
SECTION 4 

Packing and Covering 
in Euclidean Spaces 

The maximal inequality from Theorem 3.6 will be useful only if we have suitable 
bounds for the packing numbers of the set :J. This section presents a method for 
finding such bounds, based on a geometric property that transforms calculation of 
packing numbers into a combinatorial exercise. 

The combinatorial approach generalizes the concept of a Vapnik-Cervonenkis 
class of sets. It identifies certain subsets of IRn that behave somewhat like compact 
sets of lower dimension; the bounds on the packing numbers grow geometrically, 
at a rate determined by the lower dimension. For comparison's sake, let us first 
establish the bound for genuinely lower dimensional sets. 

( 4.1) LEMMA. Let :J be a subset of a V dimensional affine subspace of IRn. If :J 
has finite diameter R, then 

( 3R)v D(t, :J) 5 -~: for 0 < t 5 R. 

PROOF. Because Euclidean distances are invariant under rotation, we may 
identify :J with a subset of IR v for the purposes of calculating the packing number 
D( E, :J). Let f1, ... , fm be points in :J with /fi - fj / > t for i =I= j. Let Bi be the 
(V-dimensional) ball of radius ~:/2 and center fi. These m balls are disjoint; they 
occupy a total volume of m(~:/2)vr, where r denotes the volume of a unit ball 
in IR v. Each fi lies within a distance R of f1; each Bi lies inside a ball of radius 
3/2R and center f 1 , a ball of volume (3/2R)vr. It follows that m 5 (3R/t)v. D 

A set of dimension V looks thin in !Rn. Even if projected down onto a subspace 
of IRn it will still look thin, if the subspace has dimension greater than V. One way 
to capture this idea, and thereby create a more general notion of a set being thin, is 
to think of how much of the space around any particular point can be occupied by 
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