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Chapter 0
An Introduction to Computable Analysis

Introduction

This chapter is, in a sense, a primer of computable real analysis. We present here
most of the basic methods needed to decide standard questions about the comput-
ability of real valued functions. Thus the chapter deals in a systematic way with the
computability theory of real numbers, real sequences, continuous functions, uniform
convergence, integration, maxima and minima, the intermediate value theorem, and
several other topics. In fact, most of the usual topics from the standard under-
graduate real variables course are treated within the context of computability.

There is one conspicuous omission. We postpone the treatment of derivatives
until Chapter 1. This is because the computability theory of derivatives is a bit more
complicated.

Section 1 deals with computable real numbers. A real number is computable if it
is the effective limit of a computable sequence of rationals. All of these terms are
defined at the beginning of the section. Surprisingly enough, many of the questions
concerning individual computable reals require the consideration of computable
sequences of reals. This topic is postponed until Section 2. However, a few questions
can be answered at this preliminary stage. For example, the definition of “com-
putable real” involves the notion of effective convergence for rational sequences. We
show that the hypothesis of effective convergence is not redundant, by showing that
there exist computable sequences of rationals which converge, but not effectively
(Rice [1954], Specker [1949]). This is done by means of the Waiting Lemma,
a standard recursion-theoretic result, which for the sake of completeness we prove.
The Waiting Lemma is used repeatedly throughout the book. The section concludes
with a brief discussion of some alternative definitions of “computable real number”.

Section 2 deals with computable sequences of real numbers. This notion is
essential for the entire book. To do work in computable analysis, one has to be
totally fluent with all of the nuances related to computable sequences.

[The importance of sequences, rather than individual elements, reappears in Part
IT of this book. Thus in Chapter 2, where we lay down axioms for computability on
a Banach space, the concept which is axiomatized is “computable sequence of
vectors” in the Banach space.]
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Section 2 begins with a careful discussion of the two notions: “computable
sequence of reals” and “effective convergence of a double sequence {x,, } to a limit
sequence {x,}”. The second of these has subtleties of its own. In particular, we
must make the distinction between effective convergence (a notion from logic) and
uniform convergence (a notion from analysis). In general neither implies the other.
This is illustrated by Examples 1 and 2.

The section also contains two results, Propositions 1 and 2, dealing with effective
convergence. As a corollary of these we obtain a noncomputable real which is the
noneffective limit of a computable sequence of rationals (Rice [1954], Specker
[1949]). The section concludes with two further examples, Examples 3 and 4,
which serve several purposes. Firstly, these examples illustrate techniques which are
echoed many times throughout the book. Secondly, the examples have corollaries
which are of independent interest. For instance, there exists a sequence of rational
numbers which is computable as a sequence of reals, but not as a sequence of
rationals.

Section 3 gives the definition of a computable function of one or several real
variables. In fact, it gives two equivalent definitions. Definition A is based on the
pioneering work of Grzegorczyk [1955, 1957] and Lacombe [1955a, 1955b]. This
definition involves a natural effectivization of basic constructs in analysis, and it is
readily applicable to work in analysis. Definition B, due to Caldwell and Pour-El
[1975], is based on an effectivization of the Weierstrass Approximation Theorem.
For certain purposes—e.g. the treatment of integration over irregular domains—
Definition B is more efficient than Definition A. Finally Definitions A and B, given
for a single function defined on a bounded rectangle, are extended to sequences of
functions and to unbounded domains (Definitions A’, B’, A”, B”). It should be added
that, over the years, a variety of definitions all equivalent to Definitions A and B
have been given. These include definitions based on recursive functionals—cf.
Grzegorczyk [1955, 1957] and Lacombe [1955a, 1955b] for details.

Here we reach a transition point. The basic definitions of this chapter have all
been given, and now we begin to investigate systematically their consequences.

Section 4 deals with three elementary topics—composition of functions, patching,
and extension of functions. The proofs in this section are worked out in great detail.
Later on in the chapter we adopt a lighter style.

Section 5 treats two basic constructs in analysis—uniform convergence and
integration. We first prove that the computable functions are closed under effective
uniform convergence. The treatment of integration is, of necessity, more com-
plicated. The reason is this. In order to handle the deeper problems concerned with
integration, we need Definition B. However, in order to prove the equivalence of
Definitions A and B, we need a preliminary result about integration (Theorem 5).
From this we can deduce the equivalence of Definitions A and B (Theorem 6). Then
follows a detailed discussion of the types of integrals which occur routinely in
analysis. These include indefinite integrals, integrals depending on a parameter,
a variety of line and surface integrals, and integrals over irregular domains. Such
integrals appear at several places throughout this book. For instance, in later
chapters we deal with the Cauchy integral formula, Kirchhoff’s solution formula
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for the wave equation, the corresponding formula for the heat equation, and others.
A general result which encompasses all integrals of this type is given in Corollary 6c.

[Part of the proof of Theorem 6 is deferred until Section 7—see below. Of course,
this proof uses only results proved prior to the statement of Theorem 6.]

Section 6 deals with the max-min theorem, the intermediate value theorem, and
certain other topics. Both the max-min theorem and the intermediate value theorem
effectivize for a single computable function. However, when we consider com-
putable sequences of functions we see a divergence: the max-min theorem effectivizes
for sequences, whereas the intermediate value theorem does not. There is a further
subtlety associated with the max-min theorem. Although the maximum value taken
by a computable function is computable, the point where this maximum occurs need
not be (Kreisel [1958], Lacombe [1957b], Specker [1959]). We omit the proof of this
theorem, since we do not need it. Two further topics are treated. As a corollary of the
intermediate value theorem, we prove that the computable reals form a real closed
field. The section concludes with a brief discussion of the Mean Value Theorem.

Section 7 completes the proof of Theorem 6 (equivalence of Definitions A and B).
This is done by giving an effective version of the Weierstrass Approximation
Theorem. The proof is rather complicated, and is included partly as an illustration
of technique. A much easier proof is given in Chapter 2, Section 5.

1. Computable Real Numbers

While every rational number is computable, it is clear that not every real number
is. For the set of all computer programs is countable, whereas the set of real

. numbers is not. Roughly speaking, a computable real is one which can be effectively
approximated to any desired degree of precision by a computer program given in
advance. Thus the number 7 is computable, since there exist finite recipes for
computing it. When more precision is desired the computation may take longer, but
the recipe itself does not change.

In this section, we define “computable real” and prove some simple results about
effective and noneffective convergence. As remarked in the introduction to the
chapter, further results on individual computable reals require a knowledge of
“computable sequences of reals”, and hence are postponed until Section 2.

We begin with the fact that a real number is the limit of a Cauchy sequence of
rationals. There are two aspects to the effectivization of this concept: 1) the sequence
of rationals must be computable, and 2) the convergence of this sequence to its limit
must be effective. We now examine each of these requirements in turn.

For 1) we mean—as already suggested above—that the entire sequence of
rationals is computed by a finite set of instructions given in advance. For 2) we mean
that there is a second set of instructions, also given in advance, which will tell us,
for any € > 0, a point where an error less than ¢ has been achieved. The precise
definitions are:
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Definition 1. A sequence {r, } of rational numbers is computable if there exist three
recursive functions a, b, s from N to N such that b(k) # O for all k and

= (— S(k)ﬂ
rn=(—1) b(k) for all k.

Definition 2. A sequence {r,} of rational numbers converges effectively to a real
number x if there exists a recursive function e: N — N such that for all N:

k > e(N) implies |r, — x| <27V

Definition 3. A real number x is computable if there exists a computable sequence
{r,} of rationals which converges effectively to x.

A complex number is called computable if its real and imaginary parts are
computable. Similarly, a g-vector (x,, ..., x,) is computable if each of its components
is computable.

Obviously, the notion of a computable real is central to recursive analysis.
Eventually, in order to obtain far-reaching results, we shall have to generalize this
notion to sequences of reals, continuous functions, and beyond. Nevertheless,
certain basic questions already appear at this stage.

Proposition 0. Let x be a computable real number. If x > 0, then there is an effective
procedure which shows this. Likewise for x < 0.If x = 0, there is in general no effective
way of proving this.

Proof. Since x is a computable real, x is the limit of a computable sequence {r,} of
rationals, with an effective modulus of convergence e(N) as above. Suppose that
x > 0. Then the following procedure will eventually terminate and provide an
effective proof that x > 0:

For N =0,1,2,..., compute e(N) and r,y,, and wait until an r,, turns up with

~N
Ty > 277

If x > 0, such an N must eventually occur. For suppose 2™~ < x/2. Then, since
[Foy — %I S 27N < x/2, rpy > x/2 > 27N,

In the reverse direction, since |r,y, — x| < 277, the condition r,y, > 27" implies
x> 0.

Similarly for x < 0.

However, such a simple test will not work for the case where x = 0. In fact, there
is no effective test for this case. A counterexample demonstrating this is given in the
next section (Fact 3 following Example 4). [

Remark. The processes of analysis frequently require that comparisons be made
between real numbers. Yet, as we have just seen, such comparisons cannot always
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be made effectively. Often we can obtain an effective substitute by using rational
approximations. Thus the following simple fact will be used constantly.

Consider a computable sequence {r,} of rationals: r, = (—1)*®[a(n)/b(n)] as in
Definition 1. Then r, =0 if and only if a(n) = 0; r, > 0 if and only if a(n) >0
and s(n) is even; and r, < 0 if and only if a(n) > 0 and s(n) is odd. This gives an
effective test for picking out the sequences {n: r, = 0}, {n:r, > 0}, and {n: r, < 0}.

In a word: exact comparisons are possible for computable sequences of rationals,
although not necessarily for computable reals.

We turn now to the question of effective convergence. Generally, when a com-
putable sequence of rationals {r,} converges to a real number x, the convergence
may or may not be effective. There is one important case where effectiveness of
convergence is guaranteed; it corresponds to the nested intervals approach for the
definition of a real number.

Let {a,} and {b,} be computable sequences of rationals which are monotone
upwards and downwards respectively and converge to x: ie. ay < a, <---, by =
b, = -+, and g, < x < b, for all k. Then these sequences converge effectively to x,
as we now show.

The differences (b, — a,) decrease monotonically to zero. Hence, to define an
effective modulus of convergence e(N), we simply wait, for each N, until an index
e(N) with (b,v) — @) < 27" turns up.

In the above situation, we had two monotone sequences, converging upwards
and downwards respectively to the limit x. Suppose we merely have one computable
sequence {s, } which converges upwards monotonically to x. Then the convergence
need not be effective.

To show this—our first example of noneffective convergence—we need some
preliminary results. These results will be used several times throughout this book.

Lemma (Waiting Lemma). Let a: N — N be a one to one recursive function generating
a recursively enumerable nonrecursive set A. Let w(n) denote the “waiting time”

w(n) = max {m: a(m) < n}.
Then there is no recursive function c such that w(n) < c(n) for all n.

Proof. The term “waiting time” contains the essential idea of the proof. If we could
effectively bound the waiting time, then we would have a decision procedure for
telling whether or not n € A. Namely, wait until the waiting time for n has elapsed.
If the value n has not turned up by this time then it never will. Now more formally:

Suppose, on the contrary, that w(n) < c(n) with ¢ recursive. Then the set A is
recursive. Here is a decision procedure for A.

For any n, compute a(m) for all m < c(n). If one of these values a(m) = n, then
ne A; otherwise n ¢ A.

To see this, we reason as follows. Obviously if a(m) = n for some m < c¢(n), then
n € A. Otherwise, since c¢(n) = w(n), we have a(m) # nfor allm < w(n). But w(n) gives
the last value of m for which a(m) < n, and hence the last value (if any) for which
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a(m) = n. Thus if n has not turned up as a value of a(m) by this time, then it never
will. O

There is a close connection between the waiting time defined above and the
modulus of convergence for certain series.

Lemma (Optimal Modulus of Convergence). Let a: N — N be a one to one recursive
function generating a recursively enumerable nonrecursive set A, and let w be the
waiting time, as in the preceding lemma. Consider the series:

k
se= Y 27,
m=0

and let x = lim s,. Define the “optimal modulus of convergence” e*(N) to be the
k-
smallest integer such that

k = e*(N) implies (x —s,) <27V
Then w(N) = e*(N).

Proof. For any k,
X—§= Dy 27

m=k+1

We will show that the waiting time w(N) satisfies the conditions defining e*(N).

By definition of w(N) as the last value m with a(m) < N, we have in particular that
a[w(N)] < N.

Suppose k < w(N). Then the series for x — s, contains the term with m = w(N),
and the value of this term is 27**™! > 27N _Since the series also contains other
positive terms, x — s, > 27V,

Suppose k > w(N). Then the series for x — s, (which begins with m =k + 1)

contains no term 2~“" with a(m) < N. Hence the series is dominatedby ) 27 =
27N and x —s, <27V, a=N+1
Hence w(N) fulfills precisely the condition by which we defined e*(N). [

By combining the two previous lemmas, we have an example of a computable
monotone sequence of rationals which converges, but does not converge effectively.

Example (Noneffective convergence, cf. Rice [1954], Specker [1949]). Leta: N - N
be as in the two preceding lemmas, and let {s, } be the computable sequence given by:

Sk = 2_‘1("‘).

3
1=

Then {s;} converges noneffectively to its limit x.
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Proof. Since the function a is one to one, obviously the series converges. If the
convergence were effective, there would be a recursive function e(N) such that

k> e(N) implies (x —s;) <27V

Comparing this with the “optimal” modulus of convergence in the previous lemma,
we see that e(N) = e*(N).

By the previous lemma e*(N) = w(N), so that the recursive function e(N) = w(N).
By the Waiting Lemma, this is impossible. [

Note. Although the sequence s, is computable, we cannot say that the limit x
is computable, since the convergence is noneffective. However, x might still be
computable, as there could be another computable sequence {r,} which converges
effectively to x. In fact, as we shall show in the next section (Corollary 2b), this cannot
happen: x is not computable.

Alternative definitions of “computable real number”. All of the standard definitions
of real number (in the classical, noncomputable sense) effectivize to give the same
definition of “computable real”. Specifically, we list the following four well known
methods for constructing the reals from the rationals:

1) Cauchy sequences (the method effectivized in this section).
2) Dedekind cuts.

3) Nested intervals.

4) Decimals to the base b, an integer > 1.

The fact that the effective versions of 1-4 are equivalent was first proved by
R.M. Robinson [1951]. Robinson observed that the key step is to show that, for
any computable real a, the function a(n) = [na] (where [ ] = greatest integer) is
recursive. The equivalence of 1-4 follows easily from this observation. In this regard
we cite another important early paper of Rice [1954]. See also Mazur [1963].

In this book we shall work exclusively with definition 1 (Cauchy sequences).
The equivalence of the other definitions is not needed. For that reason we do not
spell out any further details.

2. Computable Sequences of Real Numbers

A sequence of real numbers may not be computable, even though each of its
individual elements is. With a finite sequence, of course, there is no problem, since
finitely many programs can be combined into one. But for an infinite sequence {x, },
we might have a program for each n, but no way to combine these infinitely many
programs into one.

To say that a sequence is computable means that there is a master program which,
upon the input of the number n, computes x,,.
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The idea of sequential computability plays a key role in this book. Consequently,
in this section, we give a thorough treatment of the points at issue. First, we lay
down the basic definitions. These definitions involve the notion of effective conver-
gence of a double sequence {x,,} to a sequence {x,}. We include a discussion of
the similarities and contrasts between this and the analyst’s notion of “uniform
convergence”. Two examples (Examples 1 and 2) illustrate these points. Then
follow two propositions—Proposition 1 (closure under effective convergence) and
Proposition 2 (dealing with monotone convergence)—which are used so often in
this book that eventually we stop referring to them by name and simply regard them
as “well known facts”. Proposition 2, incidentally, leads us for the first time to
noncomputable reals (Corollary 2b). The section closes with two more counter-
examples (Examples 3 and 4) and several “facts” which follow from them. We suggest
that the techniques used in constructing the examples may be of interest in their
own right. These techniques, refined and extended, recur at many points throughout
the book.

We turn now to the basic definitions.

As with the case of computable reals in Section 1, there are two aspects to the
definition of a “computable sequence of reals” {x,}: 1) we require a computable
double sequence of rationals {r,,} which converges to {x,} as k — oo, and 2) this
convergence must be “effective”. We now make these notions precise.

First a technicality. A double sequence will be called computable if it is mapped
onto a computable sequence by one of the standard recursive pairing functions
from N x N onto N. Similarly for triple or g-fold sequences.

Definition 4. Let {x,,} be a double sequence of reals and {x,} a sequence of reals
such that, as k — o0, x,, = x, for each n. We say that x,, — x, effectively in k and n
if there is a recursive function e: N x N — N such that for all n, N:
k> e(n, N) implies |x, — x,] <27V
(In words, the variable N corresponds to the error 27, and the function e(n, N)
gives a bound on k sufficient to attain this error. Without loss of generality, we can

assume that e(n, N) is an increasing function of both variables.)
Combining Definition 4 with Definition 1 of the previous section, we obtain:

Definition 5. A sequence of real numbers {x, } is computable (as a sequence) if there
is a computable double sequence of rationals {r,.} such that r,, — x, as k — oo,
effectively in k and n.

The following variant is often useful.

Definition 5a. A sequence of real numbers {x, } is computable (as a sequence) if there
is a computable double sequence of rationals {r,;} such that

k

[P — X <27 for all k and n.



2. Computable Sequences of Real Numbers 19

Obviously, the condition in Definition 5a implies that in Definition 5. For the
converse, we reason as follows. From Definitions 4 and 5, there is a computable
sequence of rationals {r,,}, and a recursive function e(n, N), such that k > e(n, N)
implies |r,, — x,| < 27V. Then we simply replace {r,, } by the computable subsequence,

[
rnk - rn,e(n,k)’

to obtain |7}, — x,| < 27%, as desired.

The above definitions extend in the obvious way to complex numbers and to
g-vectors. Thus a sequence of complex numbers is called computable if its real and
imaginary parts are computable sequences. A sequence of g-vectors is called comput-
able if each of its components is a computable sequence of real or complex numbers.

There are subleties associated with the idea of effective convergence which will
come up repeatedly throughout this work. Many of these will be dealt with as they
appear. However, the following discussion clarifies one simple point.

There is a possible confusion, which comes to the forefront in this book, between
the notion of “uniformity” as used in logic and in analysis. When an analyst says
“Xp = X, as k — oo, uniformly in n” he or she means that the rate of convergence
can be made independent of n. In logic, the same phrase would often mean dependent
on n, but in a computable way. To avoid confusion, in this book we shall set the
following conventions:

“uniformly in n” means independent of n;
“effectively in n” means governed by a recursive function of n.

Thus we use the word “uniformly” in the sense of analysis, and describe logical
uniformities by the term “effective”.
The following examples illustrate these distinctions.

Example 1. The double sequence

_ k
T k+n+1

Xnk

converges as k — oo to the sequence {x,} = {1, 1, 1,...}. The convergence is not
uniform in n. However, the convergence is effective in both k and n: an effective
modulus of convergence (for the error 27V) is given by e(n, N) = (n + 1)-2%.

Example 2. In the previous section, we gave an example of a sequence {s; } which
converges noneffectively to its limit x. Suppose we set

Xpe = Sk for all n.

Then {x,,} converges uniformly in n (since it does not depend on n), but noneffectively
in k.
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It is more difficult to give an example of a double sequence {x,, } which converges
as k — oo, effectively in k but noneffectively in n. We shall give such an example later
in this section.

We now give two propositions concerning computable sequences. These will be
used repeatedly throughout the book.

Proposition 1 (Closure under effective convergence). Let {x,.} be a computable
double sequence of real numbers which converges as k — o0 to a sequence {x,},
effectively in k and n. Then {x,} is computable.

Proof. Since {x,,} is computable, we have by Definition Sa a computable triple
sequence of rationals {r,,y} such that

[Py — Xmel <27¥  foralln, k, N.

Since x,, — x, effectively in k and n, there is a recursive function e(n, N) such that

k > e(n, N) implies |x, — x,| <27V

Then the computable double sequence of rationals,

L
'aNn = rn,e(n,N),N7

satisfies
'rr;N - xnl < 2'2_Na
whence {x,} is computable, as desired. ]

Proposition 2 (Monotone convergence). Let {x,,} be a computable double sequence
of real numbers which converges monotonically upwards to a sequence {x,} as k — co:
i€. X0 € Xpy < Xpp <+ and X,y — X, for each n. Then {x,} is computable if and only
if the convergence is effective in both k and n.

Corollary 2a. If a computable sequence {x,} converges monotonically upwards to
a limit x, then the number x is computable if and only if the convergence is effective.

Corollary 2b. There exists a computable sequence of rationals which converges to
a noncomputable real.

[In particular, this shows that the effective analog of the Bolzano-Weierstrass
Theorem dos not hold.]

Proof of corollaries (assuming the proposition). Corollary 2a follows immediately
by holding n fixed.

For Corollary 2b. In Section 1 we gave an example of a computable sequence
{s,} of rational numbers which converges monotonically upwards to a limit x, but
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for which the convergence is not effective. Hence by Corollary 2a, the limit x is not
computable. []

Proof of Proposition 2. The “if” part follows (without any assumption of mo-
notonicity) from Proposition 1 above.

It is for the “only if” part that we need monotonicity. Suppose {x, } is computable.
Since {x,;} is also computable, there exists a computable double sequence of
rationals {r,y} and a computable triple sequence of rationals {r,,y} such that:

oy — X, <27V/6  for alln, N;
<

oty — Xl <27N/6 for all n, k, N.

Now define the recursive function e(n, N) to be the first index k such that
|rnkN - ran < 2_N/2‘

Such a k must exist, since x,, — x,, and the sum of the two errors above is 27V/3,
Furthermore,

k = e(n, N) implies |x, — x,| <227V

Now the fact that this holds for all k > e(n, N), and not merely for k = e(n, N),
follows from the monotonicity of {x,,} as a function of k. Thus e(n, N) provides
an effective modulus of convergence for the limit process x,, = x,. [

The following remark is included for the sake of completeness.

Remark (Elementary functions). Let {x, } and {y,} be computable sequences of real
numbers. Then the following sequences are computable:

Xp £ Vs

XnYns

Xu/Vw (¥, # O for all n),

max (x,, y,) and min (x,, y,),

€XP X,

sinx, and cos x,,

log x,, (x, > 0 for all n),

\"/x_,, (x, = 0 for all n),

arcsin x, and arccosx, (|x,] <1 foralln),

arc tan x,,.
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Thus, in particular, the computable reals form a field. We will show in Section 6
that they also form a real closed field.

Proof. Algorithms for doing these computations are so well known that we need not
set them down here. We give one example—not even the most complicated one—
because it illustrates the use of the “effective convergence proposition”, Proposition 1
above.

First, the proofs of computability for addition, subtraction, and multiplication
are routine. Then to prove the computability of {exp x, }, we use Taylor series. Let

k

Snk = Z (xi/l')

i=0

The double sequence {s,,} is computable and converges to {exp x,} as k — oo,
effectively in k and n. Hence by Proposition 1, {exp x,} is computable. [

The functions sin x, cos x, arc sin x, and arc cos x can all be handled similarly,
by Taylor series which converge effectively over the entire domain of definition of
the function. For arc tan x, we use the identity arc tan x = arc sin [x/(1 + x2)2].
Now log x and% require a little more work, since their Taylor series have limited
domains of convergence. However, the detailed treatment of these functions is
mundane, and we shall not spell it out.

Incidentally, the computability of arc tan x, implies the computability of .

The last two examples in this section serve two purposes. First, they introduce
techniques which will be used repeatedly throughout the book. Second, they have
the merit of answering, at the same time, four different questions concerning the
topics in this section. These results will appear as “facts” at the end.

In each of these examples, a: N — N is a one to one recursive function generating
a recursively enumerable nonrecursive set A.

Example 3. Consider the computable double sequence {x,,} defined by:

1 if n = a(m) for some m < k,
X =
nk 0 otherwise.

Then as k — o0, x,, — x, where:
x,=1 ifneA, 0 ifné¢ A

Thus {x,} is the characteristic function of the set A.

Now {x,} is not a computable sequence of reals. For it if were, then by approxi-
mating the x, effectively to within an error of 1/3, we would have an effective
procedure to determine the integers n € A and also n ¢ A. Thus the set A would be
recursive, a contradiction.
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We mention in passing that, although {x,} is not a computable sequence of real
numbers, its individual elements are computable reals—in fact, they are either O or 1.
Our last example is a modification of the preceding one,

Example 4. Consider the computable double sequence {x,,} defined by:

. = 27" if n = a(m) for some m < k,
nk 0 otherwise.

Then as k — o0, x,; — x, where:

‘= 2™™ if n = a(m) for some m,
"0 ifn¢ A

The case description of {x,} above is not effective, since it requires knowledge of
a(m) for infinitely many m. Nevertheless, {x, } is a computable sequence of reals. For
the convergence of x,, to x, is effective in k and n. To see this, we observe that the
only case where x,, # x, occurs when n = a(m) for some m > k. Then x,, = 0, and
x, = 2™ < 27% Hence:

(X — Xu| <27%  forall k, n.
Hence by Proposition 1, {x,} is computable.
The following facts are consequences of Examples 3 and 4 above.

Fact 1. Let A be a recursively enumerable non recursive set, and let y(n) be the
characteristic function of A. Then there exists a computable double sequence {x,,}
which converges (noneffectively) to y(n) as k — oo.

This follows from Example 3, with y(n) in place of x,,.

In Example 2 we gave an instance of a computable double sequence {x,, } which
converges to a sequence {x,} as k — oo, effectively in n but noneffectively in k. Now
we reverse the situation:

Fact 2. There exists a computable double sequence {x,,} which converges to a
sequence {x,} as k — oo, effectively in k but noneffectively in n.

Again this follows from Example 3. Consider the {x,,} and {x,} given there. Fix
n. Then the convergence of x,;, — x, as k — oo is effective in k; indeed, x,, = x,, for
all but finitely many k. But the convergence is not effective in n. For if it were, then
by Proposition 1 above, the limit sequence {x,} would be computable.

The next result substantiates an assertion made in Proposition 0 of Section 1.

Fact 3. The condition x = 0 for computable real numbers cannot be decided
effectively.
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Here we use Example 4. The sequence {x,} given there is a computable sequence
of real numbers. Yet the set {n: x, = 0}, which equals the set {n: n ¢ 4}, cannot be
effectively listed.

Fact 4. There exists a sequence {x, } of rational numbers which is computable as a
sequence of reals, but not computable as a sequence of rationals.

Again the sequence {x,} from Example 4 suffices. We have seen that {x,} is a
computable sequence of reals. But {x, } is not a computable sequence of rationals—
i.e. x, cannot be expressed in the form x, = (— 1)*™[ p(n)/q(n)] with recursive func-
tions p, g, s. For if it could, then the condition x, = 0 would be effectively decidable.
As we saw in the discussion following Fact 3, this is not so.

Alternative definitions of “computable sequence of real numbers”. This discussion
parallels a corresponding discussion at the end of Section 1. However, there are
striking differences in the results, as we shall see. In Section 1 we noted that, for a
single computable real, there are numerous equivalent definitions. Thus the defini-
tions via 1. Cauchy sequences (as in this book), 2. Dedekind cuts, 3. nested intervals,
and 4. decimals to the base b, all effectivize to give equivalent definitions of “comput-
able real number”. However, Mostowski [1957] showed by counterexamples that
the corresponding definitions for sequences of real numbers are not equivalent. He
observed that the Cauchy definition is presumably the correct one.

There are several reasons for preferring the Cauchy definition. We mention the
following in passing. Suppose we took any of the other above-mentioned definitions
(e.g. via Dedekind cuts) for “computable sequence of reals”. Then we would obtain
some rather bizarre results, such as: There exist “computable” sequences {x,} and
{y,} whose sum {x, + y,} is not “computable”. Of course, this does not happen with
the Cauchy definition.

[The above-mentioned counterexample will be used nowhere in this book. Never-
theless, we give a brief explanation of it. Consider e.g. the Dedekind definition. It is
possible to give an example of a Cauchy computable sequence {z,} which is not
Dedekind computable, and in which the elements z, are rational numbers. On the
other hand, it can be shown that if {x,} is Cauchy computable, and the values x,
are irrational, then {x,} is Dedekind computable. Now, starting with the above
example {z,}, set x, = z, + ﬁ, Yn = —+/2. Then {x,} and {y,} are Cauchy com-
putable, and they take irrational values. Hence {x, } and {y, } are Dedekind comput-
able, but {x, + y,} = {z,} is not.]

3. Computable Functions of One or Several
Real Variables

We begin with a bit of historical background. In recursion-theoretic practice, a real
number x is usually viewed as a function a: N — N. Then a function of a real variable
f(x)is viewed as a functional, i.e. a mapping ® from functions a as above into similar
functions b. Within this theory, there is a standard and well explored notion of a
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recursive functional, investigated by Kleene and others. We shall not define these
terms here, since we will not need them. Suffice it to say that these notions gave the
original definition of “computable function of a real variable”: the real-valued
function f is called computable if the corresponding functional @ is recursive
(Lacombe [1955a, 1955b], Grzegorczyk [1955, 1957]).

From a recursion-theoretic viewpoint, this definition appears to capture the
notion of “computability” for real-valued functions very well. However, this ap-
proach is not readily amenable to work in analysis. For an analyst does not view a
real number as a function a: N — N, nor a function of a real variable as a functional
from such functions a into other functions b. Accordingly, much of the intuition of
the analyst is lost. Clearly it is desirable to have a definition of “computable function
of a real variable” equivalent to the recursion-theoretic one, but couched in the
traditional notions of analysis.

Such a definition was provided by Grzegorczyk [1955, 1957]. It is equivalent, as
Grzegorczyk proved, to the recursion-theoretic definition, but expressed in analytic
terms. This is definition A below.

From the point of view of the analyst, Definition A is quite natural. For a real
function f is determined if we know (a) the values of f on a dense set of points, and
(b) that f is continuous. Definition A simply effectivizes these notions. Condition (i)
in Definition A effectivizes (a), and condition (ii) effectivizes (b).

In this book, we give another equivalent definition based on an effective version
of the Weierstrass Approximation Theorem (Definition B). This definition is useful
in many applications. The equivalence of Definitions A and B is proved in Sections
Sand 7.

One final note. The equivalent Definitions A and B below are the natural ones
for continuous functions. However, there are other definitions which apply to more
general classes of functions—e.g. L? functions. In fact, they apply to arbitrary
Banach spaces. These definitions will be introduced in Chapter 2. They will play a
major role in later chapters of the book. We will see, however, that when the general
definitions of Chapter 2 are applied to the special case of continuous functions, they
reduce to Definitions A and B.

We turn now to the definitions themselves.

For simplicity, we first consider the case where the function f is defined on a
closed bounded rectangle I in R% Specifically, I = {a; < x; < b;, 1 <i < g}, where
the endpoints a;, b; are computable reals.

As noted above, the following definition is due to Grzegorczyk/Lacombe.

Definition A (Effective evaluation). Let I < R? be a computable rectangle, as
described above. A function f: I? — R is computable if:

(i) f s sequentially computable, i.e. f maps every computable sequence of points
x, € I? into a computable sequence { f(x,)} of real numbers;

(ii) f is effectively uniformly continuous, i.e. there is a recursive function d: N - N
such that for all x, y € I? and all N:

[x — yl < 1/d(N) implies |f(x)— f(y)| <27V,

where | | denotes the euclidean norm.
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Our second equivalent definition involves the notion of a computable sequence
of polynomials. In the real case, which we are here considering, these polynomials
can have rational coefficients.

By a computable sequence of rational polynomials, we mean a sequence

D(n)

pn(x) = Z rnixi’

i=0

where D: N — N is a recursive function, and {r,;} is a computable double sequence
of rationals.
The following definition is due to Caldwell and Pour-El [1975].

Definition B (Effective Weierstrass). Let I = R? be as above. A function f: I? -» R
is computable if there is a computable sequence of rational polynomials {p,,(x)}
which converges effectively to f in uniform norm: this means there is a recursive
function e: N — N such that for all x € I? and all N:

m > e(N) implies |f(x) — pn(x)| <27V

The equivalence of Definitions A and B will be proved in Sections 5 and 7.

We must now extend these definitions to sequences of functions { f,(x)} and also
to unbounded domains. These extensions follow very closely the pattern laid out in
passing from Section 1 (computable real numbers) to Section 2 (computable se-
quences of real numbers). This extension process is routine: whenever a new param-
eter enters into a definition, the dependence on this parameter must be recursive.
Now for the details.

We begin with the case of a sequence of functions, still restricted to a compact
domain. The corresponding extensions of Definitions A and B above are:

Definition A’ (Effective evaluation). Let I < R? be a computable rectangle. A
sequence of functions f,: I — R is computable (as a sequence) if:

(i) for any computable sequence of points x, € I%, the double sequence of reals
{ fu(x,)} is computable;

(ii’) there exists a recursive function d: N x N — N such that for all x, y € I? and
all n, N:

Ix — yl < 1/d(n, N) implies |f,(x) — fu(y)| <27".
Definition B’ (Effective Weierstrass). Let IY = R? be a above. A sequence of functions
Jor I9 = R is computable (as a sequence) if there is a computable double sequence of
rational polynomials {p,,(x)} with the following property. There is a recursive

function e: N x N — N such that for all x € I? and all n, N:

m > e(n, N) implies |f,(x) — ppm(x)| < 27N
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We now pass from the compact rectangle I? to the unbounded domain R This
is done via a sequence of rectangles

Iy ={-M<x<M1<i<g},

where M =0, 1, 2, ... . The idea is to require uniform continuity or convergence on
each rectangle I, effectively in M. Then the definitions parallel Definitions A’ and
B’ above, except that we have one new parameter, M.

Definition A”” (Effective evaluation). A sequence of functions f,: R? —» R is comput-
able (as a sequence) if:

(i) for any computable sequence of points x, € R%, the double sequence of reals
{ fu(x,)} is computable;

(ii") there exists a recursive functiond: N x N x N — N such that for all M, n, N:

Ix —y| < 1/d(M, n, N) implies |f,(x)— f,(y)| <27¥ forallx, yel,

where I{, = {—-M < x; < M,1<i<gq}.

Definition B” (Effective Weierstrass). A sequence of functions f,: R? —» R is comput-
able (as a sequence) if there is a computable triple sequence of rational polynomials
{ Pram ; With the following property. There is a recursive functione: N x N x N —» N
such that for all M, n, N:

m = e(M,n, N) implies |f,(x) — Pram(¥)] < 27N forall x € I%,,
where Iy = {-M < x; < M, 1 <i<gq}.

Remark. Without loss of generality, we can assume that the functions d( ) and e( )
are increasing in all variables. We shall frequently make this assumption.
Of course, Definitions A” and B” contain Definitions A’ and B’ (when we hold M
constant); and these in turn contain Definitions A and B (when we hold n constant).
A complex-valued function is called computable if its real and imaginary parts are
computable. Similarly for sequences of complex functions.

Standard functions. It is trivial to verify that most of the specific continuous functions
encountered in analysis—e.g. e*, sin x, cos x, log x, J,(x) and I'(x), as well as x + y,
xy and x/y—are computable over any computable rectangle on which they are
continuous. Those without singularities are computable over R? (g = 1,2,...) as
well.

To consider whether functions like 1/x or log x are computable on the open
interval (0, c0), we need a slight extension of our previous definitions. This we now
give.

Computability on (0, 00). To define this, we simply mimic Definition A”. In fact, to
define the notion “{f,} is computable on (0, )", we make precisely three changes
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in Definition A”. First we set the dimension g = 1. Second, in condition (i) we
replace x, € R by x, > 0. Third, in condition (ii"), we replace the domain I, =
[— M, M] by the interval [1/M, M]. Otherwise, the definition reads exactly as before.

It is easy to verify that 1/x is computable on (0, co)—and also in a like manner on
(—o0, 0). Also log x is computable on (0, co).

A similar definition would apply to any open interval (a, b) with computable
endpoints.

Definition B” could also be extended in a similar manner.

A technical remark. In Definitions B, B, and B” above, we have used computable
sequences of rational polynomials. In an analogous way we could define a computable
sequence of real polynomials. The Definitions B, B’, B” could have been given in terms
of real polynomials. For, by the methods of Sections 1 and 2, the real coefficients of
the real polynomials can be effectively approximated by rationals. Henceforth, in
applying Definitions B, B’, B, the versions based on real polynomials and rational
polynomials will be used interchangeably.

Besides the definitions of Lacombe [1955a, 1955b] and Grzegorczyk [1955, 1957]
cited above, we mention that Grzegorczyk in the same papers gave several equivalent
definitions. Another equivalent definition has recently been suggested by Mycielski
(cf. Pour-El, Richards [1983a]).

Finally, if we isolate condition (i) from Definition A (sequential computability), we
obtain the Banach-Mazur definition. This is strictly broader than the definitions given
above. An example of a sequentially computable continuous function which is not
computable will be given in Chapter 1, Section 3.

4. Preliminary Constructs in Analysis

We turn now to the computable theory of functions of a real variable.

In this section we deal with composition, patching of functions, and extension of
functions (Theorems 1-3 respectively). These are preliminary theorems which the
usual practice of analysis takes for granted.

In Theorems 1, 1a, 1b we begin with a single computable function on a compact
rectangle, and then gradually extend first to a noncompact domain, and then to a
sequence of functions. These extensions are routine. Often in similar situations this is
the case. However not always. In fact, sometimes the extensions do not hold at all.
See, for example, Section 6 in this chapter and Sections 1 and 2 in Chapter 1.

In this section we give the proofs in all of their boring detail. Beginning in Section
5, we adopt a more compressed style.

Finally a technical note. Until the equivalence of Definitions A and B is established,
we will use Definition A (or its extensions A’ and A”). Thus Theorems 1-5 in this and
the next section are all based on Definition A.

Theorem 1 (Composition). Let g,, ..., g, be computable functions from I - R, and
suppose that the range of the vector (g, ..., g,) is contained in a computable rectangle



4. Preliminary Constructs in Analysis 29

IP. Let f: I* > R be computable. Then the composition f(g,, ..., g,) is a computable
function from I into R.

Proof. By Definition A, we must prove (i) sequential computability, and (ii) effective
uniform continuity. For convenience, we write g = (g, ..., g,).

Proof of (i). Let {x,} be a computable sequence of points in I4. Since the functions
g; are sequentially computable, {g(x,)} is a computable sequence of points in I4.
Then, since f is sequentially computable { f(g(x,))} is a computable sequence of
reals, as desired.

Proof of (ii). Since this is our first proof dealing with effective uniform continuity, we
shall give it in great detail.

From the effective uniform continuity of g4, ..., g, and f, we have recursive
functions d,, ...., d, and d* such that, for all x, y in I? or I?, and for all N:

|x — yI < 1/d(N) implies |gi(x) — g:(y)I <27",
|x — yl < 1/d*(N) implies |f(x) — f(y)I <27%,

where | | denotes the euclidean norm. We need to construct a recursive function d**
such that:

Ix — y| < 1/d**(N) implies |f(g(x)) — f(g(y))l <27".
We begin with a heuristic approach. Starting with the desired inequality
|£(G0x) — fgyl <27V (%)
we will work backwards to find a suitable d**(N). Then we will show that d** is

recursive, and that it does what is required.
By definition of d*, () will hold provided that

1g(x) — g(y)I < 1/d*(N).
Since the vector g is p-dimensional, it suffices that for each component g;,
1gi(x) — g:(y)| < (1/p)(1/d*(N)).
A stronger (and therefore sufficient) condition is
1g:(x) — g:(y)| <27¢ where 22> p-d*(N).
Now by definition of the d;,
Ix — y| < 1/d(Q) implies |gi(x) — g:(»)| <272

Comparing the last two displayed formulas, we are led to the following definition.
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Define the recursive function Q = Q(N) to be the least integer such that
22 > p-d*(N).
Then define the recursive function d** by

d**(N) = max di(Q(N)).

1<i<p

Now we verify that d** serves as a modulus of continuity for f(g). For, retracing
our previous steps:

If|x — y| < 1/d**(N), then |x — y| < 1/d,(Q(N)) for all i, whence |g;(x) — g:{(y)| <
272M™ < (1/p)(1/d*(N)) for all i, whence |g(x) — g(»)| < 1/d*(N), whence | f(g(x)) —
(@) <27V, as desired. [

We turn now to the extension of Theorem 1 to unbounded domains. The proof
has one amusing twist. Although the definition of computability involves sequential
computability and effective uniform continuity, the key issue in the proof below
turns out to be the rate of growth of the g;(x) as | x| —» co.

Theorem la (Composition on unbounded domains). Let g,, ..., g, be comput-
able functions from R?— R, and let f: RP - R be computable. Then f(g,, ..., g,) is
computable.

Proof. The proof of (i) sequential computability is the same as in Theorem 1 above.

Before proving (ii), we need the following. Recall that 1%, denotes the cube in R?
given by |x;| < M, 1 <i<q.

Lemma (Rate of growth). Let g: R? — R be a computable function. Then there exists
a recursive function a: N — N such that for all natural numbers M:

x eIl implies |g(x)| < a(M).
Proof of lemma. We use the fact that g is effectively uniformly continuous on each
I{;, in a manner which varies effectively in M. More precisely, there is a recursive
function d: N x N — N such that
|x —y| < 1/d(M, N) implies [g(x)—g(y)| <2 forallx, yelf.
In particular, setting N = 0
|x —y| < 1/d(M, 0) implies |g(x) — g(y)| < 1.

Now any point x € I, can be connected to 0 by a straight line of length <gM.

Suppose we break this line into g - M - d(M, 0) equal segments, of length < 1/d(M, 0).
Then on each segment, |g(u) — g(v)| < 1. Since there are q- M -d(M, 0) segments
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between the points x and 0, we have
lg(x) — g(0)| < g-M-d(M, 0) for all x € IY,.
Let C be an integer with |g(0)| < C. Define the recursive function a by
aM)=q-M-dM, 0) + C.

Then |g(x)| < a(M) for all x € I, as desired. []

Proof of (ii). Here the moduli of uniform continuity depend on the domain I, this
dependence being effectively given by the recursive functions d,(M, N)and d*(M, N)
(where d,, ..., d, and d* correspond to g,, ..., g, and f as in Theorem 1 above).
Without loss of generality, we can assume that d,, ..., d, and d* are increasing
functions. The point of the Lemma is that the function g = (g,, ..., g,) maps I, into
a cube I, %y, whose size is a recursive function of M. From here on, the proof is almost
identical with that of Theorem 1.

Let a,(M) be the function corresponding to g; via the Lemma, and let a(M) =
max{a;(M): 1 <i < p}.

Let Q = Q(M, N) be the least integer such that

22 > p-d*(a(M), N).
Define d** by

d**(M, N) = max d,(M, Q(M, N)).

1<i<p

Clearly d** is recursive. The fact that, for x, y € I, |x — y| < 1/d**(M, N) implies
|f(§(x)) — (@) <27V, is proved exactly as in Theorem 1 above. [

Now we move on to sequences of functions. We continue to use the vector
notation § = (g, ..., g,) for mappings into R”.

Theorem 1b. Let g,: R? — RP be a computable sequence of vector-valued functions, and
let f,,: R? — R be a computable sequence of real functions. Then the compositions f,,(g,)
form a computable double sequence of real-valued functions.

Proof. The construction is identical to that in Theorem la, except that, where
appropriate, we insert the parameters m and n. Thus the functions dy, ..., d, for g,
become d;(M, n, N). The function d* for f,, becomes d*(M, m, N). The function a in
the Lemma becomes a(M, n). Again we can assume that these functions are increas-
ing. Finally the d** for f,,(g,) becomes

d**(M, m,n, N) = max d,(M, n, Q(M, m, n, N)),

1<i<p
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where Q is the least integer such that
22> p-d*a(M,n),m,N). []

In the preceding proofs, effective uniform continuity played the key role. In
the next result, we will find that sequential computability is the key issue. This
result also suggests one reason why we require our intervals to have computable
endpoints.

Theorem 2 (Patching theorem). Let [a, b] and [b, c] be intervals with computable
endpoints, and let f and g be computable functions defined on [a, b] and [b, c]
respectively, with f(b) = g(b). Then the common extension of f and g is a computable
function on [a, c].

Proof. Write the common extension as f U g. Since f and g are effectively uniformly
continuous, clearly f'u g is also effectively uniformly continuous. The sequential
computability of f U g is a little harder to prove.

Take any computable sequence x, € [a, c]; we need to show that the sequence
(fug)(x,) is computable. The difficulty is that there is no effective method for
deciding in general whether x, < b, x, = b, or x, > b. Thus we have no effective
method for deciding which of the functions, f or g, should be applied to x,,.

To remedy this, we shall construct a computable double sequence {x,y} as
follows. Since {x,, } is computable, there is a computable double sequence of rationals
r,y such that |x, — r,y| < 27 for all n, N. Since b is computable, there is a comput-
able sequence of rationals sy such that |b — sy| < 27 for all N.

Now computations with rational numbers can be performed exactly, so the
following is an effective procedure. Define:

Xon = Xn IrnN_sN|>3'2_Na
" lx, — 6-27N otherwise.

[By deleting finitely many N, we can assume that 1227V < (b — a), so that x,y €
[a, c] in all cases.]

Now x,y # b for all n, N, and the above inequalities furnish an effective method
for deciding whether x,y < b or x,y > b. Namely: x,y > bifr,y — sy > 3-27% and
X,y < b otherwise.

Hence the double sequence (f U g)(x,y) is computable, since we have a method
which is effective in n and N for deciding whether to apply f to x,y (if x,y < b), or
to apply g to x,y (if x,y > b).

Now |x, — x,n| < 6-27V,50 x5y = x,as N - o0, effectivelyin N and n. Since f U g
is effectively uniformly continuous, (f' U g)(x,x) = (f U g)(x,) as N — oo, effectively
in N and n.

We apply Proposition 1 of Section 2:

Since (f U g)(x,y) is computable and converges to (f U g)(x,) as N — oo, effec-
tively in all variables, (f U g)(x,) is computable, as desired. [
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The patching theorem has an obvious extension to q dimensions.

Frequently in analytic arguments, one needs to extend the domain of definition
of a function from a rectangle I? to a larger rectangle I%,. This is done, so to speak,
to give us “room around the edges”. The following theorem justifies this procedure.

Theorem 3 (Expansion theorem). Let I? = {a; < x; < b, 1 < i < q} be a computable
rectangle in R%, let M be an integer, and let I§y = { — M < x; < M, alli}. Suppose that
the rectangle I contains I in its interior. Then any computable function f on I can
be extended to a computable function on I%,.

Proof. We prove this as a corollary of Theorems 1 and 2. For 1 <i < g, let

a; for —M < x;

< a;,

i

yi(x;)) =< x; fora;<x;<b,,

13

b, forb, <x; <M.

Then by the patching theorem, Theorem 2, the functions y; are computable. Further-
more, the vector j = (y, ..., y,) maps Ij, into the smaller rectangle I
Finally, by the composition theorem, Theorem 1, the function

J1(x1), - yg(xg)

is computable on I. This gives the desired extension of f. [

5. Basic Constructs of Analysis

This section contains three main topics. The first is closure under effective uniform
convergence (Theorem 4). The second is the equivalence of Definitions A and B
(Theorem 6). The third is integration.

A preliminary result about integration (Theorem 5) is given because it is needed
for the proof of Theorem 6. Once we have Theorem 6, a variety of more difficult
integration theorems can be proved (Corollaries 6a, b, c). A thoroughgoing treat-
ment of integration has been included because several types of integrals—integrals
depending on a parameter, line integrals, surface integrals, etc.—occur routinely
in analysis and its applications to physics. For example, in this book we use
Kirchhoff’s solution formula for the wave equation, which depends on integration
over a sphere (cf. Chapter 3, Section 5).

[Differentiation is treated in Chapter 1; cf. the remark at the end of this section.]

We recall that, until we have the equivalence of Definitions A and B, our working
definition of “computable function of a real variable” is Definition A.

We turn now to closure under effective uniform convergence. First we must de-
fine what it means for a sequence of functions to be effectively uniformly conver-
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gent. Although the definition of this term is implicit in Sections 2 and 3, we set it
down:

Definition. Let { f,.} and {f,} be respectively a double sequence and a sequence of
functions from I into R. We say that f,, — f, as k — oo, uniformly in x, effectively
in k and n, if there is a recursive function e: N x N — N such that for all n and N:

k> e(n, N) implies |f,(x)— f,(x)| <27V for all x € I4.

Theorem 4 (Closure under effective uniform convergence). Let f,,: I?—> R be a
computable double sequence of functions such that f,, — f, as k — oo, uniformly in x,
effectively in k and n. Then { f,} is a computable sequence of functions.

Proof. For simplicity, we suppress the index n, and consider a sequence of functions

f, which is effectively uniformly convergent to a limit f. The extension to f,, — f, is

left to the reader. We begin by proving (ii) that f is effectively uniformly continuous.
By hypothesis, there is a recursive function e: N — N such that

k> e(N) imples |f,(x)— f(x)] <27V for all x € I4

Since the sequence { f; } is uniformly continuous, effectively in k, there is a recursive
function d: N x N — N such that for all x, y € I? and all k and N:

Ix — yl < 1/d(k, N) implies |fi(x) — fiy)| <27V

Replacing N by N + 2 throughout, the error 27~ becomes 2772 = (1/4)- 27V <

(1/3)-27™. Then to bound | f(x) — f(y)|, we compare f(x) to f,(x) to f,(y) to f(y) in
the standard way. Thus we define the recursive function d* by:

d*(N) = d(e(N + 2), N + 2).

We now show that d* serves as an effective modulus of continuity for f. Take
any x, yeI? with |x — y| < 1/d*(N). Set k =e(N+ 2). Then |f(x) — fi(x)| <
(1/3)-27¥ (by definition of e); | f,(x) — fi(y)| < (1/3)-27V (by definition of d); and
If(») — f(y)| < (1/3)- 27N (by definition of e). Hence | f(x) — f(y)| < 27, as desired.

Proof of (i) (sequential computability). There is one amusing point in this otherwise
routine proof. Take any computable sequence {x,,} in I% we need to show that
{f(x,,)} is computable. Since f,(x,,) = f(x,,) as k = oo, it would suffice, in view of
Proposition 1 in Section 2, if the convergence were effective in k and m. But in fact
we have more: since f(x) — f(x) as k — oo, effectively in k and uniformly in x, the
convergence of fi(x,,) to f(x,,) is actually effective in k and uniform in m.

(Thus the weaker condition of effectiveness = “logical uniformity” is here
deduced from uniformity in the analytic sense—a circumstance which is rather
rare.) [
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We turn now to a preliminary result on the computability of integrals. This is
needed to prove the equivalence of Definitions A and B (Theorem 6 below). Once

we have Theorem 6, we shall find that the result on integration can easily be
extended to a much more general setting.

Theorem 5 (Definite Integrals). Let I? be a computable rectangle in R% and let
f.: 19— R be a computable sequence of functions. Then the definite integrals

v,,=J‘~~~J fulxy, oo, xg) dxy .. dx,
Iq

form a computable sequence of real numbers.

Proof. We effectivize the Riemann sum definition of the integral. For simplicity, we
take g = 1, leaving the general case to the reader. Thus the integration is over a
1-dimensional interval [a, b], and

v, = Jb f(x) dx.

For any k > 1, let v, be the k-th Riemann sum approximation

by = b;“éf(a +1p - a)).

Since a, b are computable reals, and since {f,} is sequentially computable, the
double sequence {v,, } is computable.

To show that v, converges to v, effectively in k and n, we use the effective uniform
continuity of the f,. Thus there is a recursive function d(n, N) such that

Ix — yl < 1/d(n, N) implies |f,(x) — f,(y)| <27".
Let M be an integer >(b — a), and let
e(n, N) = M-d(n, N).
We will show that
k > e(n, N) implies |v,, — v,| < (b —a)-27V. (*)

To prove (), let I; be the j-th subinterval corresponding to the above Riemann sum
that is ,

I = [a+%(b—a),a +£(b —a)].
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Suppose k > e(n, N). Then each subinterval I; has length equal to (b — a)/k where
(b — a)/k < M/k < M/e(n, N) = 1/d(n, N).

By definition of d(n, N), this means that the function f, varies by <27" over each

interval I;. Hence the difference (v, — v,) between the Riemann sum and the integral
satisfies:

k
|V — U] < 21 (maximum variation of f, over I;)- (length of I;)
=

N'(b—a)
k

<(b—a)27¥

<k 27

proving (x).

Since the function e(n, N)is recursive, (*) implies that v,, — v, as k — oo, effectively
in k and n. Since {v,, } is computable and approaches v, as k — oo, effectively in both
variables, {v,} is computable (cf. Proposition 1 in Section 2). []

Equivalence of Definitions A and B

Up to now, all of our work has been based on Definition A and its extensions A’
and A”. We now consider the equivalence of Definitions A and B. This is the content
of Theorem 6 below. Since Definition B is based on polynomial approximation,
this amounts to giving an effective treatment of the Weierstrass Approximation
Theorem.

Actually, the proof of the Effective Weierstrass Theorem is quite complicated. We
postpone it until Section 7. The reason for stating Theorem 6 here is that its
corollaries (Corollaries 6a, b, c) properly belong in this section. On the other hand,
the proof in Section 7 uses only Theorems 1-5.

We remark, however, that part of the proof of Theorem 6 below—the easy
part—is given right here in this section. This is done so as not to clutter up the
Effective Weierstrass proof in Section 7.

We recall that Definitions A and B apply to a single real-valued function f defined
on a computable rectangle I“. Definitions A’ and B’ apply to a sequence of functions
f.on 1% and A"/B” apply to a sequence of functions on R

Theorem 6 (Equivalence of Definitions A and B). Definitions A and B are equivalent.
Similarly for Definitions A’ and B, and for Definitions A" and B’.

Proof. We shall give the proof for Definitions A and B. The extension to A'/B’ and
A”/B” is routine, involving only a proliferation of indices.

Furthermore, we consider only the case of dimension q = 1. The extension to ¢
dimensions is also routine.
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Definition B implies Definition A. Let f satisfy Definition B. Then there exists a
computable sequence of polynomials {p,} which converges effectively and uni-
formly to f. By Theorem 4 above (closure under effective uniform convergence), f
is computable in the sense of Definition A.

Definition A implies Definition B. The proof will be given in Section 7. [

Integration

Here the preliminary Theorem S above is extended to cover a variety of integration
processes. These extensions depend on Theorem 6, which allows us to use Definition
B in place of Definition A. In fact, the powerful and general Corollary 6¢ could
hardly be proved in any other way.

Corollary 6¢c combines in one statement: (1) integrals depending on a parameter
t; (2) integration over a general class of regions in R? (i.e. regions—like the interior
of a sphere—which are not rectangles); and (3) line integrals and surface integrals.

[Of course, instead of R we could have stated Corollary 6¢ for R"; we used R®
for convenience.]

In order to achieve this generality, Corollary 6c requires a bit of preface. The
conditions involve compact regions K in R* and measures x on K. At first glance,
these considerations may appear a trifle ponderous. In fact, however, they ae entirely
natural. Consider, for example, a compact surface K in R3. Then K has Lebesgue
measure zero. But the very notion of surface integration implies that there is some
measure u (e.g. the area measure) with respect to which we are integrating. Hence
we have the pair (K, u) = {compact set, measure . This is absolutely standard, and
we have merely put the situation into a general format in order to cover a wide
variety of applications.

The main hypothesis in Corollary 6c is that the monomials x°y®z¢ have comput-
able integrals with respect to K and y, effectively in a, b, and c. This is easily verified
in most applications. Then the Effective Weierstrass condition of Definition B
permits an immediate extension from the monomials to arbitrary computable
functions.

[By contrast, a proof based on Definition A would be pretty ugly, even for such
a simple domain as the surface of the unit sphere in R3.]

Corollaries 6a and 6b involve elementary results which seem important enough
to be displayed separately.

Corollary 6a (Indefinite integrals). Let f be a computable function on a computable
interval [a, b]. Then the indefinite integral

J " flu) du

is computable on [a, b].
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Corollary 6b (Definite integrals depending on a parameter). Let f(x, t) be a comput-
able function on the rectangle [a, b] x [c, d]. Then the function

F(t)= fbf(x, t) dx

is computable on [c, d].
Proofs. See the proof of Corollary 6¢c. [

As a preparation for Corollary 6¢ we need:

Definition. Let K be a compact set in R%. We say that a real-valued function f on
K is computable if f has an extension to a computable function on a computable
rectangle IY = K.

For notational convenience, we give the next definition for 3-dimensional space,
and write a typical point in R3 as (x, y, z).

Definition. Let K be a compact set in R?, and let y be a finite measure on K. We say
that the pair (K, u) is computably integrable if for a, b, c € N,

Ugbe = J xaybzc dll
K

is a computable triple sequence of real numbers.

Notes. We have not defined either a “computable compact set” or a “computable
measure”. The above definition expresses a property of the pair (K, u). Moreover,
this definition does not require that the integrals be computed by some “constructive
method”; merely that the results of the integration yield a computable sequence.

Examples. First, let 4 be Lebesgue measure. Practically every specific region K
encountered in elementary analysis is computably integrable. For all that is required
is that the integrals of x°y%z° over K yield a computable sequence of values.
In particular, the following are computably integrable with respect to Lebesgue
measure:

A disk with computable center and radius,

An ellipsoid with computable center and axes,

A computable rectangle,

A polyhedron given by computable parameters,

A cylinder or cone given by computable parameters.

A second class of example involves line or surface integrals. One instance which
is important in physical applications is:
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The unit sphere K = {x? + y* + z* = 1}, with the area measure u = do normal-
ized so that the total area equals 1.

The next result covers all of these cases, and also allows integrals depending on
a parameter.

Corollary 6¢ (Integration over regions). Let K be a compact set in R3, and let u be a
finite measure on K. Suppose that the pair (K, p) is computably integrable. Let I be
a computable rectangle in R4. Let f(x, y, z, t), t € I%, be computable on K x I4. Then

F(t) = ij J(x, ¥, 2, 1) du(x, y, 2)

is computable on 14

Proof. We use Definition B. Since f(x, y, z, t) is computable, there is a computable
sequence of polynomials {p,(x, y, z, t)} which converges to f(x, y,z, t) as m — oo,
uniformly in (x, y, z, t) and effectively in m.

These polynomials are computable finite linear combinations of the monomials

xaybzctd,
where
t4=t{ug. . tla

[Actually, since the integration involves only x, y, z, the t? terms behave like
constants and can be taken outside of the integral.]
Now since the pair (K, u) is computably integrable,

”J xy’z¢ du(x, y, z)

is a computable triple sequence of real numbers.
Hence the sequence of polynomials

Pm(t) = J‘jjpm(xa Y, 2, t) d:u(xa Y, Z)

is computable.
Finally, since p,, — f, uniformly in (x, y, z, t) and effectively in m, and since the set
K has finite y-measure,

P,(t)—> F(t) asm—> oo,

uniformly in ¢ and effectively in m. Hence by Theorem 4, F(t) is computable as
desired. [J
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After such an extended study of integration, the reader may wonder why we do
not consider differentiation. The reason is that the computable theory of differentia-
tion is more difficult. It is dealt with in Chapter 1.

6. The Max-Min Theorem and the Intermediate
Value Theorem

This is the first section in which the distinction between computable elements and
computable sequences finds illustration in a natural setting.

The maximum value of a computable function is computable (Theorem 7). This
result extends to computable sequences of functions. By contrast, the Effective Inter-
mediate Value Theorem (Theorem 8) holds for individual computable functions—
but it does not hold for computable sequences of functions (Example 8a).

In addition, this section includes the following. Theorem 9 asserts that the
computable reals form a real closed field. The section closes with a few remarks
about the Mean Value Theorem.

Theorem 7 (Maximum Values). Let 19 be a computable rectangle in R%, and let
J,: 17> R be a computable sequence of functions. Then the maximum values

s, = max{f,(x): x e I}
form a computable sequence of real numbers.
Proof. As previously, we shall treat the 1-dimensional case, where the f, are defined
on a computable interval [a, b], and leave the g-dimensional case to the reader.
We use Definition A. The proof, like that of Theorem 5 above (definite integrals),

is based on a partitioning of the interval [a, b]. For any k > 1, let s, be the “partial
maximum”

s,,,,=max{f,,|:a +£(b—a):|: 1 <j<k}-

Since a, b are computable reals, and since {f,} is sequentially computable, the
double sequence {s,; } is computable.

By the effective uniform continuity of { f,}, there is a recursive function d(n, N)
such that

Ix — yI < 1/d(n, N) implies |f,(x) — fu(»)l <27V
Let M be an integer >(b — a), and let

e(n, N)= M-d(n, N).
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Then, as in Theorem 5 above, it follows that
k > e(n, N) implies |s, —s,| <27V

Thus sy — s, as k — oo, effectively in k and n. Since {s,, } is computable, this implies,
by Proposition 1 in Section 2, that {s,} is computable. []

Remark. Although the maximum value of a computable function f(x)is computable,
the point(s) x where this maximum occurs need not be. Specker [1959] has given
an example of a computable function f on [0, 1] which does not attain its maximum
at any computable point. (For alternative constructions, see Kreisel [1958] and
Lacombe [1957b].) In these examples, there are infinitely many maximum points.
This is inevitable, for it can be shown:

If a computable function f takes a local maximum at an isolated point x (i.e. if
S(») < f(x) for all y sufficiently close to x with y # x), then x is computable.

We do not need this result and shall not prove it.

Our next result is interesting in that it holds for single functions f and does not
hold for sequences of functions.

Theorem 8 (Intermediate Value Theorem). Let [a, b] be an interval with computable
endpoints, and let f be a computable function on [a, b] such that f(a) < f(b). Let s be
a computable real with f(a) < s < f(b). Then there exists a computable point c in (a, b)
such that f(c) = s.

Proof. We can assume without loss of generality that the domain of f is [0, 1] and
that s = 0.
Now the proof breaks into two cases:

Case 1. There is some rational number c¢ such that f(c) = 0. Then c is computable,
and we are finished.

Case 2. f(c) # 0 for all rational c.

Now this assumption allows us to effectivize a procedure which would otherwise
not be effective. Namely:

Consider f(1/2). Since f(1/2) # 0, a sufficiently good approximation to f(1/2) will
allow us to decide—effectively—whether f(1/2) > 0 or f(1/2) < 0 (cf. Proposition 0
in Section 1). In the former case we replace the interval [0, 1] by [0, 1/2]; in the latter
case, we replace [0, 1] by [1/2, 1].

We continue in this manner. After the m'™ stage, we have an interval [a,, b,,] of
length 1/2™, with rational endpoints, and with f(a,) <0 and f(b,) > 0. We take
the midpoint d,, = (a,, + b,,)/2, and compute f(d,,) with sufficient accuracy to deter-
mine whether f(d,,) > 0 or f(d,,) < 0 (again using the fact that, since d,, is rational,
f(dyn) # 0).

If f(d,) > 0, we set Gpry = Gy Dyiy = Ao

If f(d,,) <O, we set a1 = dp, Dpyy = bi-
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The sequences {a,,} and {b,,} converge from below, and from above respectively,
to a point ¢ such that f(c) = 0. Since b,, — a,, = 27™, the convergence is effective.
Hence c is computable. []

Now we give a counterexample for sequences of functions.

Example 8a (Failure of the Intermediate Value Theorem for sequences). There exists
a computable sequence of functions f, on [0, 1] such that f£,(0) = —1 for all n,
£,(1) = 1 for all n, but there is no computable sequence of points c, in [0, 1] with
Ju(c,) =0 for all n.

Proof. We use a recursively inseparable pair of sets 4 and B, i.e. disjoint subsets A4
and B of N which are recursively enumerable, but such that there is no recursive set
CwithAc=Cand BNC =4.

Let a: N — N and b: N —» N be recursive functions giving one-to-one listings of
the sets A and B respectively.

[A rough summary of the following construction is given in the Notes at the end.
We put these comments at the end since, without the details, they might be found
more vague than helpful.]

Each function f,(x) will be piecewise linear and continuous, with the breaks in its
derivative occurring at the points 1/3 and 2/3. Thus each f, is determined by the
four values f,(0), £,(1/3), £,(2/3), f,(1). We set

£,0) = -1 for all n
L) =1 for all n.

The interesting points are 1/3 and 2/3. Hence we set:

_ —1/2™ ifne A, n=a(m),
S173) = {0 ifn¢ A

__§1/2™ ifne B, n = b(m),
22B3) = {0 ifn¢ B.

It is by no means clear from this description that { £, } is computable—for we have
no effective test to determine whether ne 4, ne B, or ne N — (4 u B). However,
{f,} actually is computable as we now show.

We define a double sequence { f,,} of piecewise linear functions by:

@)= -1,  fu)=1 for all n, k.

—1/2™ if n = a(m) for some m < k,
0 otherwise.

Ju(1/3) = {

1/2™ if n = b(m) for some m < k,
0 otherwise.

Ju(2/3) = {
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Now the double sequence { f,, } is computable. For, given any k, we have only to
test the 2(k + 1) values a(0), ..., a(k) and b(0), ..., b(k) in order to determine f,,(1/3)
and f£,.(2/3).

We shall show that | f,(x) — f,(x)| < 27% for all n, k, and x. To see this, we first
verify that

-k

[fa(1/3) = fa(1/3)] < 2
|fw(2/3) — £23) < 275

Namely, consider the point 1/3. There are three cases:

1.n ¢ A. Then f,.(1/3) = £,(1/3) for all k.

2.n € A, and n = a(m) for some m < k. Then f,,(1/3) = f,(1/3) for this k.

3.ne A, and n=a(m) with m > k. Then |f,(1/3)— £,(1/3)| =10 —(=27™)| =
2T < 27k

The point 2/3 is handled similarly.

Finally, since all of the functions f,, and f, are piecewise linear, and determined
by their values at x = 1/3 and x = 2/3, the inequalities which we have established
for x = 1/3 or 2/3 extend to all x.

Since { f,.(x)} is computable and converges to { f,(x)} as k — oo, uniformly in x
and effectively in k and n, { f,} is computable (Theorem 4).

We still have to verify that there is no computable sequence {c,} with f,(c,) = 0
for all n.

Suppose otherwise. Since {c,} is computable, there is a computable sequence of
rationals {r,} with

lr, — ¢, < 1/12 for all n.
~ Since exact comparisons are effective for rational numbers, we can define a
recursive set C by:
neC if and only if r, > 1/2.
Now if n € A, the only zero of f,(x) occurs at x = 2/3 (since f,(1/3) was depressed to
a value slightly below zero). Similarly, if n € B, the only zero of f,(x) occurs at
x = 1/3. Since the distance from 1/3 (or 2/3) to 1/2 is 1/6, and since 1/6 > 1/12,
we have:
r,>1/2 ifne A,
r, <1/2 ifneB,
whence
AcC,
BnC=90.

Hence the recursive set C separates A and B, a contradiction. [
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Notes. Of course, in this construction, the interesting action takes place on the
interval [1/3,2/3]. For n¢ AU B, the function f,(x) is identically zero on this
subinterval. Butifn € 4, n = a(m), we depress the value f,(1/3) slightly—the amount
of decrease, 27™, becoming less and less the longer we have to wait for m to occur.

Similarly if n € B, n = b(m), we increase f,(2/3) by 27™.

Since 27" — 0 effectively as m — oo, we can approximate f,(x), to any desired
degree of precision, by checking only finitely many values of m. That is why the
sequence { f,(x)} is computable.

On the other hand, by this “see-saw” construction, we can send the zeros of f,(x)
shooting off in either direction—to 2/3 or 1/3—by an arbitrarily small perturbation
in f,(x).

These ideas, in various guises, form the basis for many counterexamples.

One final note. In the proof of Theorem 8 above, there was a case analysis which
began—Case 1: if ¢ is rational, then we are done. Any single rational number is
ipso-facto computable. But a sequence of rationals need not be.

Theorem 9 (Real closed field). The computable reals form a real closed field. That
is, if a polynomial has computable real coefficients, then all of its real roots are
computable.

Proof. For simple roots, this is an immediate consequence of the Intermediate Value
Theorem, Theorem 8 above. For multiple roots we reason as follows. Let p(x) be
a polynomial with computable real coefficients, and let ¢ be a root of order n of p(x).
Then the (n — 1)st derivative p® 1(x) has computable real coefficients, and c is
a simple root of p®~1(x). Hence the previous argument applies. ]

Remark (The Mean Value Theorem). In connection with the topics of this section,
the reader may wonder why we do not deal with the Mean Value Theorem. The
facts are these. The Mean Value Theorem effectivizes for an individual computable
function with a continuous derivative (computable or not). But the theorem does
not effectivize for computable sequences of functions, even if the sequence of deriva-
tives is computable.

We have omitted this theorem for two reasons. First, we have no need for it.
Second, it is hard to see how an effective version of the Mean Value Theorem could
be useful. Consider the situation in classical (noncomputable) analysis. When one
uses the Mean Value Theorem—f(b) — f(a) = (b — a)f’(¢) for some é—it is only
the existence of ¢ which is relevant, and not its actual value. In fact, in almost all
applications, the Mean Value Theorem is used to establish inequalities involving
f(b) — f(a), and the location of the point ¢ is immaterial.

7. Proof of the Effective Weierstrass Theorem

With this result, we prove the difficult half of Theorem 6 (equivalence of Definitions A
and B). Namely, we proved in Section S that, if a function f satisfies the conditions
of Definition B (Effective Weierstrass), then it satisfies Definition A (Effective evalua-
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tion). This proof was quite easy. However, the converse, which involves an effectivi-
zation of the classical Weierstrass Approximation Theorem, is considerably more
complicated. We now prove that converse.

Here is where we get our hands dirty. This is the only effectivization of a major
classical proof given in this book. It seems worthwhile to do such a thing once, if
only to show what such “effectivization proofs” look like. As stated earlier, we prefer
to develop general theorems (which are usually theorems with no classical analog),
and deduce results like the Weierstrass theorem as corollaries.

A much simpler proof of the Effective Weierstrass Theorem is given in Chapter 2,
Section 5. That proofis based on the “axioms for computability on a Banach space”
developed there. Naturally one must ask—what elementary results are needed to
validate the axioms—in order to make sure that no circularity has crept in. As we
shall see in Chaper 2, the verification of the axioms requires Theorems 1, 4, and 7
of this chapter—none of which depend on the Effective Weierstrass Theorem.

For convenience we restate the theorem. This theorem has no number, since it is
really a part of Theorem 6.

Theorem (Effective Weierstrass Theorem). Let [a, b] be an interval with computable
end points, and let f be a function on [a, b] which is computable in the sense of
Definition A. Then there exists a computable sequence of polynomials {p,,} which
converges effectively and uniformly to f on [a, b]—i.e. f is computable in the sense of
Definition B.

Technical preliminaries for the effective Weierstrass proof. We select an integer M
such that:

[a, b] = [—M/4, M/4].

Then we use the Expansion Theorem (Theorem 3) to extend f from [a, b] to
[—M, M]. We define a polynomial pulse function P,(x) on [ — M, M] by:

x 27m
Px)y=|1-(= .
We must investigate the behavior of this pulse as m — oo.

Fix a small interval [—1/d, 1/d] about 0. Here d is a positive integer with
1/d < M/4. Let J be the complementary domain

J=[-M,M]-[-1/d,1/d].

It seems apparent that, for large m, most of the mass of the pulse P,(x) should be
concentrated on [ —1/d, 1/d]. Equivalently, only a negligible portion of the mass
should lie on the complementary domain J. To make this effective, we need some
explicit inequalities.

For the domain J we have:

|x| > 1/d implies P,(x)<[1— (1/dM)*]™.
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Now consider the smaller interval [ — 1/2d, 1/2d]. On this interval:
|x| < 1/2d implies P,(x) > [1 — (1/2dM)*]™
Thus we are led to consider the ratio:
[1 - (1/2dM)*]"/[1 — (1/dM)*]™.

It is obvious that, since d and M are fixed, this ratio grows without bound as m — co.
Specifically:

(%)

1 — (1/2dM)? " 3m
1 —1/dM)? | 7 4d*M?*’

For completeness we give the elementary proof. The left side of () is just [(1 — u)/
(1 — 4u)]™, where u = (1/2dM)>.

By induction on k, (1 + wf*> 1 + kuand (1 —u)>1—kufork=0,1,2,....
We simply apply these facts several times:

Since (1 — u)* > 1 — 4u, we have (1 — w)/(1 — 4u) > 1/(1 — u)>. Also 1/(1 — u)® >
(1 + u)® (since (1 —u)(1 +u)< 1), and (1 + w)® > 1 + 3u. Finally, (1 + 3u)" >
1 + 3mu > 3mu. Thus [(1 — u)/(1 — 4u)]™ > 3mu, which is (*).

The main point of this subsection is contained in the following:

Technical Lemma. Let J denote the complement of the interval [—1/d, 1/d] in

[—M, M]. Then
L P,(x) dx 843 M3
M < Im
J‘ P,(x) dx
-M

Proof. Since P,(x) > 0 on (— M, M), the integral of P,, over [ — M, M] exceeds the
integral over [ —1/2d, 1/2d]. Therefore it suffices to estimate the larger ratio

(L)

Now we use () above. Thus the ratio

max of P,(x) on J < 4d*M?
min of P,(x) on [—1/2d, 1/2d] = 3m

On the other hand, the ratio

length of J

< .
length of [ —1/2d, 1/2d] 2dM

Multiplying the last two displayed inequalities gives the lemma. []



7. Proof of the Effective Weierstrass Theorem 47

Proof of the Effective Weierstrass Theorem, completed. Let P,,(x) be the polynomial
pulse function as above, and define

1 M2
Pm(x) = ol f’m P,(t — x)f(t) dt, —M/4 < x < M/4,

where

M
C,= f P,(x) dx.

-M

Recall that the interval [ — M/4, M /4] contains [a, b].

We now show that {p,,} is a computable sequence of polynomials.

Clearly the sequence P,,(x) = [1 — (x/M)?]™ is computable, and by the Binomial
Theorem,

2m  k
Pt =)= Y Y bpyxitc,
k=0 j=0
where the triple sequence {b,,;} is computable. Then

1 2m k M/2 . )
pm(x) == Z bm,cj(J‘ tk_]f(t) dt) - xd
Cm Jj=0 2

k=0 -M/

is a computable sequence of polynomials:

For we already have that {b,,;} is computable, and the computability of C,, and
of the other definite integrals above, effectively over m, k, j, follows from Theorem 5.

Now, to complete the proof, we must show that p,,(x) — f(x), uniformly in x and
effectively in m, as m - oo.

Since f'is effectively uniformly continuous, there is a recursive function d(N) such
that

.. 27N
|x — y| < 1/d(N) implies [f(x) — f(y)| < 5
Also, since f is continuous on [ — M, M], there exists an integer S with

sup |f(x)| <.

Ix|<M

FIX a point x € [—M/4, M/4]. We have to bound |p,(x) — f(x)| in a manner
M
uniform in x and effective in m. Since f(x) is held constant, and C,, = P,(t) dt,

-M

1 x+M
fx)=— f P,(t — x)f(x) dt.

Cm x—M
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On the other hand,

1 M2
Pm(x) = . f i P,(t — x)f(t) dt.

For simplicity, we write d for d(N). We break the difference p,,(x) — f(x)into three
parts:

Pm(%) — f(x) = (4) + (B) + (C),

where
1 rM2 x+1/d
(4) = —[ Pt — x)f () dt — f P,(t — x)f(t) dt],
Cm J-M)2 x—1/d
1 rx+1/d
(B) = C—[ Pt — x)[f(t) — f(¥)] dt],
m|_Jx—1/d
1 (*x+1/d x+M
=g [ re—nreaa [ n— s ac]
Cn Jx-1/d x—M

Concerning the various domains of integration: Of course, t € [x — M, x + M]
puts (t — x) e [— M, M], so that the pulse P, (t — x) is integrated over the correct
set. Since |x| < M/4, the interval [x — M, x + M] contains [ — M/2, M/2]. Also,
the small interval [x — 1/d, x + 1/d] lies inside [ — M/2, M/2]. Finally, and most
importantly:

In both (4) and (C), the domain of integration satisfies (t — x) € J, where J =
[—M, M] — [—1/d, 1/d] as in the Technical Lemma above.

M

We recall that C,, = j P,, and that S dominates the sup of | f(x)|. Hence by
-M
the Technical Lemma:

‘8d3M3
3m

843M?3
3m

(Al <S

)

I(C) <SS

To estimate (B), we use the definition of d = d(N). Since | f(t) — f(x)| < 27V/3 for
te[x — 1/d, x + 1/d], and since C,, dominates the integral of P, (t — x),

I(B) <5-27N
Now to effectivize the bounds on (4), (B), and (C), we define the recursive function

m(N) = 8SM3-d(N)?- 2V,
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so that

BMPAN? 1,
3m(N) 3°

Then m = m(N) gives
(4 <4277 and |(C)<}-27%,
whence
|Pm(*) — f() < 1(4) + (B) + (C)] < 27V
Since m(N) is a recursive function, the last inequality above shows p,,(x) = f(x)

effectively in m. None of the above inequalities depend on x, so the convergence is
uniform in x as well. This proves the Effective Weierstrass Theorem. [





