SECTION 4

Packing and Covering
in Euclidean Spaces

The maximal inequality from Theorem 3.6 will be useful only if we have suitable
bounds for the packing numbers of the set F. This section presents a method for
finding such bounds, based on a geometric property that transforms calculation of
packing numbers into a combinatorial exercise.

The combinatorial approach generalizes the concept of a Vapnik-Cervonenkis
class of sets. It identifies certain subsets of R™ that behave somewhat like compact
sets of lower dimension; the bounds on the packing numbers grow geometrically,
at a rate determined by the lower dimension. For comparison’s sake, let us first
establish the bound for genuinely lower dimensional sets.

(4.1) LEMMA. Let F be a subset of a V dimensional affine subspace of R™. If F
has finite diameter R, then

1%
D(e,F) < (%) for 0 < e < R.

ProOF. Because Euclidean distances are invariant under rotation, we may
identify F with a subset of R for the purposes of calculating the packing number
D(e,F). Let fi,...,f be points in F with |f; — f;| > e for ¢ # j. Let B; be the
(V-dimensional) ball of radius €¢/2 and center f;. These m balls are disjoint; they
occupy a total volume of m(e/2)VT, where T' denotes the volume of a unit ball
in RY. Each f; lies within a distance R of f;; each B; lies inside a ball of radius
3/2R and center fi, a ball of volume (3/2R)VT. It follows that m < (3R/¢)V. O

A set of dimension V' looks thin in R™. Even if projected down onto a subspace
of R™ it will still look thin, if the subspace has dimension greater than V. One way
to capture this idea, and thereby create a more general notion of a set being thin, is
to think of how much of the space around any particular point can be occupied by
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