SECTION 8

Uniform Laws of Large Numbers

For many estimation procedures, the first step in a proof of asymptotic normality is an argument to establish consistency. For estimators defined by some sort of maximization or minimization of a partial-sum process, consistency often follows by a simple continuity argument from an appropriate uniform law of large numbers. The maximal inequalities from Section 7 offer a painless means for establishing such uniformity results. This section will present both a uniform weak law of large numbers (convergence in probability) and a uniform strong law of large numbers (convergence almost surely).

The proof of the weak law will depend upon the following consequence of the first two lemmas from Section 3: for every finite subset \mathcal{F} of \mathbb{R}^n ,

(8.1)
$$\mathbb{P}_{\sigma} \max_{\mathfrak{F}} |\sigma \cdot \mathbf{f}| \leq C \max_{\mathfrak{F}} |\mathbf{f}|_2 \sqrt{2 + \log(\#\mathcal{F})}.$$

Here $\#\mathcal{F}$ denotes the number of vectors in \mathcal{F} , as usual, and C is a constant derived from the inequality between \mathcal{L}^1 and \mathcal{L}^{Ψ} norms.

- (8.2) THEOREM. Let $f_1(\omega,t)$, $f_2(\omega,t)$, ... be independent processes with integrable envelopes $F_1(\omega)$, $F_2(\omega)$, If for each $\epsilon > 0$
 - (i) there is a finite K such that

$$\frac{1}{n}\sum_{i\leq n}\mathbb{P}F_i\{F_i>K\}<\epsilon \qquad \text{for all } n,$$

 $egin{align} (ii) & \log D_1(\epsilon|\mathbf{F}_n|,\mathcal{F}_{n\omega}) = o_p(n), \ then & & rac{1}{n} \sup_t |S_n(\omega,t) - M_n(t)|
ightarrow 0 & in probability. \ \end{pmatrix}$

PROOF. Let us establish convergence in \mathcal{L}^1 . Given $\epsilon > 0$, choose K as in assumption (i) and then define $f_i^*(\omega,t) = f_i(\omega,t)\{F_i(\omega) \leq K\}$. The variables