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Abstract

We state a conjecture for the formulas of the depth 4 low-weight rotational eigenvectors and their
corresponding eigenvalues for the 3G subfactor planar algebras. We prove the conjecture in the case
when |G| is odd. To do so, we �nd an action of G on the reduced subfactor planar algebra at f (2),
which is obtained from shading the planar algebra of the even half. We also show that this reduced
subfactor planar algebra is a Yang-Baxter planar algebra.

Dedicated to the 60th birthday of Vaughan F. R. Jones.

1 Introduction
Haagerup initiated the classi�cation of subfactor principal graphs with index a little greater than 4, and
he gave a classi�cation of all possible graph pairs in the index range (4, 3 +

√
2) [Haa94]. In doing so, he

discovered a so-called ‘exotic’ subfactor [AH99] with index 5+
√
13

2
and principal graph the 3-spoke

1
.

The Z/3Z-symmetry of this graph means that the dimension one vertices at the ends of the spokes form
the group Z/3Z under the fusion operation of the corresponding bimodules.

In [Izu01], Izumi gave a generalized construction to other abelian groups using Cuntz algebras, and
constructed an example when G = Z/5Z. Such a subfactor is called a 3G subfactor and has principal
graph

Γ+ =
1 X ρ Z

gρ

hρ

gX

hX

g

h

.

Two recent articles of Evans-Gannon [EG11, EG14] have successfully used Izumi’s equations to construct
a myriad of new examples of 3G and related 2G1 subfactors with principal graphs

Γ± =
1

ρ

g

h

.

They also give simple formulas for the quantum double and its modular data, leading them to conjecture
that there should be associated rational conformal �eld theories.
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The even halves of the 3G and 2G1 subfactors are examples of quadratic unitary fusion categories,
which have a group G of invertible objects and one other orbit Gρ of simple objects, together with a
relation for fusion on the right by g, and a quadratic fusion relation for ρ. For example, by unpublished
work of Izumi, the even half of a 3G subfactor for |G| odd satis�es

ρg = g−1ρ and ρ2 ∼= 1⊕
⊕
g∈G

gρ.

The even halves of 2G1 subfactors are unitary near group fusion categories [EG14], which are generaliza-
tions of Tambara-Yamagami categories [TY98].

Izumi observed in [Izu01] that when realizing a unitary fusion category as a category of sectors of some
in�nite factor M , Cuntz algebras naturally appear as the C*-algebras generated by the orthonormal bases
of intertwiner spaces in M . Cuntz algebras are particularly useful in constructing quadratic categories
because we usually only need to analyze one Cuntz algebra, in which the quadratic relation allows us to
write down polynomial equations in the generators to de�ne an endomorphism of the C*-algebra. One
then extends the endomorphisms to the von Neumann completion using the unique KMS state [OP78],
which is again an in�nite factor (e.g., see [BR97]). When the category is not quadratic, we obtain multiple
Cuntz algebras together with relations between them, and the situation is much more complicated.

Currently planar algebra techniques are not as e�ective as Cuntz algebras for constructing quadratic
categories. The recent articles [BP14, PP13] suggest a uniform skein theory for the 3G’s using 2-strand
jelly�sh relations. A general formula for the generators in the graph planar algebras remains elusive, as
the valence and size of the 2n1 and 3n graphs gets quite large. We expect that the Cuntz algebra and
planar algebra techniques can be reconciled, which will be explored in future work. For example, Izumi
has shown how to draw planar diagrams for the actions of his Cuntz algebra endomorphisms.

Based on [MP15, PP13] we conjecture speci�c formulas for the 3G low-weight rotational eigenvectors
in the 4-box spaces in terms of minimal projections in the 3G subfactor planar algebras. This is the �rst
step in the Jones-Peters graph planar algebra embedding program [Jon01, Pet10, JP11, Jon12] toward a
uniform planar algebraic approach to the 3G subfactors.

LetP• be a 3G subfactor planar algebra. For g ∈ G\{1}, let pg be the projection inP4,+ corresponding
to gρ. We make the following conjecture about the low-weight rotational eigenvectors for P• which
agrees with the Haagerup 3Z/3Z and Izumi 3Z/2Z×Z/2Z and 3Z/4Z subfactor planar algebras by [Pet10,
Jon12, MP15, PP13].

Conjecture A. Suppose g, h, k, ` ∈ G \ {1} are distinct elements.

(1) If g = g−1 and h = h−1, then pg − ph is a low-weight rotational eigenvector with eigenvalue 1.

(2) If g = h−1, then pg − ph is a low-weight rotational eigenvector with eigenvalue -1.

(3) If g = g−1 and h = k−1, then 2pg − (ph + pk) is a low-weight rotational eigenvector with eigenvalue 1.

(4) If g = h−1 and k = `−1, then (pg+ph)− (pk+p`) is a low-weight rotational eigenvector with eigenvalue
1.

Our main theorem in this article is as follows.

Theorem B. Conjecture A is true when |G| is odd.
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To prove this theorem, we construct a G-action1 on the reduced unshaded planar algebraR• of P• at
ρ = f (2) with principal graphs

Λ =

1

g

h

ρ

gρ

hρ

.

For each g ∈ G, we pick a distinguished isomorphism Vg : ρg−1 → gρ. Denoting ρ ∈ R1 by a red strand
and the group elements g ∈ P6,+ by black labelled, oriented strands, the action is given by

Φg(x) = g

g

g

g

V ∗g ?Vg?

V ∗g? Vg ?

x? ,

which is similar to diagrams arising from looking at connections [Ocn88, Jon99, MP14, Liu13]. Moreover,
we have Φg ◦ Φh = Φgh, giving a G-action on R•1. We anticipate this new technique will have new
applications to subfactor planar algebras beyond the proof of our theorem.

When there is an h ∈ G such that h2 = g, we apply the action of Φh to the relation

= − 1

[3]− 1

(
−

)
,

where the trivalent vertex is a suitably normalized map ρ⊗ ρ→ ρ. We then obtain the formula

FR•(pg) = pg−1 − 1

[3]− 1

(
−

)
.

By Corollary 3.9 below, Conjecture A is equivalent to this formula holding for every g ∈ G. When |G| is
odd, every g ∈ G has a square root, but this is no longer the case when |G| is even.

We note that the principal graph Λ above bears a strong resemblance to the principal graph of the
reduced subfactor of A7 at f (2), given by

S =

1

f (6)

f (2)

f (4)

.

It was recently shown in [LMP15] that the planar algebra corresponding to this reduced subfactor is a
Yang-Baxter planar algebra, which is a planar algebra generated by 2-boxes with a relation which writes
one type of triangle in terms of the other triangle and lower order terms (below, B2,+ is a basis of P2,+

1There is actually a technicality involving the shading and the symmetric self-duality [MP15, MP] ofR• which we address
in Sections 4 and 5, but we omit the shading in the introduction to give the spirit of the argument.
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including the diagrammatic basis of T L2,+):

a?

b
?

c?

=
∑

x,y,z∈B2,+

λx,y,z

x
?

y?

z
? .

(There is also a relation swapping the above types of triangles, which is necessary to be able to evaluate
all closed diagrams.) In his recent classi�cation of singly generated Yang-Baxter planar algebras [Liu15],
Liu discovered that the subfactor for S belongs to an in�nite family of subfactors arising from the EN+2

quantum subgroup of SU(N).
We further conjecture a new skein theoretic approach to constructing the reduced subfactor planar

algebraR• of a 3G subfactor planar algebra, and we prove it in the case |G| is odd.

Conjecture C. R• is a Yang-Baxter planar algebra with |G| − 1 generators.

Theorem D. Conjecture C is true when |G| is odd.
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2 3G subfactors
De�nition 2.1. Let G be a non-trivial �nite group. A 3G subfactor planar algebra is a subfactor planar
algebra whose principal graph Γ+ is a 3|G| spoke graph

Γ+ =
1 X ρ Z

gρ gX g

where the even bimodules generate a G-quadratic category, denoted 1
2
P+, whose fusion rules are

(1) g ⊗ h = gh, i.e., we may identify the dimension 1 bimodules with G,

(2) g ⊗ ρ = gρ, so {gρ|g ∈ G} is a left G-set the obvious way: g(hρ) = (gh)ρ,

(3) ρ⊗ g = θ(g)ρ for some automorphism θ of G, since ρg is irreducible by Frobenius reciprocity, and

(4) ρ⊗ ρ = 1⊕
⊕

g∈G gρ.
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Conjecture 2.2 (Izumi). If a 3G subfactor planar algebra exists, then G is abelian, and θ(g) = g−1 for all
g ∈ G.

Remark 2.3. In unpublished work, Izumi has proven Conjecture 2.2 for the case |G| odd.

Assumption 2.4. We will assume G is abelian and θ(g) = g−1 for all g ∈ G.

Corollary 2.5. Every bimodule at depth 4 is self-dual.

Proof. For all g ∈ G, gρ ∼= ρg−1 ∼= θ(g−1)ρ ∼= gρ.

An argument of Izumi gives the structure of the dual principal graph. We provide a proof for the
reader’s convenience. We begin with a helpful lemma generalizing [MS12, Lemma 3.6]. For a pair of
principal graphs (Γ+,Γ−) of a subfactor planar algebra P•, let Γ±(n) denote the truncation to depth n.
Denote the one-click rotation by F .

Lemma 2.6. Suppose Γ± is exactly (n− 1) supertransitive for an even n ≥ 2. If Γ+(n) is simply-laced and
only has self-dual vertices at depth n, then Γ−(n) is simply-laced and only has self-dual vertices at depth n.

Proof. We analyze the rotation by π given by Fn on Pn,± 	 T Ln,±, where T L• is the Temperley-Lieb
planar subalgebra. Observe that the elements p− Tr(p)

[n+1]
f (n) span Pn,± 	 T Ln,±, where the p are the new

projections at depth n. Since Γ+(n) is simply-laced and only has self-dual vertices, Fn is the identity
on Pn,+ 	 T Ln,+. Now F and F∗ map Temperley-Lieb to Temperley-Lieb, so F and F∗ also take the
orthogonal complement to the orthogonal complement. Hence for all x ∈ Pn,− 	 T Ln,−,

Fn(x) = Fn(F(F−1(x))) = F(Fn(F−1(x))) = F(F−1(x)) = x,

so Fn is also the identity on Pn,− 	 T Ln,−. Since the elements p− Tr(p)
[n+1]

f (n) span Pn,− 	 T Ln,−, where
the p are the new projections at depth n of Γ−, all the vertices at depth n of Γ− are self dual. Now Fn is
also an anti-isomorphism of the algebra Pn,−. Letting In,− be the basic construction ideal, we see that
Fn preserves In,−, and passes to the quotient algebra Pn,−/In,−. But Fn is the identity on Pn,−/In,−,
and thus this algebra is abelian. Hence Γ−(n) is simply laced.

Theorem 2.7 (Izumi). For every self-dual tail of Γ+, there is self-dual tail of Γ−.

←→

For every Haagerup tail of Γ+, there is a dual Haagerup tail of Γ−.

←→

Proof. We know the vertices of Γ− at depth 3 and 5, so it remains to determine the vertices at depth 4 and
6 and the edges. First, we consider the vertices Xg at depth 5. By Frobenius reciprocity,

〈XgX,XgX〉 = 〈XXg, gXX〉 = 〈(1 + ρ)g, g(1 + ρ)〉 = 1 + 〈ρg, gρ〉 =

{
2 if g = g−1

1 if g 6= g−1.

Hence XgX is simple precisely when g 6= g−1.
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• Case 1: Suppose g 6= g−1. Then XgX and Xg−1X are simple, and moreover,

〈XgX,Xg−1X〉 = 〈XXg, g−1XX〉 = 〈(1 + ρ)g, g−1(1 + ρ)〉 = 1,

so they are equal. Hence the distinct depth 5 verticesXg−1 andXg of Γ− are univalent and connect
to a single self-dual vertex XgX = Xg−1X at depth 4. Since

XgXX = Xg(1 + ρ) = Xg +Xgρ = Xg +Xρg−1 = Xg +Xg−1 + Zg−1, (1)

each of which is simple, XgX connects by a single edge to the branch point at depth 3 of Γ−.

• Case 2: Suppose g = g−1. Then Xg connects to two even vertices of Γ−, at least one of which must
connect to the branch point at depth 3. Since XgXX splits into exactly three simples by Equation
(1), Xg must connect to one bivalent vertex at depth 4 and one univalent vertex at depth 6.

Now in both cases, XgX is self-dual, so the new vertices we have found so far at depths 4 and 6 are
all self-dual, as the dual of a vertex must occur at the same depth. It remains to show there is a single
self-dual vertex connected to Z for each (unordered) set of elements {g, g−1} with g 6= g−1.

Analyzing the Ocneanu 4-partite graph, we see there are |G| paths from Z to Z through A − A
bimodules, so there must be |G| paths through B −B bimodules. If G = N ∪ S ∪ {1} where N is the set
of non self-inverse elements of G and S is the set of non-trivial self-inverse elements of G, then currently
we can account for |S|+ 1 + |N |/2 paths through B −B vertices.

Hence the remaining paths through B −B bimodules must come from vertices at depth 4 which do
not continue to depth 5. By Lemma 2.6, we know Γ−(4) is simply laced with only self-dual vertices, so
there must be exactly |N |/2 self-dual univalent vertices at depth 4 of Γ−.

For g ∈ G \ {1}, let pg be the projection in P4,+ corresponding to gρ. Let 〈Ei〉 denote the algebra
generated byE1, . . . , En−1 in TLn,+, and note that 〈Ei〉 is perpendicular to all projections on the principal
graph and to the Jones-Wenzl idempotents, and span({pg|g 6= 1}) = P4,+ 	 〈Ei〉.

Lemma 2.8. If Q• is an n − 1 supertransitive subfactor planar algebra, then any non-zero element in
Qn,+ 	 〈Ei〉 with zero trace is uncappable.

Proof. Follows easily from qEi = 0 for all i < n and all minimal projections q ∈ Qn,+ 	 〈Ei〉.

Corollary 2.9. For all g, h ∈ G \ {1} with g 6= h, pg − ph is uncappable.

Proposition 2.10. The new low-weight vectors at depth 4 have eigenvalue ±1.

Proof. By Corollary 2.5, F4 is the identity on span({pg|g ∈ G}}).

2.1 The low weight rotational eigenvector conjecture
Conjecture (Conjecture A). Suppose g, h, k, ` ∈ G \ {1} are distinct elements.

(1) If g = g−1 and h = h−1, then pg − ph is a low-weight rotational eigenvector with eigenvalue 1.

(2) If g = h−1, then pg − ph is a low-weight rotational eigenvector with eigenvalue -1.

(3) If g = g−1 and h = k−1, then 2pg − (ph + pk) is a low-weight rotational eigenvector with eigenvalue 1.
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(4) If g = h−1 and k = `−1, then (pg+ph)− (pk+p`) is a low-weight rotational eigenvector with eigenvalue
1.

Remark 2.11. Conjecture A agrees with the Haagerup 3Z/3Z and Izumi 3Z/2Z×Z/2Z and 3Z/4Z subfactor
planar algebras by [Pet10, Jon12, MP15, PP13]. See also Remark 2.14.

Lemma 2.12. The set B = {pg|g ∈ G} ∪ {F2(f (4))}) is linearly independent.

Proof. First, note that f (4) =
∑

g∈G\{1} pg and F2(f (4)) are linearly independent, since capping F2(f (4))
on the bottom does not give zero. Suppose

0 = λfF2(f (4)) +
∑

g∈G\{1}

λgpg.

Taking inner products with pg gives

0 = λg Tr(pg) + λf Tr(F2(f (4))pg) = λg Tr(pg) + λf Tr(pg)
(
coeff∈f (4) F2(id)

)
,

so λg is independent of g. Call this constant λ. Then we have

0 = λfF2(f (4)) + λ
∑

g∈G\{1}

pg = λfF2(f (4)) + λf (4),

so λf = λ = 0, and B is linearly independent.

Proposition 2.13. Conjecture A holds if and only if for all g ∈ G,

F2(pg) =
1

|G| − 1

(
F2(f (4))− f (4)

)
+ pg−1 .

Proof. If F2 is given by the above formula, a straightforward calculation shows that Conjecture A holds.
We now prove the other direction.

Divide G \ {1} into the two subsets: the non-trivial self-inverse elements S, and the non-self-
inverse elements N . Let N+ ⊂ N so that for each g ∈ N , exactly one of g, g−1 ∈ N+. Let B1 =
{pg − pg−1|g ∈ N+}, and note |B1| = |N |/2.

Case 1: Suppose S 6= ∅, so |G| is even. Fix s0 ∈ S. Let B2 = {2ps0 − (pg + pg−1)|g ∈ N+}, and note
|B2| = |N |/2. Finally, let B3 = {ps0 − ps|s ∈ S \ {s0}}, and note |B3| = |S| − 2. Observe B′ =
B1 ∪B2 ∪B3 has size |G| − 2.
Claim. D = B′ ∪ {f (4),F2(f (4))} is a basis for span(B).

Proof of Claim. It su�ces to show D is linearly independent. Note that by taking linear combinations,
we can obtain pg − ph for all g, h ∈ G \ {1}. The result now follows since f (4) =

∑
g 6=1 pg.

Now by Conjecture A,

[F2]D =


−IB1 0 0 0 0

0 IB2 0 0 0
0 0 IB3 0 0
0 0 0 0 1
0 0 0 1 0

 ,
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and the change of basis matrix from D to B is given by

QB
D =


B1 = N+ −N− B2 = 2s0 −N+ B3 = s0 − S \ {s0} f (4) F2(f (4))

N+ I −I 0 1 0
N− −I −I 0 1 0

S \ {s0} 0 0 −I 1 0
s0 0 2 1 1 0

F2(f (4)) 0 0 0 0 1


where I is an identity matrix, and k is the matrix with all k’s.

Setting n = |N |+ |S| = |G| − 1, it is straightforward to check

(QB
D)−1 =

1

2n


N+ N− S \ {s0} s0 F2(f (4))

B1 nI −nI 0 0 0
B2 2− nI 2− nI 2 2 0
B3 2 2 2− 2nI 2 0
f (4) 2 2 2 2 0
F2(f (4)) 0 0 0 0 2n


Hence

[F2]B = QB
D[F2]D(QB

D)−1 =
1

n


N+ N− S F2(f (4))

N+ −1 nI − 1 −1 n
N− nI − 1 −1 −1 n
S −1 −1 nI − 1 n

F2(f (4)) 1 1 1 0

 .

Case 2: Suppose S = ∅, so |G| is odd. Fix g0 ∈ N+. Let

B2 =
{

(pg + pg−1)− (pg0 + pg−1
0

)
∣∣∣g ∈ N+ \ {g}

}
,

and note |B2| = |N+| − 1. Hence if D = B1 ∪ B2, we have |D| = |G| − 2. Similar to before, D ∪
{f (4),F2(f (4))} is a basis for span{B}. Now by Conjecture A,

[F2]D =


−IB1 0 0 0

0 IB2 0 0
0 0 0 1
0 0 1 0

 ,

and the change of basis matrix from D to B is given by

QB
D =


B1 = N+ \ {g0} −N− \ {g−10 } g0 − g−10 B2 f (4) F2(f (4))

N+ \ {g0} I 0 I 1 0
g0 0 1 −1 1 0

N− \ {g−10 } −I 0 I 1 0
g−10 0 −1 −1 1 0

F2(f (4)) 0 0 0 0 1


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Setting n = |G| − 1, we have

(QB
D)−1 =

1

2n


N+ \ {g0} g0 N− \ {g−10 } g−10 F2(f (4))

B1 nI 0 −nI 0 0
g0 − g−10 0 n 0 −n 0
B2 nI − 2 −2 nI − 2 −2 0
f (4) 2 2 2 2 0
F2(f (4)) 0 0 0 0 2n


Hence

[F2]B = QB
D[F2]D(QB

D)−1 =
1

n


N+ N− F2(f (4))

N+ −1 nI − 1 n
N− nI − 1 −1 n

F2(f (4)) 1 1 0

 .

Remark 2.14. Parts (1)-(3) of Conjecture A were chosen because they agree with 3G forG ∈ {Z/2,Z/4,Z/2×
Z/2}. There are two reasons +1 was chosen as the eigenvalue in part (4). First, if S 6= ∅ and g, h ∈ N+

are distinct, then we have

(pg + pg−1)− (ph + p−1h ) = 2ps0 − (ph + ph−1)− (2ps0 − (pg + p−1g )),

which has eigenvalue 1 by part (3). Second, if S = ∅, switching the eigenvalue to −1 gives the formula

F2(pg) =
1

n
F2(f (4)) +

n− 1

n
pg −

1

n

∑
h6=g

ph,

which is not the same formula as when S 6= ∅.

3 The reduced subfactor at ρ = f (2)

The even half E• of P• is a factor planar algebra [BHP12] with principal graph

Γ = 1
ρ

gρ
g

.

We denote ρ = f (2) by a red strand, and we write a trivalent vertex for the intertwiner f (2) ⊗ f (2) → f (2)

given by

=

(
[2]

[3]− 1

)1/2 2

2 2
(V)

where we just write 2 for f (2).
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Remark 3.1. It is a straightforward calculation that |G| = [3]2 − 1

[3]
.

Proposition 3.2. We have the following skein relations:

=

= = [3]

= 0

=
∗

=

− = ([3]− 1)
(

−
)

(I=H)

=
1

[3]
+ +

∑
g 6=1

pg (E)

Proof. The proof is similar to [IMP13, Proposition 3.1]. We prove Relations (I=H) and (E). To prove
Relation (I=H), note dim(Hom(ρ⊗2, ρ⊗2)) = 3, so there is some linear relation amongst the four diagrams
which appear in the relation. By rotational symmetry, we must have a relation of the form

± = λ
(

±
)
.

We can determine λ by capping o� the right hand side of all the diagrams. Finally, to determine that the
sign is a minus sign, we note that the Temperley-Lieb diagram

has the same non-zero coe�cient in both ρ-diagrams on the right when we expand the ρ-vertex and
ρ-strands, but it does not appear on the left.

To prove Equation (E), we note that since [2] > 2, f (2)⊗f (2) ∼= f (0)⊕f (2)⊕f (4). Since
∑

g 6=1 pg = f (4),
we are �nished.

Corollary 3.3. Since |G| − 1 =
[3]2 − [3]− 1

[3]
, similar to Proposition 2.13, we have

=
1

|G| − 1

(
F2(f (4))− f (4)

)
+ .

De�nition 3.4. We de�ne p1 := .

De�nition 3.5. Let S• be the reduced subfactor planar algebra of P• at ρ = f (2). Since ρ is symmetrically
self-dual in the sense of [MP15, MP], we may lift the shading on S• to get a factor planar algebraR•. We
use the convention thatRn = Hom(ρ⊗n, ρ⊗n), which is usually denotedR2n in [BHP12].
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By Relation (E), the unitary fusion category associated toR• is 1
2
P+ � Vec(Z/2Z), and the principal

graph Λ ofR• is given by

Λ =

1

g

h

ρ

gρ

hρ

.

The principal graphs of S• are (Λ,Λ), and 1
2
S+ = 1

2
P+.

Remarks 3.6.

(1) We may also obtain S• by imposing a shading on E•

(2) We may naturally identifyRn
∼= Sn,± as a subspace of P2n,+.

Proposition 3.7. Suppose that A ∈ R2 is rectangularly uncappable in P4,+, i.e., capping A on the top or
bottom is zero when we write A with 4 strands up and 4 strands down. Then we may identify the two click
rotation F2

P•(A) ∈ P4,+ with the 1-click rotation FR•(A) ∈ R2.

Proof. F2
P•(A) = A = A2 2

2

2

= A = FR•(A).

Consider the orthogonal complement of TL4,+ ⊂ P4,+, which is spanned by |G| − 2 low weight
vectors {Aj|j = 1, . . . , |G| − 2} ⊂ span {pg|g 6= 1}, which are also eigenvectors for the 2-click rotation
F2 on P• corresponding to rotational eigenvectors ωAj

. By Proposition 3.7, we get the following corollary:

Corollary 3.8. Each Aj is also a low-weight rotational eigenvector for the 1-click rotation inR•.

Since
∑

g 6=1 pg = f (4), we know that another low weight rotational eigenvector inR2,+ comes from
TL4,+ ⊂ P4,+:

B = (|G| − 1)p1 − f (4) = (|G| − 1)p1 −
∑
g 6=1

pg,

where the rotational eigenvalue ωB = 1 by Corollary 3.3. Note that B is orthogonal to each Aj .
We now compute the 1-click rotation for all the non-trivial minimal projections inR2 in terms of the

pg for g ∈ G and

e1 =
1

[3]
and f (2) = − e1 = +

∑
g 6=1

pg .

Note that by Relations (I=H) and (E),

F2(f (4)) =
1

[3]([3]− 1)
f (4) +

[3]2 − [3]− 1

[3]
e1 −

[3]2 − [3]− 1

[3]([3]− 1)
p1

=
1

[3]([3]− 1)
f (4) + (|G| − 1)e1 −

|G| − 1

[3]− 1
p1.
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Corollary 3.9. Conjecture A holds if and only if for each g ∈ G,

FR•(pg) =
1

|G| − 1
(F2(f (4))− f (4)) + pg−1

= pg−1 − 1

[3]− 1
f (4) + e1 −

1

[3]− 1
p1

= pg−1 + e1 −
1

[3]− 1

∑
g∈G

pg

= pg−1 + e1 −
1

[3]− 1
f (2)

= pg−1 − 1

[3]− 1

(
−

)
.

4 An ‘almost’ G-action onR•
We now construct an ‘almost’ G-action onR•. This corresponds to an action of G on 1

2
P+. We de�ne for

each g ∈ G a map Φg on the unshaded factor planar algebraR•.

De�nition 4.1. Recall that the group G can be seen in 1
2
P+ inside P6,+ as the minimal projections at

depth 6 of Γ+, together with the image of the trivial object in P6,+ given by

e =
1

[4]
where = f (3) ∈ P3,+.

Here, we switch the convention of the unit of the group to e instead of 1 to not confuse the empty diagram
1 with the projection e ∈ P6,+. (While the empty diagram is the identity of P0,+, e is not the identity of
P6,+!)

The group multiplication is given by a multiple of the coproduct.

Lemma 4.2. In P6,+, the coproduct g ∗ h = g h = [4]−1 gh .

Proof. We know g⊗h ∼= gh and g ∗h is self adjoint, so g ∗h = λgh for some λ ∈ R. Taking traces shows
that λ = [4]−1.

Recall that ρg ∼= g−1ρ for all g ∈ G. This means there is exactly one non-zero morphism up to scaling
between the two.

De�nition 4.3. For g ∈ G, we de�ne the following element of P6,+:

Vg = [3]

g

g

?

?

= [3]

g

g

?

?

=

g

g

Vg? .
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We may think of Vg as a crossing as above, where we use an oriented strand labelled by g to denote three
ρ-strands cabled by g, and the direction gives the location of the ?. Here, we use the convention that Ve is
given by

Ve =
1

[4]
.

Note that we also have

V ∗g = [3]

g

g

?

?

= [3]

g

g

?

?

=

g

g

V ∗g? .

Using Vg and V ∗g , we de�ne the map Φg on x ∈ Rn by encircling x by a strand whose orientation
reverses as it crosses the ρ-strands connected to x. The orientation is clockwise in the distinguished
region of x. We replace crossings with either Vg or V ∗g depending on the crossings. This means that if we
travel on the g-strand from an unshaded region to a shaded region, we replace the crossing with Vg , and
if we cross from shaded to unshaded we replace the crossing with V ∗g .

Remark 4.4. It is easy to see that for x ∈ Rn and g ∈ G, Φg(x) ∈ Rn. When g = e, Φe is the identity.
When g 6= e, Vg, V ∗g ∈ R4, so Φg(x) ∈ Rn.

Example 4.5. When x ∈ R2, we have Φg(x) = g

g

g

g

V ∗g ?Vg?

V ∗g? Vg ?

x? .

Lemma 4.6. There is a constant θg ∈ U(1) such that F(V ∗g ) = θgVg−1 and F−1(Vg) = θ−1g V ∗g−1 . Moreover,
θg = θg−1 for all g ∈ G, and θe = 1.

Proof. There is exactly one map up to a scalar from g−1ρ to ρg, so there is a constant θg 6= 0 such that
F(V ∗g ) = θgVg−1 . Since the norm squared of F(V ∗g ) equals the norm squared of Vg−1 , θg ∈ U(1). Now
taking adjoints, we have F−1(Vg) = θ−1g V ∗g−1 .

We now applyF to the equationF−1(Vg) = θ−1g V ∗g−1 to get the equationF(V ∗g−1) = θgVg . This means
θg = θg−1 by the de�nition of θg−1 .

Finally, a simple diagrammatic calculation shows θe = 1.

Corollary 4.7. The map Φ is also given as follows. First, encircle x by a strand whose orientation reverses
as it crosses the ρ-strands connected to x. The orientation is clockwise in the distinguished region of x. We
replace crossings with either Vg−1 or V ∗g−1 depending on the crossings.

For example, when x ∈ R2 we have Φg(x) = g

g

g

g

Vg−1

?
V ∗
g−1

?

Vg−1

?

V ∗
g−1

?

x? .
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Corollary 4.8. We have Φg ◦ FR• = FR• ◦ Φg−1 .

Remark 4.9. Since each g ∈ G has dimension 1, we have the usual skein relations for g-strands:

= and = .

Proposition 4.10. The g-strand and the ρ-strand together with Vg, V ∗g , Vg−1 , V ∗g−1 , satisfy the Reidemeister
II relations

(1) = V ∗g

?
Vg

?

= V ∗g

?

Vg

?

, and

(2) = V ∗
g−1

?
Vg−1

?

= V ∗
g−1

?

Vg−1

?

.

Proof. The case g = e is trivial. When g 6= e, we prove (1), and (2) follows by replacing g with g−1. The
second equality follows from the fact that each of Vg, V ∗g , Vg−1 , V ∗g−1 is �xed under F4

R• . To prove the �rst
equality in (1), we see

V ∗g?

Vg?

= [3]2

g

g

g?

?

?

= [3]2

g

g

g

? ?? = [3]2 g g g? ? ? = g?

using the skein relation from Remark 4.9 for g-cabled strands.

Proposition 4.11. The map Φg is compatible with the graded multiplication operator given for x ∈ Rm

and y ∈ Rn by

x ∧ y =

m n

x y .

Proof. Just use the skein relation in Remark 4.9:

Φg(x) ∧ Φg(y) =
· · ·

Vg
?

V ∗g
?

x
· · ·

Vg
?

V ∗g
?

y
=

· · · · · ·
Vg
?

V ∗g

?
Vg
?

V ∗g
?

x y
= Φg(x ∧ y).

Corollary 4.12. The ‘almost’ action of Φg onR• induces the action of g2 on 1
2
P+.

Proof. For h, g ∈ G, we will show that Φg(ph ∈ S2,+) = pg2h and Φg(h ∈ S3,+) ∼= g2h. As both proofs
are similar, we will only show Φg(ph) = pg2h.
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First, by Propositions 4.10 and 4.11 together with the fact that h is an orthogonal projection, we see
Φg(ph)

2 = Φg(ph) = Φg(ph)
∗, i.e., Φg(ph) is an orthogonal projection. Next, taking the trace, we see

Φg(ph) 6= 0 by sphericality and again using the Reidemeister II relation from Proposition 4.10:

ph

Vg
?

V ∗g
?

Vg?
V ∗g ?

= ph

Vg
?

V ∗g
?

Vg ?
V ∗g?

= Tr(ph) = [3].

Finally, it’s obvious that Φg(ph) ∼= g ⊗ (hρ)⊗ g−1 ∼= g2hρ, so Φg(ph) = pg2h sinceR2 is abelian.

Proposition 4.13. For every g ∈ G, we have

FR•(pg2) = pg−2 − 1

[3]− 1

(
−

)
.

(Compare the above equation with Corollary 3.9.)

Proof. By Relation I=H, we know

FR•(p1) = p1 −
1

[3]− 1

(
−

)
.

Apply Φg to the equation to see

FR•(pg2) = FR•(Φg(p1))

= Φg−1(FR•(p1))

= Φg−1

(
p1 −

1

[3]− 1

(
−

))
= Φg−1(p1)−

1

[3]− 1

(
−

)
= pg−2 − 1

[3]− 1

(
−

)
,

where we used Φg−1 ◦ FR• = FR• ◦ Φg by Corollary 4.8.

We can now prove our main theorem, which says that Conjecture A is true for |G| odd.

Proof of Theorem B. Note that the action induced by Φ of G on Gρ = {hρ|h ∈ G} is freely transitive
exactly when |G| is odd. This is because the action is given by Φg(hρ) = g2hρ and Φg(h) = g2h by
Corollary 4.12, and the map g 7→ g2 is an automorphism of G when G is odd.

Thus for every g ∈ G, the equation in Corollary 3.9 holds by Proposition 4.13, which concludes the
proof.
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4.1 Lifting involutions to the center
De�nition 4.14. Let Q• be the the planar subalgebra ofR• generated by{

pg

∣∣∣∣g 6= 1

}
and p1 := ,

under the ρ-strand planar operad, whose tangles do not contain trivalent vertices.
We expect the following conjecture to be true, but it seems to be highly non-trivial at this time. We

will prove it for the case |G| is odd in Theorem 5.19.
Conjecture 4.15. Q• = R•.

We now show that each involution in G, i.e., a g ∈ G with g2 = 1, lifts to the center of the projection
category ofQ•, i.e., Z(Pro(Q•)) [BHP12]. By Corollary 4.12, each Φg restricts to an automorphism ofQ•.
Lemma 4.16. If g2 = 1, then Φg = idQ• .

Proof. In the proof of Corollary 4.12, we showed that Φg(ph) = pg2h for all h ∈ H . Since g2 = 1, Φg �xes
every ph, which generate Q• as a planar algebra.
Proposition 4.17. For all ϕ ∈ Qn, we have

g

g

· · ·

· · ·

· · ·

· · ·

V •g?

V ∗g?
Vg? ϕ

=

g

g

· · ·

· · ·

· · ·

· · ·
V •g?

V ∗g?
Vg?

ϕ

where the • is either blank or ∗ depending on the parity of n.

Proof. Take the norm squared of the di�erence and use Lemma 4.16.
Corollary 4.18. Suppose g ∈ G is an involution. The map eg : X → Hom(g⊗X,X ⊗ g) for simpleX by
eg(ρ) = Vg and

eg(h) =

g

g

Vg?
V ∗g

?

Vg?

h

h

naturally extends to a half-braiding. Hence (g, eg) de�nes an element in the center Z(Pro(Q•)).
Corollary 4.19. Suppose g ∈ G is an involution. The twist factor of (g, eg) is given by θg.

Proof.
g

g

=

g

g

Vg?
V ∗g

?

Vg?

g

g

= θg

g

g

Vg?
Vg?

Vg?

g

g

= θg[3]3

g

g

g

g

= θg g .
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5 The G-action on S• and bases for S3,+

We saw each Φg almost gives an automorphism of the unshaded factor planar algebra R•, except for
the problem with the 1-click rotation from Corollary 4.8. However, Φg is compatible with the 2-click
rotation, which suggests that the Φg’s can be used to construct automorphisms of the shaded subfactor
planar algebra S•. There is a slight technicality here – when we identify Sn,± withRn, the map Φg goes
from Sn,± → Sn,∓. Hence to get a planar algebra map, we need to also use the symmetric self-duality
∆± : S± → S∓ which reverses the shading.

De�nition 5.1. For g ∈ G, de�ne Ψg on Sn,± = Rn by Ψg = ∆∓ ◦ Φg±1 .

Example 5.2. When x ∈ S2,+ and y ∈ S3,−, we have

Ψg(x) = ∆−

 g

g

g

g

V ∗g ?Vg?

V ∗g? Vg ?

x?

 = ∆−

 g

g

g

g

Vg−1

?
V ∗
g−1

?

Vg−1

?

V ∗
g−1

?

x?

 and

Ψg(y) = ∆+


g

gg

g

g g

Vg−1

?

V ∗
g−1

?

Vg−1

?

V ∗
g−1

?Vg−1

?

V ∗
g−1

?
y?


= ∆+


g

gg

g

g g

V ∗g

? Vg
?

V ∗g ?

Vg
?

V ∗g?

Vg

?

y?


.

Lemma 5.3. On S−, Ψg = F−1S• ◦Ψg ◦ FS•

Proof. Identifying Sn,± = Rn, we have FS• = FR• . Since ∆ is a symmetric self-duality, ∆+ ◦ FS• =
FS• ◦∆−. By Corollary 4.8, FR• ◦ Φg−1 = Φg ◦ FR• . Combining these, we have

Ψg = ∆+ ◦ Φg−1 = (∆+ ◦ F−1R• ) ◦ (FR• ◦ Φg−1) = F−1R• ◦ (∆− ◦ Φg) ◦ FR• = F−1S• ◦Ψg ◦ FS• .

Proposition 5.4. The map Ψg is a shaded planar algebra automorphism.

Proof. We need to show that Ψg commutes with a set of generating tangles for the planar operad. We can
use the graded multiplication operator and the annular tangles, which are clearly generated by adding
cups and caps and the 1-click rotation operator.

The fact that Ψg is compatible with the 1-click rotation is exactly Lemma 5.3. We see that Ψg is
compatible with cups and caps by the Reidemeister II relation from Proposition 4.10. Finally, Ψg is
compatible with the graded multiplication operator by Proposition 4.11.

5.1 The G-action on S•
We prove a few lemmas to calculate constants, after which we will see Ψ gives an action of G on S•.
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Corollary 5.5. g h =

g h

gh
and g h = g h

gh

gh

=
1

[4]
gh .

Proof. The �rst equation follows by taking the norm squared of the di�erence and applying Lemma 4.2.
The second equation then follows immediately.

De�nition 5.6. For h, g ∈ G, let the (g, h, hg)-trivalent vertex be given by

Yg,h = g h

gh

= [4]1/2

g h

gh
,

so that Y ∗g,hYg,h = gh by Corollary 5.5. Since Yg,hY ∗g,h also has trace 1, we immediately have that

g h = g h = [4]

g h

g h

gh =

g h

g h

gh . (2)

Remark 5.7. Note that the (g, h, gh)-trivalent vertex Yg,h is not in R•. At this point, we do not know
whether Yg,hY ∗g,h is inR•.

Lemma 5.8. The G-trivalent vertices are associative, i.e.,
g h k

gh =

g h k

hk .

Proof. Using Corollary 5.5, we have

g h k

gh

ghk

=

g h k

ghk

=

g h k

ghk

=

khg

ghk

=

khg

hk

ghk

.

Remark 5.9. Suppose we did not assume that R• was the reduced subfactor planar algebra of P• at
ρ = f (2), and instead we started with a factor planar algebra with principal graph Λ from De�nition
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3.5. In this case, we might have that the G-trivalent vertices are not associative. Rather, there may be a
non-trivial 3-cocycle giving a non-trivial associator for G.

In fact, there are such examples for Z/3Z giving ‘twisted’ Haagerup categories due to Ostrik [MPS15,
Proposition 7.7, and the following paragraph].

Recall from Lemma 4.6 that there is a distinguished 1-cochain θ ∈ C1(G,U(1)).

Corollary 5.10. For all g, h ∈ G, there is a scalar µg,h ∈ U(1) such that

gh

gh

g h

h

g

Vg?

Vh
?

= µg,h

gh

gh

Vgh? .

Moreover, µ ∈ Z2(G,U(1)), and µg,hµg−1,h−1 = [(dθ)(g, h)]−1.

Proof. Take the norm squared of each diagram, unzip the trivalent vertices, and use the Reidemeister II
relation from Proposition 4.10 to get that both closed diagrams equal [3]. Since there is only one map up
to scaling from gh⊗ ρ to ρ⊗ (gh)−1, both sides must be equal up to a phase, denoted µg,h.

A straightforward calculation again by unzipping and using the Reidemeister II relation from Proposi-
tion 4.10 shows that for g, h, k ∈ G, µg,hkµh,k = µgh,kµg,h, i.e., µ ∈ Z2(G,U(1)).

For the �nal claim, we �rst look at

F




gh

gh

g h

h

g

Vg?

Vh
?


∗ =

gh

gh

g h

h

g
V ∗g

?

V ∗h

? = θgθh
gh

gh

g h

h

g
Vg−1?

Vh−1

?
.

This must be equal to

µ−1g,hF


 gh

gh

Vgh?


∗ = µ−1g,h

gh

gh

V ∗gh? = µ−1g,hθgh

gh

gh

V(gh)−1? .

This means that we must have µg,hµg−1,h−1 = (θgθ
−1
gh θh)

−1 = [(dθ)(g, h)]−1.

Remark 5.11. The signi�cance of the �nal formula in Corollary 5.10 is that there is a strong relation
between the structure constants of S•.

Corollary 5.12. OnRn, we have Φg ◦ Φh = Φgh, and similarly for the Ψg’s on Sn,±.

Proof. Given x ∈ Sn,+, start with the diagram for Φg ◦ Φh(x), use Relation (2), and apply Corollary 5.10.
We will get alternating contributions of µg,h and µg,h = µ−1g,h, which cancel, leaving us with the diagram
for Φgh(x). The proof for y ∈ Sn,− is similar.
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5.2 Bases for S3,+
We now de�ne some distinguished elements for S3,+. When |G| is odd, we show these elements form a
basis for S3,+. We then prove Theorem D and Conjecture 4.15 in the case |G| is odd.

We use the notation p∅ = e1 =
1

[3]
.

De�nition 5.13. For i, j ∈ G ∪ {∅} and g, h, k ∈ G, de�ne

αi,j =
1

Tr(pi)1/2 Tr(pj)1/2

pj

pi

and βh,k,` =

p`?

pk
?

ph?

.

The following facts are straightforward.

Facts 5.14.

(1) The elements {αi,j} form a system of matrix units for the copy ofM|G|+1(C) corresponding to I3,+ =
S2,+e2S2,+.

(2) The inner product 〈βg,h,k, βg′,h′,k′〉 is zero unless g = g′, h = h′, and k = k′.

(3) For all g ∈ G, we have Ψg(αi,j) = αg2i,g2j , where we de�ne g2∅ = ∅.

(4) For all g ∈ G, we have Ψg(βh,k,`) = βg2h,g2k,g2`.

Lemma 5.15. If PI3,+ is the orthogonal projection onto I3,+ in S3,+, then PI3,+(βh,k,`) = ch,k,`αh,` where

ch,k,` =
1

[3]

p`?

pk
?

ph?

.

Proof. Using (1) from Facts 5.14, we see that the projection of βh,k,` onto I3,+ is given by

PI3,+(βh,k,`) =
∑
i,j

〈βh,k,`, αi,j〉
‖αi,j‖22

αi,j =
∑
i,j

Tr(βh,k,`α
∗
i,j)

Tr(αi,jα∗i,j)
αi,j =

Tr(βh,k,`α
∗
h,`)

Tr(αh,`α∗h,`)
αh,` = ch,k,`αh,`.

Lemma 5.16. If k has a square root in G, then

ch,k,` =
1

[3]

p`?

pk
?

ph?

=
1

[3]

pk−1`?

p1
?

pk−1h?

=



[3]

([3]− 1)2
if h, k, ` are distinct

1

([3]− 1)2
if any two are equal(

[3]− 2

[2]

)2

if h = k = `.

By symmetry, a similar statement holds if h or ` has a square root in G.
Moreover, if any of h, k, ` have a square root in G, then γh,k,` := βh,k,` − ch,k,`αh,` 6= 0.
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Proof. Using (4) of Facts 5.14 and sphericality, we have

〈βh,k,`, αh,`〉 = ‖βh,k,`‖22 = ‖βg2(g−2h),g2,g2(g−2`)l‖22 = ‖Ψg(βk−1h,1,k−1`)‖22 =

pk−1`?

p1
?

pk−1h?

.

When h 6= k 6= `, expanding p1 using Equation (V) and simplifying, we get

‖βh,k,`‖22 =

(
[2]

[3]− 1

)(
[3]2

[4]
− δh,`

[3]

[2]

)
=


[2][3]2

([3]− 1)[4]
if h 6= `

[2]2[3]

([3]− 1)[2][4]
if h = `

=


[3]2

([3]− 1)2
if h 6= `

[3]

([3]− 1)2
if h = `.

A similar calculation handles the cases h = k 6= ` and h 6= k = `.
Finally, for the case h = k = `, the following relation derived using Equation (V) is helpful:

=

(
[2]− 3

[2]

)
.

Again using Ψg, we see ch,h,h is a multiple of the inner product of two triangles:

ch,h,h =
1

[3]

〈
,

〉
=

(
[2]− 3

[2]

)2

=

(
[3]− 2

[2]

)2

.

To prove γh,k,` 6= 0, a straightforward calculation shows ‖αh,`‖22 = [3]−1, which implies

‖ch,k,`αh,`‖22 =
|ch,k,`|2

[3]
6= ‖βh,k,`‖22.

Proposition 5.17. When |G| is odd, {γh,k,` = βh,k,` − ch,`αh,`} is a basis of S3,+ 	 I3,+.

Proof. By counting dimensions, it su�ces to show linear independence. Suppose we have a linear
combination

0 =
∑

h,k,`∈G

λh,k,`γh,k,`.

Compress by a particular ph and p` on the bottom and top respectively to get

0 =
∑
k∈G

λh,k,`γh,k,`.

Attaching by pg on the right hand side, we see for every g ∈ G,

0 =
∑
k∈G

λh,k,` γh,k,`

p
g

?

= λh,g,`βh,g,` −
∑
k∈G

λh,k,`ch,`βh,g,` =

(
λh,g,` −

∑
k∈G

λh,k,`ch,`

)
βh,g,`.

Hence λh,g,` =
∑

k∈G λh,k,`ch,` is independent of g ∈ G. Denote this common value by λh,`. We now see
that (1− |G|ch,`)λh,` = 0, which implies λh,` = 0. (A straightforward calculation using Remark 3.1 and
Lemma 5.16 shows ch,` 6= |G|−1.)
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Corollary 5.18. When |G| is odd, B3,+ = {αi,j}i,j∈G∪{∅} ∪ {γh,k,`}h,k,`∈G is a basis of S3,+.

Recall thatQ• is the planar subalgebra ofR• generated byR2. We now prove Conjecture 4.15 for the
case when |G| is odd.

Theorem 5.19. When |G| is odd, Q• = R•.

Proof. First, identifying S3,+ with R3, we note that every element in B3,+ is in Q3. Using Wenzl’s
generalized relation [Liu13, Section 2.3], we see that there is a basis ofR4 of elements in Q4, since every
element in the basic construction ideal I4 = R3e3R3 is inQ4. SinceR• has depth 4, all further box spaces
are equal to the corresponding basic construction ideals, and thus Q• = R•.

We give an alternate argument. Since B3,+ ⊂ Q3, Q3 = R3, so the principal graphs agree to depth 3.
By counting dimensions, there is only one way for this graph to terminate, so the principal graphs of Q•
andR• are equal, and Q• = R•.

Theorem (Theorem D). For |G| odd, S• is a Yang-Baxter planar algebra with |G| − 1 generators.

Proof. By Theorem 5.19, S• is generated by 2-boxes. For i, j ∈ G∪ {∅} and h, k, ` ∈ G, we may similarly
de�ne elements by considering

ηi,j =
1

Tr(pi)1/2 Tr(pj)1/2

pj

pi

and ξh,k,` =

p`
?

pk?

ph
? .

Similar calculations show B′3,+ = {ηi,j}i,j∈G∪{∅}∪{ζh,k,` = ξh,k,`−ch,`ηh,`}h,k,`∈G is a basis for S3,+	I3,+.
Now for all h, k, ` ∈ G, ξh,k,` ∈ span(B3,+) and βh,k,` ∈ span(B′3,+), which gives the necessary

relations to show S• is a Yang-Baxter planar algebra.

Remark 5.20. At this point, it seems highly non-trivial to compute the structure constants 〈βh,k,`, ξh′,k′,`′〉.

References
[AH99] Marta Asaeda and U�e Haagerup, Exotic subfactors of �nite depth with Jones indices (5 +

√
13)/2 and

(5 +
√
17)/2, Comm. Math. Phys. 202 (1999), no. 1, 1–63, arXiv:math.OA/9803044 MR1686551

DOI:10.1007/s002200050574.

[BHP12] Arnaud Brothier, Michael Hartglass, and David Penneys, Rigid C∗-tensor categories of bimodules over in-
terpolated free group factors, J. Math. Phys. 53 (2012), no. 12, 123525 (43 pages), arXiv:1208.5505,
DOI:10.1063/1.4769178.

[BP14] Stephen Bigelow and David Penneys, Principal graph stability and the jelly�sh algorithm, Math. Ann. 358 (2014),
no. 1-2, 1–24, arXiv:1208.1564 MR3157990 DOI:10.1007/s00208-013-0941-2.

[BR97] Ola Bratteli and Derek W. Robinson, Operator algebras and quantum statistical mechanics. 2, second ed., Texts and
Monographs in Physics, Springer-Verlag, Berlin, 1997, Equilibrium states. Models in quantum statistical mechanics.

[EG11] David E. Evans and Terry Gannon, The exoticness and realisability of twisted Haagerup-Izumi modular data, Comm.
Math. Phys. 307 (2011), no. 2, 463–512, arXiv:1006.1326 MR2837122 DOI:10.1007/s00220-011-
1329-3.

http://arxiv.org/abs/math.OA/9803044
http://www.ams.org/mathscinet-getitem?mr=MR1686551
http://dx.doi.org/10.1007/s002200050574
http://arxiv.org/abs/1208.5505
http://dx.doi.org/10.1063/1.4769178
http://arxiv.org/abs/1208.1564
http://www.ams.org/mathscinet-getitem?mr=MR3157990
http://dx.doi.org/10.1007/s00208-013-0941-2
http://arxiv.org/abs/1006.1326
http://www.ams.org/mathscinet-getitem?mr=MR2837122
http://dx.doi.org/10.1007/s00220-011-1329-3
http://dx.doi.org/10.1007/s00220-011-1329-3


2014 Maui and 2015 Qinhuangdao conferences
in honour of Vaughan F. R. Jones’ 60th birthday

Volume 46 of the Proceedings of the Centre for Mathematics and its Applications

Page 366

[EG14] , Near-group fusion categories and their doubles, Adv. Math. 255 (2014), 586–640, arXiv:1208.1500
MR3167494 DOI:10.1016/j.aim.2013.12.014.

[Haa94] U�e Haagerup, Principal graphs of subfactors in the index range 4 < [M : N ] < 3 +
√
2, Subfactors (Kyuzeso, 1993),

World Sci. Publ., River Edge, NJ, 1994, MR1317352, pp. 1–38.

[IMP13] Masaki Izumi, Scott Morrison, and David Penneys, Quotients ofA2 ∗T2, 2013, DOI:10.4153/CJM-2015-017-
4, extended version available as “Fusion categories between C �D and C ∗ D” at arXiv:1308.5723.

[Izu01] Masaki Izumi, The structure of sectors associated with Longo-Rehren inclusions. II. Examples, Rev. Math. Phys. 13
(2001), no. 5, 603–674, MR1832764 DOI:10.1142/S0129055X01000818.

[Jon99] Vaughan F. R. Jones, Planar algebras, I, 1999, arXiv:math.QA/9909027.

[Jon01] Vaughan F. R. Jones, The annular structure of subfactors, Essays on geometry and related topics, Vol. 1, 2, Monogr.
Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, MR1929335, pp. 401–463.

[Jon12] , Quadratic tangles in planar algebras, Duke Math. J. 161 (2012), no. 12, 2257–2295, arXiv:1007.1158
MR2972458 DOI:10.1215/00127094-1723608.

[JP11] Vaughan F. R. Jones and David Penneys, The embedding theorem for �nite depth subfactor planar algebras, Quantum
Topol. 2 (2011), no. 3, 301–337, arXiv:1007.3173 MR2812459 DOI:10.4171/QT/23.

[Liu13] Zhengwei Liu, Exchange relation planar algebras of small rank, 2013, arXiv:1308.5656.

[Liu15] , Singly generated planar algebras of small dimension, part IV, 2015, arXiv:1507.06030.

[LMP15] Zhengwei Liu, Scott Morrison, and David Penneys, 1-supertransitive subfactors with index at most 6 1
5 , Comm. Math.

Phys. 334 (2015), no. 2, 889–922, arXiv:1310.8566 MR3306607 DOI:10.1007/s00220-014-2160-
4.

[MP] Scott Morrison and David Penneys, The a�ne A and D planar algebras, In preparation.

[MP14] Scott Morrison and Emily Peters, The little desert? Some subfactors with index in the interval (5, 3 +√
5), Internat. J. Math. 25 (2014), no. 8, 1450080 (51 pages), arXiv:1205.2742 MR3254427

DOI:10.1142/S0129167X14500803.

[MP15] Scott Morrison and David Penneys, Constructing spoke subfactors using the jelly�sh algorithm, Trans. Amer. Math.
Soc. 367 (2015), no. 5, 3257–3298, arXiv:1208.3637MR3314808DOI:10.1090/S0002-9947-2014-
06109-6.

[MPS15] Scott Morrison, Emily Peters, and Noah Snyder, Categories generated by a trivalent vertex, 2015, arXiv:1501.
06869.

[MS12] Scott Morrison and Noah Snyder, Subfactors of index less than 5, Part 1: The principal graph odometer, Comm. Math.
Phys. 312 (2012), no. 1, 1–35, arXiv:1007.1730 MR2914056 DOI:10.1007/s00220-012-1426-y.

[Ocn88] Adrian Ocneanu, Quantized groups, string algebras and Galois theory for algebras, Operator algebras and applications,
Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, MR996454,
pp. 119–172.
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