STOCHASTIC MAJORIZATION OF THE LOG-EIGENVALUES OF A BIVARIATE WISHART MATRIX¹

BY MICHAEL D. PERLMAN University of Washington

Let $l = (l_1, l_2)$ and $\lambda = (\lambda_1, \lambda_2)$, where $\lambda_1 \ge \lambda_2 > 0$ are the ordered eigenvalues of S and Σ , respectively, and $\mathbf{S} \sim W_2(n, \Sigma)$ is a bivariate Wishart matrix. Let $\mathbf{m} = (m_1, m_2)$ and $\mu = (\mu_1, \mu_2)$, where $m_i = \log l_i$ and $\mu_i = \log \lambda_i$. It is shown that $P_{\mu}\{\mathbf{m} \notin B\}$ is Schurconvex in μ whenever B is a Schur-monotone set, i.e. $[\mathbf{x} \in B, \mathbf{x} \text{ majorizes } \mathbf{x}^*] \Rightarrow \mathbf{x}^* \in B$. This result implies the unbiasedness and power-monotonicity of a class of invariant tests for bivariate sphericity and other orthogonally invariant hypotheses.

1. Introduction. Let $\mathbf{S} \sim W_2(n, \Sigma)$ be a bivariate Wishart matrix with *n* degrees of freedom $(n \ge 2)$ and expected value $n\Sigma$ (Σ positive definite). We shall be concerned with the power functions of orthogonally invariant tests for invariant testing problems such as the following:

(1.1)

$$H_{01}: \Sigma = \sigma^{2}\mathbf{I}, \sigma^{2} arbitrary vs. K_{1}: \Sigma arbitrary$$

$$H_{02}: \Sigma = \mathbf{I} vs. K_{2}: \Sigma arbitrary$$

$$H_{03}: \Sigma = \mathbf{I} vs. K_{3}: \Sigma - \mathbf{I} positive definite$$

$$H_{04}: \Sigma = \mathbf{I} vs. K_{4}: \Sigma - \mathbf{I} negative definite.$$

Orthogonally invariant tests depend on S only through $l = (l_1, l_2)$, where $l_1 \ge l_2(>0)$ are the ordered eigenvalues of S. Because the power functions of such tests depend on Σ only through $\lambda = (\lambda_1, \lambda_2)$, where $\lambda_1 \ge \lambda_2$ (> 0) are the ordered eigenvalues of Σ , we may assume throughout this paper that $\Sigma = \mathbf{D}_{\lambda} \equiv diag(\lambda_1, \lambda_2)$.

The notions of majorization and Schur-convexity play an important role in determining such properties as unbiasedness and power monotonicity of invariant tests. To illustrate, consider the likelihood ratio test (LRT) for testing H_{01} (bivariate sphericity) vs. K_1 . The acceptance region can be expressed in the equivalent forms

(1.2)
$$\{\mathbf{S}|tr\mathbf{S}/|\mathbf{S}|^{1/2} \leq c\} \Leftrightarrow \{l|(l_1+l_2)/(l_1l_2)^{1/2} \leq c\}.$$

Since

(1.3)
$$tr\mathbf{S}/|\mathbf{S}|^{1/2} = (s_{11} + s_{22})/((s_{11}s_{22})^{1/2}|\mathbf{R}|^{1/2}) = (e^{t_1} + e^{t_2})/(e^{(t_1 + t_2)/2}|\mathbf{R}|^{1/2}),$$

where $\mathbf{S} = (s_{ij})_{i,j=1,2}$, **R** is the sample correlation matrix, and $t_i = \log s_{ij}$, and since s_{11} , s_{22} , and **R** are independent with $s_{ii} \sim \lambda_i \chi_n^2$ when $\Sigma = D_{\lambda}$, conditioning on **R** reduces the problem to the study of the power function of the LRT for equality of scale parameters ($\lambda_1 = \lambda_2$) based on the independent χ^2 -variates s_{11} and s_{22} with equal degrees of freedom. It is easy to show that the joint density of $\mathbf{t} \equiv (t_1, t_2)$ is Schur-concave (in fact, permutationinvariant and log concave) with location parameter $\mu \equiv (\mu_1, \mu_2) \equiv (\log \lambda_1, \log \lambda_2)$, and that for fixed **R** the region

¹ This research was supported in part by National Science Foundation Grants MCS 80-02167 and MCS 83-01807.

AMS 1980 subject classifications. Primary 62H15; Secondary 62H10.

Key words and phrases: Bivariate Wishart distribution, log-eigenvalues, stochastic majorization, Schur function.