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AN INTRODUCTION TO THE ABEL T~ANSFORM 

R.J.Beerends 

This paper is intended as an introduction to the Abel transform for the 

non·· specialist. Nevertheless it contains some of the essential ideas which 

enables us to present some recent results on this transform in the last 

section. 

The Abel transform plays an important role in the theory of the 

spherical Fourier transform on synm1e'tric spaces of 'the noncompac't 'type. 

Its role is analogous t:o the role of 'the Radon 'transform in the theory of 

the ordinary Fourier transform on IRn. Therefore we first present the 

example of the ordin.ary Fourier 'transform in sec'tion l. Then we 'turn to 

the of SL(2,1R) (sections 2 and 3). Here we give an explicit 

expression for H'le Abel transform and review some of the results and 

applications. This will serve as motivation and as prototype for further 

research. In the last section we present some recent results. 

1. Fourier and Radon transform on 

In order to explain the role of ·the so-called Abel transform in 

harmonic analysis on semisimple Lie groups, we first take a look a·t the 

ordinary Fourier transform on fRn. Let V(IRn) denote -the space of all C00
-

funct:ions on fR 11 with compaet support. For f E :D(IR 11 ) we consider its 

Fourier transform 

(L 1) (~£)(>..) * f (),) J
r f(x) e-i<x,A> dx 
[Rn 

v.Jhere <·, ·> denotes ~che standard inner produ.ct on [Rn. Put .l ... =pw, p E IR+, 
n-1 

w E S (the unit sphere in , then 

·:k 
f (p<.;) = r co r f(y) 

· -oo J<y,w>=r 

-ip<y,w> d 
e y dr , 

where dy is the Lebesgue measure on the hyperplane (y E IR 11 1<y,w> r}. 

Consequently 

(L2) * f (pw) f co f'\w,r) e -ipr dr 
-00 

with 



(1. 3) f'cw,r) 
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n-1 (w,r) E S X ~ , 

The function f' is called the Radon transform of f and (1.2) shows that 

the Fourier transform on ~n equals the one-dimensional Fourier transform 

of the Radon transform. Thus the Radon transform and Fourier transform are 

closely connected. 

One shows that 

and hence 

(1. 4) 

a£ 1\ 
(-8 ) (w,r) 

X. 
~ 

n-1 
(w,r) E S- X ~ , 

n 

where L I 
i=l 

i.e. L is the Laplacian on ~n. The so-called "transmutation property" 

(l.l1.) is very useful in harmonic analysis: it can reduce problems 

concerning L to the simpler operator 
a2 

2 . 
ar 

We now consider the ordinary Fourier transform (1.1) from a group-

theoretical poin·t of view. This will enable us to give a natural 

definition of the spherical Fourier 1:ransform on noncompact semisimple Lie 

groups. So, let G = M(n) denote the group of all isometries of ~n, i.e. 

l1(n) is the semidirec·t product O(n) -~n where ~n acts as translation 

group and K = O(n) is the orthogonal group. We can view X = IRn as ·the 

quotient G/K = M(n)/O(n) (O(n) fixes the origin o E ~n, so we map a 

coset gK, g E G ·to g · o) . The Laplacian L is invariant under the action 

of M(n): L(f oM)= Lf oM f E V(IRn), ME M(n). The kernel e-i<x,A> 

on in (1.1) is an eigenfunction of L. 

The radial functions form an important class of functions on IRn. These 

functions only depend on the distance r=lxl from the origin and are 

precisely the O(n)-invariant functions on !Rn. One then studies the 

eigenfunctions of the radial part fl(L) of the Laplacian L, i.e. 

eigenfunctions of the operator 

(1. 5) ll(L) 
n-1 d 

+ --­
dr r 

Instead of the kernel e-i<>.,x> (eigenfunctions of L) one uses Bessel 

functions (eigenfunctions of ll(L)) as kernel in order to define the 

"spherical" Fourier transform of a radial function. The resulting 
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transform is called the Hankel transform. Of course ~(L), Bessel 

functions and Hankel transform still make sense if we replace n-1 in (1.5) 

by an arbitrary real parameter J.L The "group-cases" G = M(n), which 

correspond to ~=n-1, n E N can now be considered as special cases of a 

more general theory. We will return to this point of view later on. 

We shall refer to the ordinary Fourier transform on IRn as "the 

Euclidean case". Using SL(2,1R) as a typical example of a "noncompact 

semisimple Lie group", we will show how one can generalize the theory of 

the spherical Fourier transform to these groups. 

2. The spherical Fourier transform 

Let G be a noncompact semisimple Lie group with finite center. A 

typical example is G = SL(2,1R), the group of all 2x2 real matrices 

with determinant 1: 

G = tr_ac bd] I I a,b,c,d E IR , ad-bc=l}. 

As analogue of the subgroup O(n) in the Euclidean case, one takes a 

maximal compact subgroup K in G and studies the homogeneous space 

X= GjK. For SL(2,1R) we have K = S0(2), so 

- [ cos "' 
K - ( sin ¢> -:~:: J I ¢> E [0,2~)}. 

Let SL(2,1R) act on the upper half-plane X 

fractional linear transformations: 

az+b 
g·z = cz+d if g= 

(z E ~I Im z > 0} by 

E G 

(note that -2 
Im(g·z) = ylcz+dl so g·z EX). Then K is precisely the 

stabilizer of i EX: K = (g E Glg·i=i}. We can identify G/K and X using 

the map gK ~ g·i; so the point i will be 

In the Euclidean case one takes as metric 

length of a curve ~(t)=(~1 (t), ...• ~n(t)) , a 

the origin in the 
2 2 2 

ds = dx1+ ... +dxn' 

:5 t :5 b equals 

space X. 

i.e. the 

Jab (i~l (~l(t)) 2)~ dt. This metric is invariant under the action of M(n). 

On the upper half-plane X we take as metric 
2 -2 2 2 . ds = y (dx +dy ) (z=x+q), 

i.e. the length of a curve z(t)=x(t)+iy(t) , a :5 t :5 b is defined as 
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I b -1 2 2 ~ 
y (t)(x'(t) + y'(t) ) dt . As in the Euclidean case, this metric is 

a 

invariant under the action of SL(2,~): if g·(x+iy) = u(x,y)+iv(x,y) then 

(du2+dv2 );v2 = (dx2+dy2)jy2 . With this metric X is often called the 

Poincare or Lobatchevsky upper half-plane and it is a model for hyperbolic 

geometry. The geodesics (the curves minimizing the Poincare arc length) 

are straight lines or circles orthogonal to the x-axis. For a general Lie 

group as above one takes a G-invariant metric on the homogeneous space 

X = GjK. With this metric one associates a G-invariant differential 

operator LX. The central role of the Laplacian L on ~n in the Euclidean 

case is taken over by this operator LX' which is now called the 

Laplace-Beltrami operator. For the case G = SL(2,~) one has 

2 ~2 
y ( 0 + 

ax2 

Instead of radial functions on IRn we study left K-invariant functions on 

X = G/K, so functions on X such that f(kx)=f(x) for all k E K, x E X. 

Of course one can also consider these functions as K-biinvariant functions 

on G. We restrict ourselves to the case of K-biinvariant func·tions on G, 

which is often called the spherical case. In contrast to the ordinary 

Fourier transform on IRn, the spherical case is easier than the general 

case. For G = SL(2,~) we thus consider left S0(2)-invariant func·tions 

on the upper half-plane X. As in the Euclidean case we introduce 

coordinates (t,¢) on X which are suitable for the analysis of left K­

invariant functions, i.e. which are the analogue of pola:c coordinates. I·t 

can be sho-.m that any point z E X can be written as 

-sin 
(2.1) z = 

cos 

where t ~ 0 and 0 ~ ¢ < 2~. Put 

A {a = 
t 

I tEIR) 0 ]I t:EIR)' 
-t 

then A= exp u, where exp: u ~A is the usual matrix exponentiation. 

From (2.1) it follows that a K-biinvariant function on G is completely 

determined by its restriction to A. In the coordinates (t,¢) the Laplace­

Beltrami operator can be written as 
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82 ch t a 1 82 

Bt2 + sh t Bt; + sh2 t 8¢ 2 

So for the spherical Fourier transform we have to consider eigenfunctions 

of the radial part ~(LX) of the operator LX where 

The differential equation ~(LX)~ = A~ is well-known and its solutions 

are given by Legendre functions. In general one studies the eigenfunctions 

<P), (corresponding to an eigenvalue depending on .\) of the "radial part" 

~(LX) of the Laplace-Beltrami operator LX. One then defines the spherical 

Fourier transform as integration over G using ¢;_ as kernel. 

Let 'D(G//K) 
co 

denote the space of all C -functions on G with compact 

support and K-biinvariant. If f E fJ(G//K) then f "i'lill denote its 

spherical Fourier transform. As in the case G = SL(2,1R) one can show 

that a K-biinvariant function on G is completely determined by its 

restriction to A exp a., where a. is a fini·te dimensional Euclidean space. 

The dimension of a. is called the rank of X= G/K. If h E V(A) then 

* (h o exp) will denote the Euclidean Fourier transform of h o exp. Then 

one can show ·that the following analogue of (1. 2) holds: 

(2.2) 

where F 
f 

•k 
(Ff o exp) 

is the so-called Abel transform of f. The function F~ is an 
r 

element of V(A). So in the context of the spherical Fourier transform on 

noncompact semisimple Lie groups, the Abel transform is the analogue of 

the Radon transform (1.3). One also has the analogue of (1.4), i.e. the 

"transmutation proper·ty" 

(2.3) 

where LA is the ordinary Laplacian on A, c is a positive constant and f is 

restricted to A. The basic identities (2.2) and (2.3) show that the Abel 

transform is an important object in the theory of the spherical Fourier 

transfonn. Since the Euclidean Fourier transform is well-known one can try 

e. g. to obtain t·he inversion of the spherical Fourier transform f -+ f 

by use of (2.2) and an explicit inversion of ·the transform f-+ Fr In 

fact it was Godement [6] who first used this method for the case SL(2,1R). 
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3. The Abel transform for SL(2,~) 

Let N be the subgroup of G = SL(2,~) defined by 

N (n = 
X 

[ 0
1 x

1
] 

I X E ~). 

If f E 'D(G//K) then the Abel transform Ff off is the function on A 

defined by 

(3.1) 

In (3 .1) we actually integrate over ·the subgroup N. Since f is right K­

invariant we can also view f as a function on the upper half-plane X and 

then we integrate over the orbit atN·i (recall that i is the origin in 

X). Since a ·z e 2tz for z EX it follows that 
t 

and so the orbits atN·i are just the straight lines orthogonal to the 

y- axis. The transform ( 3 .1) is ·the analogue for SL( 2, ~) of the Radon 

transform (1. 3). A hyperplane in IRn is orthogonal to a family of parallel 

lines, L e. orthogonal to a family of parallel geodesics. In (3 .1) 

integration over hyperplanes is replaced by integration over the orbits 

atN·i, which are orthogonal to the family of parallel geodesics consisting 

of the straight lines orthogonal to the x-axis. Let us now calculate the 

in-tegral (3 .1) explici-tly. First \17e remark that one can show that F f(at) 

= Ff(a_t) (one uses the K-biinvariance of£). So we can restrict ourselves 

to the case t ;;:: 0. From (2.1) it follows that every g E G can be written 

as g = k'a5 k with k,k'E K, s;;:: 0. Here s is uniquely determined by g. 

In particular we can write for fixed t ;;:: 0 

If we multiply a n 
t X 

that 

by 

a n = 
t X 

a k 
s 

its transpose 

s ;;:: 0. 

(denoted by tr) then 

2s 
[ e2t e2tx J 

tr 2 
2t 2t 2 -2t -1 2 -1 [ e 

n ·a ·n = k ·a5 ·k = k · 0 X t X e x e x +e 

where s depends on x (tis fixed). Taking traces we obtain 

2 -2t 
x = 2(ch 2s - ch 2t)e , 

i·t follows 

~-2s] ·k ' 
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so in particular ch 2s ~ ch 2t, and thus s ~ t. Also note that an t X. 

and a n determine the same value of s and by the K-biinvariance of f 
t -x 

f(atn-x). Hence we can replace the 

integral over~ in (3.1) by twice the integral over [O,oo). Since 

~ -t -~ 
.dx = 2 ·e (ch 2s - ch 2t) sh 2s ds 

,,-1,'-I f([ ~s ~-s])·(ch 2s- ch 2t)_, sh 2s ds. 

s~t 

By abuse of notation we put h(2t) = h( [ -~t 0 
-t 

e 
Then it follows that 

(3.2) -1 ~ I 00 -~ Ff(t) = ~ 2 · f(s) (ch s - ch t) d(ch s) , t ~ 0. 

S=t 

As was noted by Godement [6] this integral equation is a version of 

Abel's classical (± 1830) integral equation which is defined for f E C00 (~) 

with compact support in [y,oo) (y E ~) by 

(3.3) -~ J 00 -~ g(y) = ~ f(x) (x-y) dx . 
y 

In his papers [1,2] Abel introduced this integral equation, which is 

generally considered as the first integral equation in history, in 

relation to the following problem. A particle starts from rest at a point 

on a smooth curve, which lies in a vertical plane, and slides down the 

curve (without friction) to its lowest point. The time of descent depends 

on the shape of the curve. The problem is to determine the curve for which 

the time of descent is a given function f(h) of the height h of the 

starting point. The solution of the resulting integral equation was 

obtained by Abel using two different methods in [1] and [2]; many 

classical textbooks on integral equations start with the solution of 

Abel's integral equation. The solution of (3.3) is given by 

f(x) -~ J 00 -~ 
-~ g'(y) (y-x) dy 

X 

(g'= ~). 
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For the case G = SL(2,~) one then obtains the inversion formula 

~ f ~ -~ f(t) = -2 t F£(s) (ch s - ch t) ds , t ~ 0 . 

In particular 

f ~ 1 
f(O) =- 0 F£(s) (sh ~s)- ds . 

and since F£ is an odd function on~ (recall that Ff is even) we have 

£(0) =- f~ F£(s) (sh ~s)-l ds . 

An exercis~ in contour integration gives 

r -1 
J~sin AS (sh ~s) ds = 2~tanh ~A , 

which can·also be interpreted as ~((sh ~s)-l)(A) = -2~itanh ~A. So 

r r -iAS r * 
-ij~ tanh ~A (j~F£(s)e ds)dA = j~ (Ff) (A) Atanh ~A dA . 

For the last equality we used integration by parts and definition (1.1) 

for n=l; for the second equality we used the inversion formula for the 

Euclidean Fourier transform (1.1). Hence by (2.2) 

(3.4) 

Here we have obtained the Plancherel measure Atanh ~A (i.e. the measure 

which gives the inversion of the spherical Fourier transform) for the case 

G = SL(2,~). 

With (3.2) in mind we now generalize the Abel transform as follows. For 

an even function in V(~) we define its Abel transform by 

(3.5) 
2 3o:+~ r(o:+l) 
r(o:+~)r(~) 

a-~ 
(ch s - ch t) d(ch s) , t ~ 0, 
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where r is the usual ga~~a function. This integral transform is a version 

of a \.Jeyl fractional integral transform. If a:=O then we regain (3. 2) which 

is the Abel transform for G = SL(2,~). For G = SL(2,~) we obtain (3.5) 

with a:=~ (the proof is analogous to the one given for G = SL(2,~)). It 

is possible to obtain (3.5) as the Abel transform of a certain noncompact 

semisimple Lie group G of rank one for a= 0,~,1,1~, .... 

Now define the operator W (Rep.> 0), which is a version of Weyl's 
p. 

fractional integral transform, by 

1 f 00 ~-1 
(WJ.bf) (t) = r(p;) t (ch s - ch t) · f(s) d(ch s) , 

where f E V(~) and even. Note that 

(3.6) (a) w f 
a+~ 

where c 1 (a) is a cons·tant depending on a. This is the motivation to use 

(3.6) as definition for the transform f-+ Fa 
f 

for arbitrary a E ~, 

Re a> -~. Now w has an analytic continuation to all complex j.l-: 
j.t 

if k = 0,1,2, ... and Re j.t > -k then 

(W f) ( t) 
j.t 

Note that 

(-1) p+k-1 k I"' r(p.+k) t (ch s - ch t) 
dk f(s) 

k 
d(ch s) 

d(ch s) . 

dk f( t) 

d(ch t/ 
, k = 1,2, .... The operator 

is a bijection of {f E V(~), even} onto itself and the inverse is 

given by w 
-p. 

Hence 

These results can be found in [8,§3] or [9,§5.3]. In particular the Abel 

transform can be inverted by a differential operator if 2a is odd. Also 

note that 

d 
dch t 0 vl/1-

so if we put D 
d 

dch t 

w 0 

f.t 

d 
dch t 

- [1 
p-1 

(Re p, > 1) , 

then we obtain from (3.6) that 
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(3.7) Re a > ~ . 

This anticipates the analogous results in section 4 for a rank-two case. 

Based on the explicit expression (3.6) for the Abel transform, 

Koornwinder [8] (also see [9,§7]) obtained the Plancherel and a Paley­

Wiener ·theorem for the so-called Jacobi transform, which can be considered 

as a generalization of the spherical Fourier transform on rank-one 

symmetric spaces of the noncompact type. 

It was Godement [6] who first used the method of an explicit inversion 

of the transform f-+ Ff in order to obtain the Plancherel theorem for 

G = SL(2,1R). 

Property (3.7) enabled Takahashi [13] to obtain an inversion of the 

Abel transform for" the "generalized Lorentz group" G = S00 (l,m+l). Again 

this result was used to obtain the Plancherel measure ([13,Ch 1,§4]). 

As stated before, Koornwinder [8] then generalized not only to 

arbitrary rank-one but also to arbitrary complex parameters. 

The rank-one group-case can also be found in Lohoue-Rychener [10], "lvhere 

the inversion is used to solve the heat: equation on symmetric spaces of 

the noncompact type and of rank one. 

Unaware of the results in [8,10], Rouviere [12] also determined an 

explicit inversion of the Abel transform for the rank-one symmetric spaces 

of the noncompact type. He used SU(2,l)~reduction. The results were used 

to ob·tain the Plancherel measure, the spherical functions and Paley-Wiener 

theorems. 

The case where G is complex (and arbitrary rank) is also w·ell .. known. In 

[5] Gangolli determined the explicit inversion of the Abel transform for 

complex G. He used this result to obtain the analogue of the Gauss kernel 

( 4rrt) 
-l,;x2t-l 

on the. real line, i.e. he obtained the fundamental 

solution of the heat equation on G/K. The complex case can also be found 

in [12]. A completely different method for G = SL(n,IC) occurs in Aomoto 

[3] and Hba [7]. 

Aomoto [3] also treated the case G = SL(n,~) and gave an inversion 

formula for n = 3. However this inversion is far from being explicit. 

Combining the results of Koornwinder on the Weyl fractional integral 

transforms with the explicit formula for the spherical functions, Meaney 

[11] obtained an explicit inversion of the Abel transform for G = SU(p,q). 



31 

4. Further results on the Abel transform 

In this section we assume that the reader is familiar with root systems 

associated with symmetric spaces of the noncompact type. In section 3 the 

associated root system was of type A1 . Recently we showed that an analogue 

of (3.7) holds for the rank-two case corresponding to the root system of 

type A2 and in particular \ve obtained an inversion by a differential 

operator if a= ~,1~,2~, .... The differential operator D involved was 

found by Vretare [14] in the context of orthogonal polynomials in several 

variables and was called "lowering" operator since the parameter is 

shifted from a to a-1. If we put m = 2a+l then m corresponds to the root 

multiplicity for the group cases. In order to prove (3.7) in the rank-two 

case A2 for values of the parameter which do not correspond to a group­

case, we need an explicit formula for the Abel transform as in (3.5). 

Aomoto [3] obtained an integral representation for the cases SL(n,~) and 

* SL(n,~) and we extended his results to the case SU (2n) [4, Ch. III]. For 

n = 3 this integral representation can be used to prove the analogue of 

(3.7) for the rank-two case A2 . Here we will not give this integral 

representation (see [4, Ch. III] for details). We write F; to emphasize 

the dependance on m (mE~' Rem> 0). Let n denote the hyperplane in ~ 3 

orthogonal to the vector e 1+e2+e3 (e1 ,e2 ,e3 standard basis). The root 

system of type A2 can be identified with the set L: = {±(e1 -e2), ±(e1 -e3), 

±(e2-e3)) inn. For~ we take as basis ~ = {e1 -e2 , e 2 -e3 ). Let ~+ be 

the set of positive roots with respect to ~- The Weyl group W of ~ is 

isomorphic to the symmetric group s3 . Write eA for the function on n 

which sends ~ E ~ 3 to e<A,p>, where <·, ·> denotes the standard inner 

product. Also write oA for the derivative in the direction of A. Put 

5 n (ea-e-0!.) 
a. E ~+' . 

Let D(m) be the differential operator on 

defined by 

(4.1) D(m) a + ~(m-2) I €(a) a 
a a. E L:+ a. 

0 coth 0!. 0 a 
a ) ' 

where e(a) = n <a,~>. Then one has the following analogue of (3.7) 
j3>0,{3,<a 

(see [4, Ch. IV] for details). 
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Theorem 

Let D(m) be given by (4.1) and fa W-invariant element in V(u). Then 

~(m)f = const. ~- 2 

and 

2 
FD( 2)f = const. f on 

In particular the Abel transform can be inverted by the differential 

operator D(m,m) = D(m) o D(m-2) o o D(2) if m is even, i.e. 

I!! D(m,m)f 

The values m = 2,4 or 6 

const. f + on a. , m even . 

* correspond to the group- cases SL ( 3, IC) , SU ( 6) 

and E6 (_ 26 ) respectively, and for these cases one has 

~(m,m)f = D(m,m)~ = canst. f . 

Remarks 

1. We have also been able to prove inversion of the Abel transform by a 
:k 

differential operator for SU (8), w·hich has A 3 as associated root system 

([4, Appendix 1]). 

2. Inversion of the Abel transform for m=L1 and root sys·tem A2 has recently 

also been obtained by Hba, using a different method which was introduced 

in [7] for G = SL(n,IC). One can show that his sixth order differential 

operator which inverts the Abel transform is indeed equal to D(4,4). 

3. In a forthcoming paper we will show that the generalized Abel transform 

~ (m arbitrary) also satisfies the transmutation property (2.3) . 
.L 
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