SECTION 4

Packing and Covering in Euclidean Spaces

The maximal inequality from Theorem 3.6 will be useful only if we have suitable bounds for the packing numbers of the set \mathcal{F} . This section presents a method for finding such bounds, based on a geometric property that transforms calculation of packing numbers into a combinatorial exercise.

The combinatorial approach generalizes the concept of a Vapnik-Červonenkis class of sets. It identifies certain subsets of \mathbb{R}^n that behave somewhat like compact sets of lower dimension; the bounds on the packing numbers grow geometrically, at a rate determined by the lower dimension. For comparison's sake, let us first establish the bound for genuinely lower dimensional sets.

(4.1) Lemma. Let \mathcal{F} be a subset of a V dimensional affine subspace of \mathbb{R}^n . If \mathcal{F} has finite diameter R, then

$$D(\epsilon,\mathfrak{F}) \leq \left(\frac{3R}{\epsilon}\right)^V \qquad \textit{for } 0 < \epsilon \leq R.$$

PROOF. Because Euclidean distances are invariant under rotation, we may identify $\mathcal F$ with a subset of $\mathbb R^V$ for the purposes of calculating the packing number $D(\epsilon,\mathcal F)$. Let $\mathbf f_1,\ldots,\mathbf f_m$ be points in $\mathcal F$ with $|\mathbf f_i-\mathbf f_j|>\epsilon$ for $i\neq j$. Let B_i be the (V-dimensional) ball of radius $\epsilon/2$ and center $\mathbf f_i$. These m balls are disjoint; they occupy a total volume of $m(\epsilon/2)^V\Gamma$, where Γ denotes the volume of a unit ball in $\mathbb R^V$. Each $\mathbf f_i$ lies within a distance R of $\mathbf f_1$; each B_i lies inside a ball of radius $^3/_2R$ and center $\mathbf f_1$, a ball of volume $(^3/_2R)^V\Gamma$. It follows that $m\leq (3R/\epsilon)^V$. \square

A set of dimension V looks thin in \mathbb{R}^n . Even if projected down onto a subspace of \mathbb{R}^n it will still look thin, if the subspace has dimension greater than V. One way to capture this idea, and thereby create a more general notion of a set being thin, is to think of how much of the space around any particular point can be occupied by