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x = mi is inductive finite. But according to a previous theorem then also the
set of the x ^ m must be inductive finite. Therefore the set of all x i y is
inductive finite for arbitrary y. Taking y then as the last element, one sees
the truth of the theorem.

Using the last theorems we obtain another version of the proof of the
statement that every inductive infinite set M is Dedekind infinite. However
we must also use the well-ordering theorem, so that this proof depends on
the axiom of choice as well. Let M be well-ordered. Then after our pre-
ceding results this well-ordering of M cannot simultaneously be an inverse
well-ordering. Thus there is a subset Mi ̂  0 without a last element. The
set of all elements x = an element y of MI is then an initial part N of M
without last element. Every element n of N has a successor n'eN. We may
then define a mapping f of M into a proper part of M by putting f(n) = nf for
every neN and f(n) = n for every n not eN. '

10. The simple infinite sequence. Development of arithmetic

Let M be a Dedekind infinite set, f a one-to-one correspondence between
M and a proper part Mf of M. Let 0 denote an element of M not in Mf. I
denote generally by af the image f(a) of a, also by Pf, when PEM, the set
of all pf = f(p) when p runs through P. Let N be the intersection of all sub-
sets X of M possessing the two properties

1) OeX, 2) (x)(xeX-»x'eX).

Then N is called a simple infinite sequence or the f-chain from 0. We may
say that it is the natural number series. It is evident that N has the proper-
ties 1) and 2). Further we have the principle of induction: A set containing
0 and for every x in it also containing x1 contains N.

Theorem 46. (y)(yeN -»(Ex)(y = xf) & (xeN) • v • y = 0).

This means that any element of N is either 0 or the f-image of another ele-
ment of N. The proof is easy: Let us assume that neN and ^ 0 and ^ every
xf when xeN. Then N-{n} would still possess the properties 1) and 2), which
is absurd.

In order to develop arithmetic it is above all necessary to define the two
fundamental operations addition and multiplication. Usually these as well as
any other arithmetical functions are introduced by the so-called recursive
definitions. I shall show how we are able to use here the ordinary explicit
definitions which can be formulated with the aid of the predicate calculus. I
shall introduce addition and multiplication by defining the sets of ordered
triples (x,y,z) such that x + y = z resp. xy = z.

We may consider the sets X of triples (a,b,c), where a,b.,c are eN,
which have the two properties:

1) All triples of the form (a,0,a) are eX.

2) Whenever (a,b,c) is eX, (a,b',cf) is eX.


