g(Z,X) € C, then X <L Y.

PROOF. TO show that X <L Y it is enough to show that E(φ(E(Y)X) <

E(φ(E(X)Y)) for every convex φ. For each fixed z > 0, define Yz = g(z,X).

Since g(z,x)/x | as x | , it follows from Fellman (1976) that X <L YZ, and

so for every convex φ we have E(φ(E(X)Yz) > E(φ{E{Yz)X)). We may then

argue as follows

E(φ(E(X)Y)) = Γ E(φ(E(X)Yz))fz(z)dz
Jo
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> Γ E(φ(E(Y2)X))fz(z)dz
Jo

= Γ Γ φ(xE(Y2))fχ(x)dxfz(z)dz
Jo Jo

= Γ Γ φ(xE(Yz))fz(z)dzfx(x)dx
Jo Jo

ί°° ( ί°° λ
> I Φ[ xE(Yz)fz(z)dz I fχ(x)dx (by Jensen's inequality)

Jo \Jo )
φ(xE(Y))fχ(x)dx

= E(φ(E(Y)X)). I

3. Lorenz Ordering of Uniform Order Statistics. We will use the
notation Ui:n to represent the i'th order statistic of a sample of n i.i.d. copies
of a random variable U which is uniformly distributed on the interval (0,1).
The following Lorenz order relationships will be shown to hold among i7i:n's.

tf.'+l:n <L ϋi:n V t, Π (3.1)

Ή:n <L E/ΐ:n+l V i, U (3.2)

<L #n-j:n V J, fl (3.3)

<L #n+l:2n+l V Π. (3.4)

It is not always easy to intuitively grasp the concept of Lorenz ordering
of order statistics. It must be recalled that it is a "measure of variability"
that refers to scaled variables. Included in (3.1) to (3.4) are the observations:
(i) larger order statistics in a sample exhibit less inequality than smaller ones
within the same sample (from (3.1), (ii) Sample minima exhibit more inequal-
ity as sample size increases (from (3.2)), (iii) Sample maxima exhibit less
inequality as sample size increases and (iv) Sample medians exhibit less in-
equality as sample size increases. Certainly the last observation has a ring of
plausibility, the others are perhaps less compelling. Note that (3.1) is actually
a consequence of (3.2) and (3.3).

Relations (3.1) and (3.2) are simple consequences of Strassen's theorem
(Theorem 2.1, above). First recall that Ui:n ~ Beta(i,n + 1 — i) and that if
Zi, Z2 are independent Beta random variables with parameters (α, b — a) and
(6,c— b) then Z1Z2 ~ Beta(a,c — a). This implies that

UiM=UiάUi+lM (3.5)



B. C. ARNOLD and J. A. VILLASENOR 41

and

Ui:n+l = Ui:nUn+ι:n+iy (3.6)

where the r.v.'s on the right hand sides are independent. In (3.5) and (3.6) and

henceforth we adopt the convention that if two random variables are labelled

identically except that one has a "prime" appended then they are i.i.d. copies

of the same random variable (i.e. X and X1 are i.i.d. with common distribution

function Fχ(x)). It follows that

and

( Ξ τ £ ) Ui:niE (CWl' uLn) (3 8)

Results (3.1) and (3.2) follow from (3.7) and (3.8) by a direct application of

Theorem 2.1 (using the fact that the Lorenz order is scale invariant).

Relations (3.3) and (3.4) are not transparently amenable to a proof using

Strassen's theorem. We are grateful to a referee for the following Strassen

type argument which proves (3.3). Consider n ordered uniform observations

Ui.n < U2:n < ••• < Un:n and an additional independent observation Un+ι.

Combined they form a sample of size n +1 whose n + 1 —jth order statistic will

be denoted by ί7n+i_j :n+i. Note that the event {i7n+i > f7n+i_j:rι+i} depends

only on the rank of {7n+i and is independent of the vector of order statistics

> #n+i:n+i} Observe that

{ +

Un-j:n+l

and that

Pr(tΓn + 1 > J7n+l-j:n+l) = (j + l)/(n + 1).

Consequently

E(Un-j:n

from which (3.3) follows. Relation (3.4) (as well as (3.1) - (3.3)) is verifiable

by a straightforward if tedious application of the density crossing theorem
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(Theorem 2.2). Details are documented in Arnold and Villaseήor (1984). A
key ingredient in the argument is that unsealed Beta densities with differing
parameters cross at most twice (a result carefully enunciated in a different
context by Boland, Proschan and Tong (1988)).

4. Examples and Counterexamples. Observe that in expressions
(3.1) - (3.3) it is always the order statistic with smaller mean which exhibits the
most inequality in the sense of Lorenz. One might conjecture that a sufficient
condition for Ui:n <L Uj:m is that i/(n + 1) > j/(m + 1). Such a result cannot
be true since, were it to be the case, we would have Uχ:ι <L #2:3 <L U\Λ
which would imply £7i:i=cί72:3, which is clearly false.

A second question is whether results (3.1) - (3.4) will hold for order
statistics from any parent distribution. For a simple source of counterexamples
consider samples from a discrete uniform distribution over the points 1, 2, 3, 4.
By direct evaluation of Lorenz curves it may be verified that the Lorenz curves
of Xχ:3 and X2:3 intersect (so (3.1) fails), the Lorenz curves of Xχ:2 and X1.3
intersect (so (3.2) fails) and the Lorenz curves of X2.2 a n d -̂ 3:3 intersect (so
(3.3) fails). Relation (3.4) will fail for many asymmetric parent distributions.

Not only is it possible to have (3.1), (3.2) and (3.3) fail to hold for some
non-uniform parent distribution, it is actually possible to have the reverse
inequalities hold true. For example if we consider samples drawn from the
distribution F(x) = 1 - x""2, x > 1 (a classical Pareto distribution), then by
direct computation of the corresponding Lorenz curves one may verify that

^1:2 <L -XΊ:1 <L -^2:2

i.e. inequalities (3.1), (3.2) and (3.3) are reversed.

5. Lorenz Ordering of Order Statistics from a Non-Uniform
Parent Distribution. From the discussion in Section 4, we cannot expect
(3.1) - (3.4) to hold for arbitrary parent distributions. Using Theorems 2.1 -
2.3 it is possible to develop sufficient conditions for some of the inequalities
included in (3.1) - (3.4). Sufficient conditions for the reverse inequalities are
also sometimes obtainable. First we consider results obtainable using Theorem
2.1.

Observe that if X = cUδ where U is uniform (0,1), c> 0 and δ > - 1 [in
order to have E(X) < oo] then

Xi:nMUi:n)6 if 6 > 0 (5.1)

and
Xt : n =c(t f n _ i + 1 : n ) 5 if ίe(-l,0) (5.2)
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(the case δ = 0 is of no interest). We then obtain

THEOREM 5.1. (a) IfX has a power function (7) distribution [i.e. Fχ(x) =

[z/c]7,0< x < c,7 > 0] then

Xi+V.n <L Xi:n V i, Π (5.3)

and

Xi:n<LXi:n+l V t, 11. (5.4)

(b) If X has a classical Pareto distribution [i.e. F(x) = 1 — (#/c)~α,

c < a; < oo, α > lj then

Xt:n<L^+l:n V ί, ίl (5.5)

and

Xn-jin <L Xn-j+l:n+l V j , Π. (5.6)

PROOF. TO verify (5.3), note that (3.5) implies

where the random variables on the right hand side are independent. Equation

(5.3) is then a direct consequence of Theorem 2.1.

Analogous arguments yield (5.4) - (5.6).

The key ingredient in the proof of Theorem 5.1 was the simple form of the

inverse distribution function in the power function and Pareto cases. For more

complicated inverse distribution functions, Theorem 2.1 appears to be difficult

to apply. In fact, there is a paucity of well known distributions for which F"1

has an analytic expression. It is more common to encounter analytic expres-

sions for the corresponding density, so that one might hope for more results

using Theorem 2.2. This hope is buttressed by our recollection that Theorem

2.2 provided the most fertile source of results in the case of a uniform par-

ent distribution. In order to apply Theorem 2.2 to order statistics X ι : n ,Xj : m

from a general parent distribution we need to evaluate μ ί : n = E(Xi:n) and

μj:m = E(Xj:m) and then consider sign changes in the expression

(5-7)

One case in which (5.7) is relatively easy to study is that in which μj:m = μ ί : n.

If X has a symmetric distribution on [0,c] then all sample medians have the

same mean as does X, i.e.

V U ( 5 8 )
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Actually a non-negative random variable has property (5.8) if and only if the

parent distribution is symmetric on [0,c] for some finite c. Assume we have

such a symmetric parent distribution and we wish to compare (in the Lorenz

order) Xn+i:2n+i a n d ^n+2:2n+3 The following argument was supplied in

Arnold and Villaseήor (1986). Since μn+i:2n+i = /M-2:2n+3 we need only

consider
/n+2:2n+3(g) „, vM „, ΛΊ (4n + 6)
7 7-τ = F(x)[l - F(x)\ (5.9)
/n+l:2n+l(3) (n + 1)

Clearly this is > 1 for intermediate values of x and consequently, from Theorem
2.2,

^π+2:2n+3 <L -X"n+l:2n+l V Π (5.10)

assuming only that the parent distribution is symmetric.

As a consequence of (5.10) we have

(Xn+2:2n+3) < VaΓ (Xn+l:2n+l) (5.11)

Yang (1982) observed that var(Xn+i : 2n+i) < var(Xi :i) for any continuous
distribution, symmetric or not. An example in which (5.10) does not hold in
the absence of symmetry is provided by the parent distribution with inverse
F"1(y) = y 0 0 1 , 0 < y < 1. In this case, one may verify directly that X2:3 ^ L

Xl:l

The sign change property (5.7) will be useful if we are dealing with cases
in which the ratio of the expectations of order statistics is simple and in which
the parent distribution function is uncomplicated. Again we fall back on the
power function, Pareto and exponential distribution as illustrative examples.

Power function distribution. Here F(x) = (f ) 7 , 0 < x < c, 7 > 0;

/(*) = ? (?Γ~\ 0 < x < c; F~\y) = q r and ^ = (l + £ ) . In order
to verify that Xi:n >L Xi+im we need to consider.

*)/*,...

ΈΰF)
Let η = 1 + ^ > 1. Then we have

This is > 1 for intermediate values of x. We thus confirm (5.3). In similar

fashion we may verify that for a power function parent distribution we have

Xi:n <L Xi:n+l V ΐ, 71
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and
<L Xn-j:n V j , Π.

Thus (3.1) - (3.3) hold for the power function distribution.

Analogous density crossing arguments may be applied in the case where
the Xi's have a Pareto distribution. In this case one finds that (3.1) - (3.3)
are reversed.

Consider now the case of an exponential parent distribution. Here F(x) =

l - β - t , x > 0; f{χ) = le-S; F~\y) = -clog(l-y) and ^ = ( Σ J + i _ i _

/ ( Σ J = 1 n - j+l) = *? S ay I n O Γ ( i e Γ t O v e r ify ^ a t X*+i:n <L -ϊi:n w ^ need to
consider

ηfxi+1:n(.ηx) __ (i-β-Wc)' 6-^(n-»-i)/c 6-Wc

/ ^ n ί * ) K (1 - e-*/")1"1

 β-«(»-0/ce-*/β

In general this is a difficult expression to deal with. It is considerably simplified
if we consider the special case n = 2,i = 1, in which case η = 3. Here, with
c = 1 without loss of generality,

which is clearly > 1 for intermediate values of e~x and hence of x. We thus
have in the case of an exponential parent distribution

-^2:2 <L -X"l:2

Recently Wilfing (1990) has been able to verify that, for exponential variables,
-^n+i:2n+i ^L ^n:2n-i using a density crossing argument. But in general
density crossing arguments are difficult to implement.

An alternative approach to the exponential problem involves the repre-
sentation of Xi:n as a linear combination of i.i.d. exponential random variables.
This technique was used by Karlin and Rinott (1988) to compare exponential
means and medians. Subsequently in Arnold and Nagaraja (1990) the tech-
nique was used to obtain the following general result.

THEOREM 5.2. If X has an exponential distribution and i < j then the
following are equivalent.

(ί) Xj:m <L Xim

) < (m - j + l)E(Xjιm) .

As a consequence of this theorem, one finds that for an exponential par-
ent, (3.3) and (3.4) hold, (3.2) is reversed and (3.1) holds for values of i that
are not too large. A sufficient condition for (3.1) to hold (i.e. -X"t +i : n < L Xim)
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is that i < (1 - e - 1 )n . For example if n = 4 one finds XS A <L X2Λ <L XI Λ

but X3:4 and X4.4 are not Lorenz comparable.

Finally we inquire into the utility of Theorem 2.3 to verify Lorenz ordering

among order statistics. We consider first sufficient conditions for X +im <L

Xi:n. From (3.5) we may conclude that

where the two random variables on the right are independent. Theorem 2.3

may be applied and a sufficient condition for Xi+\m <L Xi-.n is that

F-1 (uF(x)) /x T as x | (5.12)

for every u 6 (0,1). It is readily verified that (5.12) is trivially satisfied when

F corresponds to a uniform or power function distribution. A simple sufficient

condition for (5.12) is that

xF\x)/F(x) t a s x | . (5.13)

An example in which (5.13) holds and hence Xi+ι:n <L Xim is provided by

the distribution function

F(x) = ex - 1, 0 < x < log 2. (5.14)

Condition (5.13) is sufficient but not necessary. For example, in the case of

an exponential parent distribution, (5.13) fails yet X2:2 ^L ^1:2 ( a s w e saw

earlier). By analogous arguments using (3.6) we may verify that conditions

(5.12) and (5.13) are also sufficient to ensure that X{:n <L J

6. Concluding Remarks. The problem of identifying necessary and

sufficient conditions for Lorenz ordering among order statistics from a general

parent distribution remains open. We conclude with a final example to show

how fragile the Lorenz order is. Consider a sample of size 2 from a uniform

(0,1) distribution. We know that 1/2:2 ^L U1.2 yet if we consider X{ = U{ +

6, i = 1,2 (i.e. uniform (e, 1 + e) random variables) then one may verify that

Xi:2 and X2:2 are not Lorenz comparable: no matter how small e may be.
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