
Chapter 1

Introduction

1.1. Definition

All models are wrong, but some are useful. Many statisticians know and appreciate
G.E.P. Box’s comment on statistical modeling (Box, 1979). Often the choice of
the final inference model is a compromise of an accurate representation of the
experimental conditions, a preference for parsimony and the need for a practicable
implementation. However, these competing goals are not always honestly spelled
out, and the resulting uncertainties are not fully described.

Over the last 20 years a powerful inference approach that allows us to mitigate
some of these limitations has become increasingly popular. Bayesian nonparametric
(BNP) inference allows us to acknowledge uncertainy about an assumed model while
maintaining a practically feasible inference approach. We could take this feature
as a pragmatic characterization of BNP as flexible prior probability models that
generalize traditional models by allowing for positive prior probability for a very
wide range of alternative models, while centering the prior around a parsimonious
traditional model. A more formal definition of BNP is as probability models on
infinite dimensional parameter spaces, such as functional spaces.

Example 1 (Density estimation) Consider a simple random sample yi ∼ F
i.i.d., i = 1, . . . , n, from some unknown distribution F . Bayesian inference requires
that the model be completed with a prior for the unknown F in the sampling model.
One could proceed by restricting F to a normal location family, F = N(θ, 1). The
model F is indexed by a finite dimensional parameter vector θ and the model is com-
pleted with a prior probability model for the finite dimensional θ. We are back to
parametric Bayesian inference. Figure 1.1a shows the resulting inference conditional
on an assumed random sample y. Naturally, inference about the unknown F is re-
stricted to the assumed normal location family and does not allow for multimodality
or skewness. In contrast, a BNP model would proceed with a prior probability model
p(F ) for the unknown distribution. Figure 1.1b contrasts the parametric inference
with the flexible BNP inference under a Dirichlet process mixture prior.

In Example 1 the infinite dimensional random quantity is an unknown distribu-
tion. Alternatively, the infinite dimensional quantity might be the unknown mean
function f(·) in a regression problem, a response surface, a spectral density, or per-
haps an autoregressive mean function in a nonparametric time series model. In the
rest of these notes we will mostly focus on problems where the infinite dimensional
quantity is an unknown probability measure F (·), as in example 1. The reason for
this focus is simply tradition; most BNP models in the recent literature consider
random probability measures.
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