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1. Introduction

Since the pioneer work of A. M. McKendrick in 1926, many authors have
contributed to the advancement of the stochastic theory of epidemics, including
Bartlett [4], Bailey [1], D. G. Kendall [12], Neyman and Scott [13], Whittle
[16], to name a few. Mathematical complexity involved in some of the epidemic
models has aroused the interest of many others. For example, the general sto-
chastic epidemic model where a population consists of susceptibles, infectives,
and immunes (see [2], p. 39), has motivated Kendall to suggest an ingenious de-
vice. Other authors also have investigated various aspects of the problem. (See,
for example, Daniels [8], Downton [9], Gani [11] and Siskind [15].) The model
discussed in the present paper deals with a closed population without removal
of infectives, a special case of which has been studied very extensively by Bailey
[3]. Following Bailey, we label it "a time dependent simple stochastic epi-
demic."

In a simple stochastic epidemic model, a population consists of two groups of
individuals: susceptibles and infectives; there are no removals, no deaths, no
immunes, and no recoveries from infection. At the initial time t = 0, there are
N susceptibles and 1 infective. For each time t, for t > 0, there are a number of
infectives denoted by Y(t) and a number of uninfected susceptibles X(t), with
Y(t) + X(t) = N + 1, the total population size remaining unchanged. Our pri-
mary purpose is to derive an explicit solution for the probability distribution
of the random variable Y(t),
(1) P1n(O, t) = Pr{Y(t) = nIY(O) = 1}, n = 1,** N + 1.

For each interval (T, t), 0 : T . t <0, and for each n, we assume the exist-
ence of a nonnegative continuous function #%(T) such that

a) -#[(T) form = n,
(2) t Pn.(Tt)| =.e 6n(T) form = n + 1,

O otherwise.

Under the assumption of homogeneous mixing of the population, we let
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