
Bibliographical Remarks and Further Reading

Preliminaries

We try to indicate for each important result or notion its author and the corresponding
publication, and possibly also reference to another work where the result is presented. Our
aim is to be as precise as possible; on the other hand, these remarks are not intended to
be a complete historical source and they serve only for orientation. This concerns mainly
remarks on old results. The reader interested in deeper investigation of origins of the
metamathematics of arithmetic is referred to source books: Gόdel's Collected Works I
[Gδdel 86], the books From Prege to Gδdel [van Heijenort 87] and The Undecidable [Davis
65]. We find also [Meschkowski 81] very informative. [Smoryήski 91 - Logical] contains
rather detailed historical information.

The material covered in the Preliminaries belongs to classics and can be found in stan-
dard monographs on mathematical logic, notably [Shoenfield 67], [Mendelson 64], [Bell-
Machover 77] and others; note that the syntax of first order predicate logic is systematically
developed in [Hubert-Ackermann 28], largely in the style which is still in use. They for-
mulate the problem of completness; Gόdel presents his solution in his dissertation (1930)
published as [Gόdel 31 - Monatsh.]. [Skolem 20] contains a proof of what we now call
the downward Lδwenheim-Skolem theorem, using what we call Skolemization. The above
works seem to deal with validity and satisfiability as intuitively clear notions without try-
ing to formalize them. Tarski's paper ([Tarski 33] in Polish; a German version is [Tarski
36], for an English version see [Tarski 56]) presents conditions defining the satisfaction
of a compound formula from the satisfaction of its components - these are our "Tarski's
truths conditions" or "Tarski's satisfaction conditions" (for a detailed analysis of Tarski's
approach see [Hodges 85]).

Herbrand's theorem is contained in his thesis published as [Herbrand 30]; as commented
in [van Heijenort 67] p. 526, Herbrand considered his theorem to be a more precise
statement of the well-known Lδwenheim-Skolem theorem. From the above mentioned
monographs, only [Shoenfield 67] elaborates on Herbrand's theorem.

Origins of first order arithmetic were described in the Introduction; let us add some
details. Arithmetical hierarchy was introduced in [Kleene 43] and [Mostowski 47]; the
notation Σn, Πni Δn is due to [Addison 58] and [Mostowski 59] (cf. Kleene's introductions
in [Gδdel 86]). Definition of functions from other functions by primitive recursion were
known to Dedekind, Skolem, Hubert and Ackermann. Gδdel introduces in [Gόdel 31 -
Monatsh.] a class of functions that he calls recursive; in our present terminology, these
are just primitive recursive functions. For origins of general recursive functions see [Peter
34], [Kleene 36]; monographs on recursive functions and recursion theory include [Rogers
67], [Soare 87]. Gδdel introduces and uses coding of finite sequences of natural numbers
by natural numbers [Gδdel 31] and arithmetization of syntax. We shall comment more on
arithmetization in remarks on Chaps. I and III.
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Matiyasevic's theorem is a final step of a long research into Hubert's tenth problem in
which J. Robinson, M. Davis and H. Putnam played prominent roles; besides Matiyasevic's
papers, see [Davis 73 Am. Math. Monthly] for history and a detailed proof. Finally let
us note that the decidability of the set of all sentences of the [language of arithmetic
without multiplication] true in N mentioned in 0.49 is proved in [Presburger 30]. Similarly,
[Skolem 30] proved that the theory of N in the language with multiplication and equality
is decidable; investigation of the theory of multiplication has been continued, see [Nadel
80], [Cegielsky 81].

Chapter I

(1) The theory Q was introduced by R.M. Robinson and is developed in [Tarski, Mostowski,
Robinson 53]. First-order arithmetic is mentioned in GόdePs postcript [Gδdel 32 - Ergeb-
nisse] to his main paper on incompleteness [Gδdel 31]; [Skolem 23] develops a first order
quantifier free system known presently as primitive recursive arithmetic. His paper is de-
voted to "positive results": no metamathematical results are obtained. Coming back to
the question why first order arithmetic with induction for all formulas is commonly called
Peano arithmetic, let us mention that the first occurence of this term known to us is
in [Tarski-Mostowski-Robinson 53] where the authors say that the theory in question "is
known as Peano arithmetic". [Kleene 52] studies the same system (or an equivalent sys-
tem); in an introduction in [Gδdel 86] Kleene says that his system "can be described as
Peano arithmetic PA". Kleene stresses the necessity of distinguishing PA from the original
Peano's axioms that are second-order.

In developing /open we freely follow [Mendelson 64]; but we leave /open rather soon.
It should be mentioned that there are several papers devoted to the metamathematics of
/open, notably [Shepherdson 65], [Wilkie 77], [van der Dries 80], [Adamowicz 86, 87] and
others.

/Σo and related systems of bounded arithmetics are studied extensively in Chap. V (see
bibliographical remarks to that chapter). In developing IΣ\ we partially anticipate what
will be done in Sect. 2 for arbitrary IΣn (n > 1); the main task - arithmetization - is done
in a rather standard way, usual in presenting GόdePs results on PA, and it is seen that
IΣi suffices to prove all necessary things. (The auxiliary coding of o-sequences follows
[Shoenfield 67].) Partial truth definitions are of great importance; they were studied by
[Montague 59] ([Schϋtte 60] has a similar notion). [Kreisel-Levy 68] is an important paper
dealing with partial truth definitions; we shall mention it in remarks to Chap. III.

(2) The main starting point for the study of theories IΣn and BΣn+i is the paper [Paris-
Kirby 78]; this was preceded by [Parsons 70, 72] where some important partial results were
obtained. The paper by Paris-Kirby contains among other things the equivalence of IΣn,
///n, LΣn,LΠn (Th. 2.4) and the implications IΣn+1 =* BΣn+χ => IΣn, BΣn+i O> BIJn

(Th. 2.5). The fact (2.4) that IΣn => IΣQ(Σn) appears in [Clote 85 - Caracas] (with
a remark that Paris and Kossak independently proved the same result); the paper also
contains a proof of the implication BΣn+i => LΔn+i =>• IΔn+i (2.5). The implication
LΔn+i =>- BΣn+i was proved by R.O. Gandy (unpublished). Note that H. Friedman
circulated a preprint (on fragments of Peano arithmetic, before 1985) in which he claimed
Bi7 n + i and IΔn+\ to be equivalent; but it still seems to be open whether IΔn+ι proves
BΣn+ι (or, equivalents, LΔn+ι). The fact that in £ Γ n + i , Σn and Πn formulas are
closed under bounded quantification is due to [Parsons 70].

The notion "piecewise coded" is studied in [Clote 85 - Caracas] and was introduced by
Kossak. Theorem 2.7 appears in the same paper. Concerning theorem 2.23: The equivalence
SΣn+ι <» SΣn O IΣn is in [Clote 85 - Caracas], properties of PHP in [Dimitracopoulos-
Paris 86], properties of the axioms of regularity in [Mills-Paris 84]. 2.24 (1) seems to be a
folklore, properties of local and partial approximations (Γ and P) appear in [Hajek-Paris
86]. Theorem 2.25 is due to V. Svejdar (unpublished).
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Finite axiomatizability of IΣn% BΣn+\ (n > 1) is an easy consequence of the existence
of partial satisfactions; it is difficult to say who first observed it.

Relativized satisfaction (for i^J(X)-formulas, X being a set) is introduced and investi-
gated in [Hajek-Kucera 89]. [Clote 85 - Oberwolfach] works with Σn (X)-definable subsets
of a model M of IΣ\, X being a subset of M but he does not formalize relativized satisfac-
tion inside IΣ\. The development of a theory of low Δn+ι sets and sets of the order type of
the universe (2.63-2.71) follows Clote's work but is made inside the theories BΣn+ι, not
from outside using models. The strengthening to IΣn and replacement of (low) Δ n + i by
(low) Σζ(Σn) is due to [Hajek-Kucera 89]. We shall comment more on low sets in remarks
to Sect. (3).

Finally, arithmetic with a top is studied in [Dimitracopoulos-Paris 82] and [Cegielsky-
McAloon-Wilmers 82]. In 1.2 we have presented only rather elementary facts on this
arithmetic.

(3) The limit theorem is a classical result of recursive theory due to [Putnam 65]. [Clote
85 - Caracas] proves the limit theorem for Δ2 sets in IΣ\ and for Δ2 functions in BΣ2.
The Limit theorem for Δ2 functions in BΣ\ was proved by Svejdar (3.2 - unpublished).

The low basis theorem is a recursion-theoretic version of the celebrated Kόnig's lemma
[Kδnig 27] and is due to [Jockusch-Soare 72 - TAMS]. In the recursion-theoretic language,
a degree a is low if a1 = 0' (see e.g. [Soare 87]). It is easy to show that the Turing degree
of a set X is 0' iff X 6 Δ2 and that dg(X) is low iff X is low Δ2 in our meaning. The low
basis theorem says that if Γ is a recursive dyadic infinite tree then Γ has an infininite low
branch. [Clote 85] shows that this is true in each M \= BΣ2 we follow his proof, working
inside BΣ2. The improvement to IΣ\ and low Σζ{Σi) is in [Hajek-Kucera 88]. 3.24 was
proved by Paris (unpublished). [Gaifman 70] was the first to realise that Matiyasevic's
theorem is provable in PA] Dimitracopoulos proved Matiyasevic's theorem in /XΌ(exp);
cf. [Gaifman-Dimitracopoulos 82].

(4) As we already said in comments to the Preliminaries, the arithmetization of logic
goes back to Gδdel. The first systematic elaboration of logic inside first order arithmetic
(arithmetization of syntax as well as semantics including the Arithmetized Completness
Theorem) is contained in [Hilbert-Bernays 34, 39]. (Clearly, they do not have the Low
Arithmetized Completness Theorem.) Checking that (some) usual proofs of logical facts
formalize in IΣ\ is more or less immediate (disregarding some difficulties as shown in the
proof of 4.10). The Arithmetized Completness Theorem can be stated as follows. PA proves
that each consistent Δ\ theory has a full Δ2 model. Partial improvements were obtained
by [Paris 81] and [McAloon 78 - TAMS]; our Low Arithmetized Completness Theorem is
more general.

Theorem 4.33 as well as Corollary 4.34 is rather important; it is closely related to the
results of [Leivant 81]. Note that 4.34(1) (IΣk+ι h Con (IΣk)) can be obtained by proof-
theoretical methods, see [Takeuti 75]. (We shall comment on proof theory in remarks to
Chap. III).

Finally, Theorem 4.37 is extracted from [Paris 80] and will be used in Chap. II where
results of Paris's paper will be presented in detail.

Chapter II

As mentioned in the introduction to the present chapter, the interest in developing finite
combinatorics in PA and its fragments arose from metamathematical investigations by
Paris and his school. Paris's pioneering contribution is twofold: he produced a mathemati-
cally well-understood combinatorial Π2 -theorem which is true but unprovable in PA} and
he showed the unprovability by model-theoretic means, not by self-reference (as Gόdel did
when considering his unprovable true sentences). The original formulation of the princi-
ple now known as the Paris-Harrington principle was different from that presented here
and did not use the notion of a large set. It circulated in preprints and may be found in
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[Paris 78], [McAloon 79]. Harrington contributed by reformulating the principle into its
elegant form using the notion of a (relatively) large finite set and showing the principle
to be equivalent to Con9(PA + Tr(Πι)) (cf. [Paris-Harringtron 77]); the last equivalence
was independently proved by [McAloon 80 - rapports]. Investigation of instances of the
Paris-Harrington principle and their relation to fragments of PA (as well as of instances
of the principle of ordinal-large intervals, see below) is the main content of Paris's papers
[Paris 80], [Paris 81]. Positive results on fragments contained in these two papers form the
main topic of the present chapter.

(1) Theorem 1.9 in particular is due to Paris. But we do not present it following Paris
(since he obtained the provabilities in question by indirect, model-theoretical means). We
follow and elaborate proofs of [Clote 85 - Oberwolfach] based on the Low Basis Theorem. In
particular, Theorems 1.5, 1.6, 1.7 are due to Clote. Clote also reasons model-theoretically
but his arguments easily yield direct proofs in fragments. Furthermore, we improve Clote's
results by using our stronger version of Low Basic Theorem. 1.10 is folklore.

(2) Here we elaborate the proof of [Paris 81]; the subsection (b) on combinatorics relies
on [Harrington-Paris 77].

(3) The history of what we call the Schwichtenberg-Wainer hierarchy or fast growing
hierarchy is as follows (see [Buchholz-Wainer 87]): [Kreisel 52 - non fin.] showed that the
functions provably recursive in PA can all be defined by recursions on certain well orderings
of type < £o Later [Schwichtenberg 71] and [Wainer 70, 72] independently generalized
earlier results of [Grzegorczyk 53] and [Robbin 65] to show that KreiseΓs functions can be
characterized by means of the present fast growing hierarchy below εo. As further reference
we mention [Lδb-Wainer 70], [Schwichtenberg 77], [Rose 84], [Buchholz 84].

[Ketonen and Solovay 81] related this hierarchy to the Paris-Harrington principle and
established, using purely combinatorial means, sharp upper and lower bounds to the
function

σ(n)=min{o |[0,α] --•(„ + 1 ) 2 } ;

from this, they reproved Paris and Harrington's result. In their paper, Ketonen and Solovay
introduced and studied the notion of an α-large finite set (due originally to Ketonen), a
being an ordinal. It follows from their investigations that the principle

(W) (Vα < eo)(V*)(3y)([x, y] is α-large)

is (meaningful and) unprovable in PA. [Paris 80, 81] introduced and investigated instances
of (W) and related them to fragments of PA. We freely follow Paris's papers using [Ketonen-
Solovay 81]. Theorem 3.18 does not occur explicitely in [Paris 81]; it can be found e.g. in
[Takeuti 75], see also [Kurata 86].

There are various other important combinatorial principles that can be analyzed with
respect to fragments, notably: a principle proposed independently by Pudlak (original pa-
per unpublished, see [Hajek-Paris 86]), Kanamori-McAloon's principle [Kanamori-NcAloon
87], principles due to [Clote-McAloon 83] and possibly others.

Chapter III

(1) The informal notion of an interpretation of a theory in another one appears to be rather
old; but we did not attempt to identify particular references. The first work dealing with
interpretations in connection with systems of first order arithmetic is [Tarski-Mostowski-
Robinson 53]; an old paper is [Montague 57]. Feferman's fundamental paper [Feferman 60]
deals also with interpretability; [Montague 63] contains a model-theoretic characterization
of interpretability (cf. also [Hajek 66]).

Similarly, we present no information about the origins of the notion of partial conser-
vativity; but the first result concerning partial conservativity is [Kreisel 62] showing that
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is Π\-conservative over PA. We shall give detailed references to later works
below (point (4)).

Sequential theories were introduced by [Pudlak 85]; a similar notion was investigated
by [Vaught 67]. Friedman also had a similar notion but did not present an exact definition,
cf. [Smoryήski 85 - Friedman's research].

ACAQ is one of various interesting subsystems of second order arithmetic; we refer to
Simpson's forthcoming book on this topic [Simpson 86-90]. The model-theoretic proof of
conservativity of ACAQ over PA (1.16) is a folklore; the proof of finite axiomatizability is
a variant of Gόdel's proof of the fact that GB proves the schema of comprehension [Gδdel
40]. See also below.

The notions of a binumeration and numeration go back to [Gόdel 31] and are studied in
detail in [Feferman 60]. Gόdel introduced also the notion of of an ω-consistent theory; this
is what we called a sound theory (1.21). 1-consistent theories were introduced in [Feferman-
Kreisel-Orey 62]. Rosser invented witness comparison [Rosser 36]; theorem 1.24 appears in
[Tarski, Mostowski, Robinson 53].

(2) Gόdel was first to construct a particular self-referential formula [Gόdel 31 -
Monatsh.]. The non-parametric version of the fixed-point theorems 2.1 occurs in [Car-
nap 34]; Gόdel acknowledges Carnap's priority in [Gόdel 34 - Princeton]. A parametric
version occurs first in [Montague 62], where also existence of a self-referential pairs is
proved (2.6). For a historical survey containing self-reference see [Smoryήski 81 - fifty].
Corollary 2.3 is the celebrated result on the undefinability of truth, due to Tarski [Tarski
33, 35]. Tarski refers to [Gόdel 31 - Monatsh.] for the method of diagonalization. Results
of subsection (e) are classical: GόdeΓs main paper [Gόdel 31 - Monatsh.] contains his first
incompleteness theorem (as well as the statement of his second incompleteness theorem)
for a system related to Whitehead-Russell's Principia Mathematica (1913); this paper was
preceded by a short announcement [Gόdel 30 - Anzeiger] and complemented by a short
paper [Gόdel 32 - Ergebnisse]; the last paper formulates Gόdel's theorems for first order
systems like our PA. Rosser's improvement (replacing cj-consistency by mere consistency)
is in [Rosser 36]. Flexible formulas were invented by [Mostowski 61]; our proof follows
[Kripke 62]. Gόdel formulated his second incompletness theorem for a particular system
and a particular proof predicate and did not need to formulate exciplit provability condi-
tions. Provability conditions are formulated in [Hilbert-Bernays 39]. The fact that PA is
not finitely axiomatizable (2.4) is due to [Ryll-Nardzewski 52]. For Lob's theorem and its
motivation see [Lob 54], [Henkin 52]. A paper showing that PA cannot be axiomatized by
formulas of limited arithmetical complexity is [Rabin 61]; this is a predecessor of 2.27. For
Craig's theorem see [Craig 72].

Essential reflexivity of PA (2.35) was proved in [Feferman 60]. Our 2.37 is a slight
improvement of a theorem of [Feferman 60]. Theorems characterizing interpretability in
pure extensions of PA (2.34-2.40) are based on [Orey 59, 61], the equivalence 2.39 (i) O (ii)
being often called Orey's compactness theorem (cf. [Hajek 72], [Guaspari 76]).

The method of shortening definable cuts was discovered by Solovay; but he has never
published the result. See [Hajek 81 - Int. II] and [Paris-Dimitracopoulos 83]; the latter
paper proves that there are definable cuts having no shortening to a cut closed under
exponentiation (see also [Dimitracopoulos 80]).

The rest of Sect. 3 (subsections (b)-(d)) is an elaboration of (parts of) [Pudlak 85];
only Theorem 3.20 (2) is due to Hajek. The idea of simultaneous use of two provability
predicates (3.6), essential for 3.9, is due to Mycielski (unpublished).

(4) Section 4 presents results on interpretability and partial conservativity for theories
containing IΣ\) many of them were first obtained for PA. We shall refer to the original
results even if they are less general than the theorem presented. An extended abstract of
this section appeared as [Hajek 87 - CMUC].

4.5 (1) [Feferman 60] for T D PA] [Svejdar 78]. (2) [Kreisel 68] for T D PA; [Smoryήski
80]. (3) [Kreisel 68] for T D PA; Svejdar (unpublished).
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4.25 is due to Guaspari and Solovay (for T D PA): see [Guaspari 67] (their examples
are more complicated than ours).

4.26(1) is classical (cf. [Rogers 67]); (2) [Hajek 87]; (3) for T = ZF, Γ = Πx [Hajek
71], generalized for T D PA by [Lindstrom 84]. (4) implicit in [Lindstrδm 84] for T 3 PA.

4.27 For T = ZF, Γ = Πι Solovay (unpublished) for PA, Γ = Πn and Consυ [Hajek
79]; for PA, Γ = Σn and Conaυ [Quinsey 81]; in full generality for T D PA [Lindstrom 84].

Fixed point theorem 4.29 [Shepherdson 60], [Smoryήski 81 - Fifty]. Theorem 4.35 (Στ-
numerability) was first obtained by [Shepherdson 60].

4.55 The first example of a Σ2 formula φ such that (ZF + φ) is interpretable in ZF
but (GB + φ) is not in GB is in [Hajek 71] under the assumption of soundness; this
assumption was removed in [Hajek, Hajkova 72]. A Σ\ formula of the desired properties
was constructed by Solovay.

4.57 first appeared in [Hajek 87]; 4.50 is from [Lindstrom 84].

We shall now comment on some important topics related to the contents of Chapter III
but not covered. We shall indicate only basic references, not full literature on the subject.

(a) Reflection principles. Roughly, a reflection principle says "if a formula is provable
then it is true" (or "if all instances of a formula are provable then the formula is true"). We
met an example of a provable reflection principle in 1.4.34; an example of an unprovable
principle is the schema

Pr'pA(φ) - φ

for all φ(PrJ,^ being given by a Σ\-definition of (PA)) since its particular case (for φ being
0 = 1) clearly implies Con*p*. On the other hand, the last schema is clearly true in N
and may be used as a natural strengthening of PA. This has been studied systematically;
the reader many consult [Kreisel-Levy 68], [Schmerl 79, 80, 82]; early results on reflection
principles are also discussed in detail in Smoryήski's survey paper [Smoryήski 77] in the
Handbook of Mathematical logic.

(b) Trαnsfinite progressions of theories. One can iteratively add unprovable true sen-
tences to a sound theory, e.g. investigate the sequence PA, PA + Con*(PA9), PA +
Con (PAm) + Con*(PA9 + Con(PA*)),... or iteratively add some reflection principles.
Using ordinal notations [Kleene 44] one can iterate transfinitely and try to characterize
which part of the truth (Th(N)) can be grasped. See [Feferman 62], [Feferman-Spector 62],
[Fenstad 68], [McAloon 80, 82].

Arithmetic and lattices: Lindstrom and Svejdar independently introduced and studied
the lattice of intenpretability types over theories T containing some arithmetic ([Lindstrom
79 - Aalborg, 84 - Notre Dame], [Svejdar 78]). Put φ 4 φ if (T -f φ) is interpretable in
(T-f φ)\ this is a quasiorder and the corresponding factors are interpret ability types; they
form a distributive lattice. Many deep results about this lattice are known, in particular
for T = PA.

[Hajkova 71] and [Paluch 79] investigated lattices of consistency statements: e.g. take
PA and investigate all Σ\ Enumerations of PA in PA. For each such Enumeration a let
Con*χ be the corresponding consistency statement. Put a < β if PA h Con# —+ Con%.
This again gives an extremely rich lattice.

Investigation of both lattices uses extremely tricky self-referential constructions. Note
that [Mycielski, Pudlak and Stern 90] investigate a lattice of interpretability types of
all first order theories (not necessarily Λ\ axiomatizable and not necessarily containing
arithmetic); their lattice differs drastically from Lindstrom-Svejdar's lattice.

(d) Faithful interpretations. An interpretation * of T in S is Γ-faithful if for each
ψ e Λ T h ψ is equivalent to 5 I- ^ . See [Feferman-Kreisel-Orey 62], [Guaspari 79]
(model theoretic characterization), [Lindstrom 84].

(e) Arithmetic and modal logic. This is an extremely rich and fruitful domain: one
considers formulas of the modal propositional calculus (i.e. for each formula A, we have
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a formula DA-necessarily A) and investigates their arithmetical interpretations. Such an
interpretation * assigns a sentence of arithmetic to each proposltional variable, commutes
with connectives and interprets D as provability: (DA)* is Prm(A*) (for a fixed provability
predicate for a fixed arithmetic T). There is a natural axiomatic system L (or G) satisfying
(for reasonable T and P r # ) arithmetical completeness: G h A iff for each arithmetical
interpretation *, Γ h A*. A pioneering paper is [Solovay 76]; an extensive monograph is
[Smoryήski 85 - Self].

Further important names (see bibliography): Boolos, Sambin, de Jongh, Magari, Mon-
tagna, Artemov and others. One can introduce a further modality > of interpretability
and investigate modal interpretability logics and logics of partial conservativity (Svejdar,
Visser, de Jongh, Veltman, Berarducci, Savrukov, Hajek - Montagna).

(f) In this book we pay very little attention to advanced methods of proof theory; in
particular, cut elimination is used only in Chap. V, Sect. 5. Proof theory is an extremely
large domain and we shall not try to sketch its aims in a few words; instead, we refer to
basic monographs: [Schϋtte 60], [Takeuti 71], [Pohlers 89]. See also [Schwichtenberg 77].
An application of proof theory to fragments of arithmetic is [Sieg 85]; we obtain some of
the results presented by him using model theoretical rather than proof theoretical methods
(in Chap. IV.)

Chapter IV

(1) The construction of a non-standard model of PA using definable ultrapower goes back
to [Skolem 33] (Th. 1.7). For Los's lemma 1.9 see [Los 55]. Another early paper on models
of arithmetic is [Mύller 61].

Lemma 1.20 (which is the only place in this chapter explicitly using Matiyasevic's
theorem) is due to [Gaifman 72] (for PA). Lemma 1.22 is due to Kirby and Theorem 1.24
elaborates a theorem of [Gaifman 72], cf. 1.25 (2). Theorem 1.29 (1) is due to [Paris-Kirby
77], (2)-(3) to Hajek, see [Hajek-Paris 86].

The method of proof of Theorem 1.33 goes back to [Paris-Kirby 78] (cf. also [Lessan
78]), but they did not deal with PΣk\ results in 1.33 not concerning PΣk are due to [Paris
and Kirby 78], for the rest see [Hajek and Paris 86]. As we mentioned elsewhere, the fact
that PA is not finitely axiomatizable (Corol. 1.34 (3)) was first proved by [Ryll-Nardzewski
52].

We are unable to credit anauthor for 1.51 and 1.52; but both theorems follow rather
easily from the preceding.

Theorem 1.53 is due to [Paris-Kirby 78]. Theorem 1.59 is the famous Paris-FViedman
conservation theorem; Friedman has never published his proof, Paris's proof is in [Paris 80]
and in [Paris 81]. We present Kaye's proof (1.60, not published as a paper, see [Kaye 91 -
Models]) and a modification of a Paris's proof (1.61) suitable for formalization in Sect. 4.

(2) We commented on the arithmetic with a top above (remark to Chap. II Sect.
2 (e)), Theorem 2.2 appears in [Cegielsky-McAloon-Wilmers 82] and is attributed to Paris.
Subsections (b) and (c) present and elaborate part of [Paris 80, 81]. (See more on cuts and
standard systems below.) Theorem 2.40 is due to [Ressayre 83, 86]; note that an analogous
result for models of PA was first proved by [Friedman 73].

(3) Section 3 is central to Chap. IV: we present results of [Paris 80, 81]. In particular,
Paris invented the notion of an indicator of a family of cuts. The term "envelope" (3.3)
is borrowed from [McAloon 86]. Paris's main theorems are 3.5 and 3.7; the corollary 3.6
(characterizing IΣ\ provably recursive functions as primitive recursive) is due indepen-
dently to [Mine 76], [Takeuti 75] and Parsons (unpublished). A related paper is [Ratajczyk
88].

Section 4 presents results on model theory formalized in fragments; the result 4.8
(provability of the Paris-Friedman conservation theorem in IΣ\) is due to Clote and
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Hajek independently, cf. [Clote, Hajek, Paris 90]. The last paper contains a stronger result
obtained by proof-theoretical methods.

Chapter IV presents only some important selected topics of model theory and its
fragments. For an overview of the development of model theory of arithmetic the reader
may consult [Smorynski 84 - LC82] and, with special emphasis on the work of Friedman,
[Smorynski 85 - Friedman]. [Kaye 91 - Models] is a monograph devoted to models of
arithmetic. We mentioned our main omission in the introduction to Chap. IV; now let us
offer some references.

(a) Standard systems. See 2.13; for / = ΛΓ, SSN(M) (or just SS(M) is a set of subsets
of N called the standard system of M (also: the set of reals of Λf). It is easy to show
that if Λf t= PA then SS(M) is just the set of all X Π JV, where X is a parametrically
definable subset of Λf. Similarly introduce SSQ(M) = {X Π N \ X nonparametrically
definable in Λf}. [Scott 62] was the first to investigate SS0(M) for Λf t= PA (SS0(M) is
the set of all subsets of N binumerable in the complete theory Th(M)) and characterized
algebras of subsets of N obtainable as SSQ(M) (often called Scott algebras). [Friedman
73] introduced SS(M); it turns out that all SS(M) coincide with all Scott algebras (for
a particular Λf, SS(M) and SSQ(M) may or may not differ, cf. e.g. [Hajek 81 - alg]).
Friedman obtained beautiful theorems on the embeddability of models in dependence on
their standard systems. [Kaye 91 - Models] contains a detailed exposition.

(b) Recursively saturated models. A very fruitful domain. A type a in Λf consists of
a set τ(x,y) of formulas φ(x,y) and a parameter 6 6 Λf interpreting y. The type is Δ\
iff r(x, y) is a Δ\ set of formulas. The type α is finitely satisfiable in Λf if for each finite
subset δ(x} y) of τ(x, y),

Λf t= (3a) Λ 6(α, 6).

The type a is satisfiable in Λf if there is an α € Λf such that Λf fc= φ(a, b) for each φ € r.
Λf is recursively saturated if each finitely satisfiable Δ\ type is satisfiable. Each model Λf
has a recursively saturated elementary extension. For an older overview of the theory of
recursively saturated models of arithmetic see [Smorynski 81 - rec-sat]; see also [Kaye 91
- Models].

(c) Cuts in models of arithmetic. This is another very fruitful domain; we have presented
only a fraction of known results. The pioneering paper is [Kirby-Paris 77] (and Kirby's
dissertation [Kirby 77]). There are lots of papers on various sorts of cuts, indicators etc.;
for an older survey see e.g. [Pillay 81 - cuts] further, see e.g. [McAloon 78 - (LC77)],
[Kotlarski 81, 83, 84].

(d) Note also a very interesting topic - systems of PA with parameter-free induction,
i.e. Iφ for φ having just one free variable. It is customary for a fragment T of arithmetic,
to denote, by T~ the corresponding subtheory having the same axiom schema(s) as T but
without parameters. It is easily seen that PA" is equivalent to PA and IΣQ is equivalent
to IΣQ but for n > 1, IΣ~ is weaker than IΣn and different from JJT~. The basic paper is
[Kaye, Paris, Dimitracopulos 88] (and Kaye's dissertation [Kaye 87]); see also [Adamowicz
88].

The above is only a selection of major topics not covered; one could continue men-
tioning the theory of satisfaction classes, uncountable models, indiscernibles and other
developments.
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Chapter V

Bounded Arithmetic was introduced by Parikh [Parikh 71]. He introduced the system
which is nowadays denoted by IΣo or IAQ. Some weak fragments had been considered
before. Shepherdson [Shepherdson 64, 65, 67] considered 7open Goodstein [Goodstein 54]
and Cleave and Rose [Cleave-Rose 67] studied so-called En-arithmetics. These systems are
equational systems corresponding to Grzegorczyk classes En, [Grzegorczyk 53]. Another
equational system was introduced by Cook [Cook 75]. His system PV is closely related to
Sj (this relationship is described in [Buss 86 - Bounded Arith.]). After Parikh, most of
the research on IΣo and IΣo -f Ω\ was done by Paris and Wilkie. The most important
papers are [Paris-Wilkie 81 - Δo Sets] and [Wilkie-Paris 87]. Let us note that [Wilkie-Paris
87] was published several years after the results of the paper were obtained. Later Buss
entered this area with his book [Buss 86 - Bounded Arith.]. Several other mathematicians
contributed to this field and the research is going on.

(1) The result on JOpen is due to Shepherdson [Shepherdson 64]. For further indepen-
dence results on /open see [Macintyre-Marker 89], [Adamowicz 86]. Theorems 1.1 and 1.2
are due to McAloon [McAloon 82] (we present Kaye's proof of 1.1). Paris improved The-
orem 1.2 to cover models of IE\ [Paris 84]. Theorem 1.4 (only for IΣo) was proved in
[Parikh 71]. The hierarchy of theories IΣ0 + ί?, , IΣQ + Exp and IΣQ + Superexp appears
in the papers of Paris and Wilkie. A system equivalent to IΣo + Exp is mentioned also
in [Friedman 80]. The theory IE\ and related systems were investigated in [Wilmers 85]
and [Kaye 92 - Open]. PIND and LINO axioms were introduced in [Buss 86 - Bounded
Arith.].

We mention only very briefly Σo PHP, a very interesting subject with several nice results
and open problems. Woods showed that ΣQPHP proves Bertrand's Postulate, hence that
there are infinitely many primes. (Note that by Parikh's theorem any proof of the infinitude
of primes in Bounded Arithmetic must give a piece of information about the distribution
of primes.) Wilkie proved a weaker version of ΣQPHP in IΣo + Ω\ which is sufficient
for Woods' proof. The results are presented in [Paris-Wilkie-Woods 88]. A weak form of
independence of PHP was shown by Ajtai [Ajtai 83]. He proved that if we extend IΣo
with a new relation symbol R(x, y) (and do not add any special axioms about R except for
the induction for the new formulae), then PHP(R(x,y)) is not provable in such a theory
(which is denoted by IΣQ(R)). He proved a similar result for the parity principle which
says that an interval [0,2n + 1) cannot be partitioned into two-element blocks [Ajtai 90].

(2) Computational complexity is a very broad subject. In Sect. 2 we have mentioned
only a few results. There are several books about this subject; we recommend the following
ones [Aho-Hopcroft-Ulman 74], [Garey-Johnson 79], [Savage 76], [Wagner-Wechsung 86],
[Balcazar-Dίaz-Gabarrό 88, 90]. The very recent Handbook of Theoretical Computer Sci-
ence [van Leeuwen 90] is also a very good source. We have quite neglected an important
part of complexity theory which is the complexity of boolean function; the best reference
is [Wegener 87].

Here we shall only state the authors of the theorems of Sect. 2. Theorems 2.2 (a) and
(b) are due to Hartmanis and Stearns [Hartmanis-Stearns 65] and Hartmanis, Lewis and
Stearns [Hartmanis-Lewis-Stearns 65], respectively. Theorem 2.4 is due to Hopcroft, Paul
and Valiant [Hopcroft-Paul-Valiant 75]. Theorem 2.5 was proved by Savitch [Savitch 70].
Theorem 2.6 was proved independently by Immerman and Szelepczenyi [Immerman 88]
and [Szelepczenyi 87]. Theorem 2.6 is due to Cook [Cook 71]; in this famous paper he

formulated the P = NP problem. Let us note in passing that already in 1956 Gόdel had
7

asked a question related to the P == NP problem in a letter to von Neumann. He asked
whether one can decide the provability of a formula by a proof of length n in time linear
or quadratic in n. Now we know that this problem is Λ/P-complete. The next influential
paper was [Karp 72]; it contains also the proofs of the Λ/P-completeness of CLIQUE and
HAMILTONIAN GRAPHS. The /VP-completeness of the solvable equations ax2 + by = c
was proved by Manders and Adleman, see [Manders 80] for a survey. Theorem 2.8 is due
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to Ladner [Ladner 75]. Theorem 2.9 is due to Baker, Gill and Solovay [Baker-Gill-Solovay
75]. The Polynomial Time Hierarchy was introduced in [Stockmeyer 76]. The Linear Time
Hierarchy was studied in [Wrathall 78]. The reference for Nepomnjascij's Theorem 2.14
is [Nepomnjascij 70]. Wrathall proved that LinH is equal to the class of rudimentary sets
introduced in [Smullyan 61]. It is not difficult to show that rudimentary sets are just
ΔQ definable sets (using the natural coding of sequences). Thus Theorem 2.16 follows
from her result. Theorems 2.17 (i) and (ii) were proved in [Hartmanis-Lewis-Stearns 65]
and [Hartmanis-Stearns 65] respectively. Theorem 2.18 is due to Zak [Zak 83]. Theorem
2.19 was possibly never explicitly stated, but it is a typical application of Zak's method.
Theorem 2.21 is due to Pudlak. Further results on time hierarchies can be found in [Paris-
Wilkie 81].

An interesting area, which we do not cover, is counting problems. A typical question
is the following: do Σo definable sets have ΣQ definable counting functions? (F(x) is a
counting function for A, if F(x) is the number of elements of A smaller than a;.) This is
closely related to the questions about PHP in IΣo. If Σo sets had Σo counting functions
and their properties were provable in IΣo, then IΣo would prove ΣQPHP. The relation of
counting to Bounded Arithmetic and approximations of counting functions were studies in
[Paris-Wilkie 85 and 87]. Recently Toda proved a result from which it follows that the sets
in PH do not have counting functions in PAY, provided that PH does not collapse [Toda
89]. Hence, assuming that PH does not collapse, the answer to the above question is also
negative.

(3) Bennett was the first to show a Σo formula for the relation z = xy [Bennett 62].
Paris found another such formula and Dimitracopoulos [Dimitracopoulos 80] verified that
the inductive clauses ((c.l) and (c.2)) are provable in IΣo for Paris's formula. A different
ΣQ definition of exponentiation is in [Pudlak 83 - A definition]. In Sect. 3 we use the idea of
[Nelson 86]: first to build a weak form of coding of sequences (based on binary expansions)
and then to define exponentiation. However Nelson does not work in IΣo, he works in
theories interpret able in Q. (Also he uses base four expansion of a single number instead
of the binary expansions of two numbers.) A formalization of syntax in IΣQ is considered
here for the first time, though the ideas on which it is based have been around for some
time. A formalization of syntax in IΣo + Ω\ was made in [Wilkie-Paris 87]. Theorem 3.37
is new. The corollary that context-free languages belong to Σff follows also from the result
of [Wrathall 78] that context-free languages are rudimentary.

(4) The definition of the theories S 2 , Γ2 and their fragments Sj, Tj is due to Buss [Buss
86 - Bounded Arith.]. The theorems about the relationship between different axioms of
induction and related principles are proved in that book or in [Buss 90 - Axiomatizations];
(Theorems 4.5, 4.7, 4.8, 4.10, 4.13). Our model-theoretical approach to witnessing theorems
is inspired by Wilkie's proof of Buss's theorem [Wilkie 85]. Theorem 4.29 was proved by
Krajίcek and Takeuti, the proof here is due to Pudlak. Theorem 4.32 first appeared in [Buss
90 - Axiomatizations], it is a strengthening of Buss's theorem from [Buss 86, Bounded
Arith.]. We have adapted Wilkie's proof to this strengthening. The result about models
of fragments of S^ which we have extracted from his proof (Theorem 4.31) might be of
an independent interest. Theorem 4.38 is due to Krajίcek, Pudlak and Takeuti [Krajίcek,
Pudlak and Takeuti 91]. See also [Krajίcek 91 - Fragments].

A proof that S2 is not finitely axiomatizable would strongly support the conjecture
that the Polynomial Hierarchy is proper. However, proving the former statement seems
to be also very hard. A possible way of proving it is proposed in [Krajίcek, Pudlak 89 -
Quantified]. Quantified propositional proof systems are related to the fragments S%

2 in the
same way as the Extended Frege system is related to PV (hence to S\ ) in [Cook 75] (this
was done independently also by Dowd [Dowd 85]). To separate the fragments Sj, we need
to prove a speed-up theorem about the length of proofs for the hierarchy of the quantified
propositional calculi.

Versions of Buss's theorem for different fragments and different complexity function
classes were proved in [Clote-Takeuti 86; 92].
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The spectrum of the fragments of Bounded Arithmetic is much richer, more and more
theories are being defined. A lot of research is being done on second order systems of
Bounded Arithmetic. Such systems were introduced in [Buss 86 - Bounded Arith.]; for
more recent results see [Takeuti 90 - 5J; 91 - A second], [Clote-Takeuti 92], [Krajίcek 90
- Exponentiation].

(5) The truth definitions for Σo were first considered in [Lesan 78] and [Paris-
Dimitracopoulos 82]. The finite axiomatizability of IΣQ + Exp (Theorem 5.6) was shown
in [Gaifman-Dimitracopoulos 82]. Theorem 5.7 is due to Wilkie (unpublished). For related
results on interpretability see [Szemielew-Ίarski 52], [Nelson 86], (Nelson considers only
local interpretations), and references to Chap. III. Theorem 5.12 is in [Wilkie-Paris 87].
We formalize some classical results of proof theory, the best reference is [Ίakeuti 80]. The
important concept of restricted provability and restricted consistency is due to Paris and
Wilkie [Wilkie-Paris 87]. Theorem 5.26 is due to Wilkie [Wilkie 86 - On sentences]. His
original proof of this theorem is different, he uses a model-theoretical construction. Theo-
rem 5.27, in a slightly stronger form, is in [Wilkie-Paris 87]. Theorem 5.28 is due to Pudlak
[Pudlak 85]. Corollary 5.29 and Theorem 5.31 were proved in [Wilkie-Paris 87] (we give
different proofs). Corollary 5.32 is from [Wilkie 86 - On sentences]. Theorem 5.33 and
Corollary 5.34 are strengthenings of results of [Wilkie-Paris 87]. The last theorem is new.

There are more results about incompleteness and truth definitions in Bounded Arith-
metic. Their main motivation is the problem of finite axiomatizability of Bounded Arith-
metic. We cannot use ordinary consistency statements to separate fragments of Bounded
Arithmetic, since even IΣo + Exp does not prove Con^. In [Buss 86 - Bounded Arith.]
Buss proposed to use various kinds of bounded consistency, which are consistencies with
respect to proofs containing only bounded formulae. It has turned out that a similar in-
completeness extends also to such consistency statements. For instance 52 does not prove
bounded consistency of S% [Pudlak 90 - A note], [Takeuti 88 - Some relations]. For further
results see [Takeuti 88 - Bounded], [Krajίcek-Takeuti to appear].






