The Sample Size for Estimating the Binomial Parameter with a Given Margin of Error

By B.K. Ghosh and Wei-Min Huang
Lehigh University

Consider the problem of constructing an estimator $T\left(X_{n}\right)$ for the binomial p and determining the smallest sample size N_{T} such that, for specified values of (γ, δ) and for all $n \geq N_{T}$, the interval $T\left(X_{n}\right) \pm \delta$ contains the true value of p with a minimum probability γ. In principle, any conventional $100 \gamma \%$ confidence interval for p can be adapted to solve the present problem. We show that, for small δ, all known confidence intervals effectively lead to the estimator $T_{b}\left(X_{n}\right)=\left(X_{n}+\frac{1}{2} b\right)(n+b)^{-1}$ with the sample size $N_{b} \approx(z / 2 \delta)^{2}+\delta^{-1}$, where z is the $\frac{1}{2}(1+\gamma)$ quantile of the standard normal distribution and $b \geq 0$ is a specified constant which does not depend on n. The major purpose of this paper is to propose the estimator $T^{*}\left(X_{n}\right)=\left(X_{n}+\frac{1}{2} a_{\gamma} \sqrt{n}\right)\left(n+a_{\gamma} \sqrt{n}\right)^{-1}$ with sample size $N^{*} \approx\left\{(z / 2 \delta)-a_{\gamma}\right\}^{2}+\delta^{-1}$, where $a_{\gamma}=1$ when $\gamma \geq .917$ and $0 \leq a_{\gamma}<1$ is defined in (1.10) when $\gamma<.917$. The proposed method is more efficient in the sense that $N^{*}<N_{b}$ for any $b \geq 0$. These asymptotic conclusions are shown to be quite adequate for arbitrary values of $\delta \in[.01, .10]$ and $\gamma \in[.90, .99]$ by making exact calculations for the minimum coverage probabilities of $T_{b}\left(X_{n}\right) \pm \delta$ and $T^{*}\left(X_{n}\right) \pm \delta$ as well as for N_{b} and N^{*}.

1. Introduction. An ubiquitous but rarely researched problem of practical statistics arises in the context of a binomial distribution. Suppose we can observe the number of "successes" X_{n} in n independent "trials", each trial having the same unknown probability of success $p, 0<p<1$. Let $\gamma \in(0,1)$ be a specified confidence level and $\delta \in\left(0, \frac{1}{2}\right)$ be a specified margin of error. Then the problem is to construct an estimator $T\left(X_{n}\right)$ for p and predetermine the (smallest) sample size N_{T} such that

$$
\begin{equation*}
\inf _{0<p<1} \gamma_{T}(p, n) \geq \gamma \text { for all } n \geq N_{T} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{T}(p, n)=P_{p}\left(\left|T\left(X_{n}\right)-p\right| \leq \delta\right) \tag{1.2}
\end{equation*}
$$

is the coverage probability of the interval $T\left(X_{n}\right) \pm \delta$. The implication of (1.1) is, of course, that $T\left(X_{n}\right) \pm \delta$ contains the true value of p with a minimum probability γ for any $n \geq N_{T}$. We allow $T\left(X_{n}\right)$ to involve γ and, clearly, $\gamma_{T}(p, n)$ will involve δ while N_{T} will generally depend on both γ and δ. We will sometimes qualify $\gamma_{T}(p, n)$ and N_{T} with the word exact in order to emphasize that (1.2) and N_{T} are computed under the binomial distribution of X_{n}. The problem just described is encountered almost daily in opinion polls, market research, clinical trials and quality control, where one usually chooses $.90 \leq \gamma \leq .99$ and $.01 \leq \delta \leq .10$. Note that for any given $\delta \geq \frac{1}{2}$ the trivial choice $T\left(X_{n}\right)=\frac{1}{2}$ with $N_{T}=0$ provides a solution. Clearly, if $T\left(X_{n}\right)$ and $T^{*}\left(X_{n}\right)$ are two competing estimators and their sample sizes satisfy $N_{T}>N_{T^{*}}$, one should prefer to use $T^{*}\left(X_{n}\right) \pm \delta$. Indeed, a main

