3 The First Variation

Let $X: M \hookrightarrow \mathbf{R}^{3}$ be a regular surface and $(U,(x, y))$ be a coordinate neighbourhood. Let $X_{1}=X_{x}, X_{2}=X_{y}, g_{i j}=X_{i} \bullet X_{j}$, and $g=\operatorname{det}\left(g_{i j}\right)$. Then

$$
d A:=\sqrt{g} d x \wedge d y
$$

is a well defined two form on M and $d A \neq 0$ everywhere.
Let $f: M \rightarrow \mathbf{R}$ be a continuous function of compact support, or suppose f does not change sign on M, then the integral of f on M is defined by

$$
\int_{M} f:=\int_{M} f d A .
$$

When M is precompact and $f \equiv 1, \int_{M} d A$ is the area of the surface $X: M \hookrightarrow \mathbf{R}^{3}$.
The adjective "minimal" of minimal surfaces comes from the fact that at any point of the surface there exists a neighbourhood such that the surface in that neighbourhood has the least area among all surfaces with the same boundary.

To be precise, let $\Omega \subset M$ be a precompact domain and $X: \Omega \rightarrow \mathbf{R}^{3}$ be a surface. Let $X(t): \Omega \rightarrow \mathbf{R}^{3},-1<t<1$ and $X(0)=X$, such that $\left.X(t)\right|_{\partial \Omega}=\left.X\right|_{\partial \Omega}$, and $X(t, p)=X(t)(p)$ is C^{2} on $\Omega \times(-1,1)$. Such a family of surfaces is called a variation of X.

Consider the area functional

$$
A(t)=\int_{\Omega} d A_{t},
$$

where $d A_{t}$ is the area form induced by $X(t)$. The definition of minimal surface from the point view of the calculus of variations is that for any variation family $X(t)$,

$$
\begin{equation*}
\left.\frac{d A(t)}{d t}\right|_{t=0}=0 \tag{3.2}
\end{equation*}
$$

We will prove that this is another equivalent definition of minimal surface.
Without loss of generality, we may assume that X is conformal. Let $p \in \Omega$ and $p \in U \subset \Omega$ be an isothermal coordinate neighbourhood of p for X. On $U, d A_{t}$ is expressed as

$$
d A_{t}=\sqrt{\operatorname{det}\left[g_{i j}(t)\right]} d x \wedge d y
$$

where $z=x+i y$ is the isothermal coordinate and $g_{i j}(t)=X_{i}(t) \bullet X_{j}(t)$ (note that z may not be an isothermal coordinate for $X(t))$. Hence

$$
\begin{gathered}
\left.\frac{d}{d t}\right|_{t=0} \int_{U} d A_{t}=\left.\int_{U} \frac{d}{d t}\right|_{t=0} d A_{t}=\left.\int_{U} \frac{d \sqrt{\operatorname{det}\left[g_{i j}(t)\right]}}{d t}\right|_{t=0} d x \wedge d y \\
=\left.\frac{1}{2} \int_{U} \frac{d \operatorname{det}\left[g_{i j}(t)\right]}{d t}\right|_{t=0}\left\{\operatorname{det}\left[g_{i j}(0)\right]\right\}^{-1 / 2} d x \wedge d y
\end{gathered}
$$

