SECTION 4

Packing and Covering in Euclidean Spaces

The maximal inequality from Theorem 3.6 will be useful only if we have suitable bounds for the packing numbers of the set \mathcal{F}. This section presents a method for finding such bounds, based on a geometric property that transforms calculation of packing numbers into a combinatorial exercise.

The combinatorial approach generalizes the concept of a Vapnik-Červonenkis class of sets. It identifies certain subsets of \mathbb{R}^{n} that behave somewhat like compact sets of lower dimension; the bounds on the packing numbers grow geometrically, at a rate determined by the lower dimension. For comparison's sake, let us first establish the bound for genuinely lower dimensional sets.
(4.1) Lemma. Let \mathcal{F} be a subset of a V dimensional affine subspace of \mathbb{R}^{n}. If \mathcal{F} has finite diameter R, then

$$
D(\epsilon, \mathcal{F}) \leq\left(\frac{3 R}{\epsilon}\right)^{V} \quad \text { for } 0<\epsilon \leq R
$$

Proof. Because Euclidean distances are invariant under rotation, we may identify \mathcal{F} with a subset of \mathbb{R}^{V} for the purposes of calculating the packing number $D(\epsilon, \mathcal{F})$. Let $\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}$ be points in \mathcal{F} with $\left|\mathbf{f}_{i}-\mathbf{f}_{j}\right|>\epsilon$ for $i \neq j$. Let B_{i} be the (V-dimensional) ball of radius $\epsilon / 2$ and center \mathbf{f}_{i}. These m balls are disjoint; they occupy a total volume of $m(\epsilon / 2)^{V} \Gamma$, where Γ denotes the volume of a unit ball in \mathbb{R}^{V}. Each \mathbf{f}_{i} lies within a distance R of \mathbf{f}_{1}; each B_{i} lies inside a ball of radius $3 / 2 R$ and center \mathbf{f}_{1}, a ball of volume $(3 / 2 R)^{V} \Gamma$. It follows that $m \leq(3 R / \epsilon)^{V}$.

A set of dimension V looks thin in \mathbb{R}^{n}. Even if projected down onto a subspace of \mathbb{R}^{n} it will still look thin, if the subspace has dimension greater than V. One way to capture this idea, and thereby create a more general notion of a set being thin, is to think of how much of the space around any particular point can be occupied by

