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WATER NON-WAVES 

E.O. Tuck 

This paper is about free-surface problems of the type that usually produce water 

waves. That is, it is about boundary-value problems for Laplace's equation in a water-

occupied domain, with a free surface between water and air, which is influenced by 

gravity g, and therefore on which a quadratically nonlinear constant-pressure condition 

holds. 

A large class of such problems is such that the free surface is plane when undis-

turbed: for example, the plane surface of a calm sea. A small disturbance can then 

produce small waves, which are asymptotically sinusoidal and linear. A large distur-

bance can produce large waves, which can be periodic but non-sinusoidal - nonlinear 

Stokes waves. 

But waves are not essential, whether linear or nonlinear. For example, consider 

the effect on a stream U in a two-dimensional flow, of a disturbance created by a small 

symmetrical over-pressure P(x ), as could be caused by blowing air on the water surface 

over a finite segment -R. < x < R., as in Figure 1. This could be a model of a (rather 

wide!) hovercraft. 

This pressure disturbance P( x) certainly deforms the free surface, and in gen-

eral creates a wave trailing behind it, as x -t +oo. The linearised theory of water 

waves predicts (Vanden-Broeck and Tuck [27]) that this trailing wave has amplitude 

proportional to 

A= jeP(x)cos(Kx)dx 
-f 
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Figure 1 

where K = g fU2 • It is possible for the wave amplitude A to vanish for some choices of 

P(x) and,;,. For example, if P(x) is constant, then 

A = 2p sin( n,!() 
K, 

which vanishes for rd = 1r,21r, ... (see Lamb [12], p. 404). 

That is, an infinitely-wide uniform-pressure "hovercraft" makes no waves if its 

length 2.C and speed U combine to give ro£ = n1r, or if the Froude number 

F= U 
~ 

takes one of the discrete set of special values 

F = Fn = 1/v'2ffi, n = 1,2, ... 

These are quite practical speeds, the highest being F 1 = 0.40. A similar set of "wave-

less" speeds can be computed for most (but not quite all) choices of P( x ), see Vanden-

Broeck and Tuck [25]. 

More generally, for most finite-length small two-dimensional disturbances, there 

will exist some discrete spectrum of Fronde numbers F = Fn at which waves are not 
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generated. This applies to two-dimensional (infinitely wide) "ships", planing surfaces, 

hydrofoils, etc., as well as to hovercraft. These special Froude numbers are "good", 

in the sense that no waves means no wave drag. This is an interference phenomenon, 

very roughly due to cancellation of the "bow" wave by a "stern" wave that is 180° out 

of phase, as sketched in Figure 2. Hence between every pair of "good" speeds there 

is a "bad" speed, where the two waves reinforce instead of cancelling! In practice, we 

tend to be most interested in the highest good speed F1 , which is more isolated from 

its nearest bad speed. 
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Figure 2 

The above is a linearised small-disturbance argument, and there is no actual proof 

that a similar conclusion holds for cancellation of nonlinear large-amplitude waves -

after all, interference is a linear superposition idea. However, numerical experience 

(Schwartz [19]) suggests that the qualitative conclusion that there exists a discrete 

spectrum of waveless speeds, still holds in the nonlinear case. 

The more practical generalisation is to three-dimensional disturbances, that is 

to ships or other disturbing agents of finite width. It was long thought that full 

cancellation of waves in three dimensions was impossible. After all, three-dimensional 
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disturbances send waves in all directions, and how can we organise the shape of the 

disturber so as to cancel all these waves at the same time? For example, Krein (in [10], 

p. 355; see also [11]) showed that no surface piercing body of finite volume can have 

zero wave resistance. 

However, a fully submerged body which is finned or ray-fish like, as sketched in 

Figure 3a, has recently been shown to be waveless (Tuck [20]). The plan form of the 

slender lifting surface which acts as a fin can be chosen so that the fin makes waves 

which are in all directions of propagation exactly equal and opposite to those of the 

spheroidal body to which it is attached. Figure 3b shows the resulting zero value of 

the wave resistance at a design Froude number F = 0.5, the dashed curve showing the 

resistance of the spheroid alone, which has its maximum at this design speed. 
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For the remainder of this paper, however, I shall return to the two-dimensional 

case. This is not quite as restrictive as it might seem, especially for barges or ships 

like supertankers (see Figure 4), or for hydrofoils of large aspect ratio. In particular, 
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we can be quite interested in the nearly two-dimensional flow near the centerplane 

of the extreme bow of a bluff body like a supertanker. Our model then is a semi­

infinite disturbance, the free surface lying to the left and a solid body to the right. 

The destructive cancellation discussed earlier can also occur for some such semi-infinite 

disturbances, but not quite so easily. We need somehow to provide two distinct sets of 

waves that are out of phase and can cancel each other, and the bulbous bow provides 

such a possibility, as we shall see. 

Figure 4 

I want for a moment to do some mathematics. Let me set up a general frame­

work for study of steady two-dimensional nonlinear free surface problems. We use the 

complex potential f(z) = <P + i'l/J, with z = x + iy, and the complex velocity 

f'(z) = U exp(r- iB) 

The "logarithmic hodograph" variable so defined, namely 

n = T- iB = log(f'(z)/U] 
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has the physical interpretation that its real part gives the velocity magnitude 

q = Ue" 

and its imaginary part the flow direction, namely the angle e between streamlines 

and the x-axis. We solve the problem inversely, i.e. use f as independent variable, 

and seek fl = fl(f) in the lower-half j-plane, i.e. seek T = r( if>, tP ), (} = 8( if>, tP ), each 

satisfying Laplace's equation with respect to ¢>, '1/J in '1/J < 0. 

Now the free surface is the streamline '1/J = 0, and the immediate advantage of the 

in verse approach is clear, in that the free surface is a known boundary in the (if>, '1/J) 

plane, whereas its shape in the physical (x,y) plane is unknown, see Figure 5. 

® 

Figure 5 

The second free-surface boundary condition is that the pressure is constant, and 

hence by Bernoulli's equation 

1 
gy + '2q2 = constant 

We can differentiate the above pressure condition tangentially, i.e. with respect to ¢>, 

obtaining 
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But 8y/8r/J is the imaginary part of dz/df, namely e-T sin B. Hence we find 

This boundary condition is attributed to Rudzki's 1898 work by Wehausen and Laitone 

([28], p. 727). It integrates to 

r(r/J,O) =~log [1- 3~~: j_: sin6(c,o,O)dc,o] 

assuming that the flow becomes a uniform stream U far upstream, i.e. that r-+ 0 as 

rP-+ -oo. 

~ ® 
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Figure 6 

That is, there is an explicit integral relationship between the real and imaginary 

parts of fl(f) on the real axis f = <fi+iO. But because O(f) is analytic in the lower half 

plane (and tends to zero as 'ljJ-+ -oo), there is also a Hilbert-transform relationship 

between these two quantities, namely 

r( </i, 0) = .!.joo 6( c,o, O)dc,o 
'II" -oo C,O- rP 

the integral being of Cauchy principal value form. Use of this Hilbert transform enforces 

satisfaction of the Laplace equation. 
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Equating the two integrals for r gives a nonlinear integral equation for 8( </1, 0), 

namely 

- <p, 'P =-log 1-3K: sin8(~.p,O)d<p 1 foo 8( O)d 1 [ j"' ] 
1r -oo 'P - </J 3 -oo 

Numerical solution of this equation solves the original boundary-value problem. 

!Ill! 
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Figure 7 

This integral equation has been used in many contexts, not all ship-related. In 

particular, it can form the basis for study of pure Stokes waves, and perhaps should 

be called Nekrasov's equation because of the use of a similar equation by Nekrasov in 

1922 (see [28], p. 750) to prove existence of such nonlinear waves. A similar equation 

studied by Conway and Bullock [3] was called the Milne-Thomson integral equation in 

recognition of a formulation of this class of problem by Milne-Thomson ([15], p. 307). 

Only for pure Stokes waves is the Nekrasov integral equation valid as it stands 

on the whole of the </J-axis. Otherwise, either we must take into account a given 

surface-piercing body over part of that line (Figure 6), or must modify the Hilbert 

transform relating r and 6, to take account of submerged disturbances or even just 

submerged stagnation points that destroy analyticity of fi(f) in ·1/J < 0. In many cases, 
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a preliminary conformal mapping takes care of the latter problem, as in Figure 7, where 

/=(-log(. 

The integral equation then has ( as its independent variable. 
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Some of the "modern" uses of the Nekrasov integral equation or its equivalents 

have been in what can be called "mathematical hydraulics", where the undisturbed free 

surface is not necessarily plane. For example, the problem in Figure Sa, of effiux from 
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Figure 9 

a slit in a wall was solved by Tuck ([20]; see also Goh and Tuck [7]) by direct numerical 

solution of a similar integral equation. The free surface was discretised into up to 

N = 100 points, and close to 4-figure accuracy obtained, as indicated by the graph in 

Figure 8c. This problem has the feature that solutions exist only for F > 0.496, the 

number 0.496 being the output quantity tested for accuracy in Figure 8c. The limiting 

solution at F = 0.496 has a stagnation point with a 120° contact angle at the upper 

detachment point, as shown in Figure Sb. 

A similar numerical solution was used by Grundy and Tuck (1987) for a problem 

that does have waves, produced by an air jet stream blowing on stationary water, as 

in Figure 9. 

A problem involving a submerged sink was solved by Tuck and Vanden-Broeck 

[23), using a truncated series method, but integral equation methods have also been 

used on this class of problems, e.g. by Forbes and Hocking [5]. The flow in Figure lOa 

has a cusped free surface and exists only for the unique Froude number F = 3.553. 
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(a) 

Figure 10 

Recent work (e.g. Hocking and Forbes (9] has concentrated on flows with a stagnation 

point on the free surface as in Figure lOb, which appear to exist in a range F < Fo, 

where Fo is about 1.4. 

Another class of hydraulic flows is flow over weirs or under sluice gates, as illus-

trated in Figure 11. Series methods were used by Dias, Keller and Vanden-Broeck [4] 

and integral equation methods by Goh [5]. 

Returning to the ship context, suppose we assume that the streamline '1/J = 0 

consists of two parts, namely the free surface in <P < 0, and a given body specified by 

a given function 8( ¢, 0) = 0( ¢) in¢> 0, as sketched in Figure 6. Then the Nekrasov 

integral equation becomes 

.!._ jo 8( 'P, 0 )dr.p + .!._ roo e( 'P )dr.p = .!. log [1 - 3ti: 1"' sin 8( 'P, 0) dr.p] 
7r -oo 'P- </J 7r Jo 'P- </J 3 -oo 

with the second integral a known function, and this is to be solved for 8( ¢, 0) in ¢ < 0. 

Vanden-Broeck [25] in effect proved that there is no such solution when 0(¢) is a 
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Figure 11 

e = { -rr/2, 
0, 

0<</><1 
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corresponding to a simple bluff bow as in Figure 12a; so the flow sketched in Figure 

12a cannot occur. On the other hand, there are other choices for 8(</>), where the so-

lution does exist. Madurasinghe and Tuck [14] found solutions with tangential contact 

between body and free surface as in Figure 12b, and Madm:asinghe ([13); see also Tuck 

and Vanden-Broeck [23]) found solutions as in Figure 12c with a stagnation point at 

attachment. The latter class of bodies tends to be bulbous. 

For any given body, these solutions exist only at specified discrete Fronde numbers. 

One way to view this problem is by a flow reversal argument. That is, since the free-

surface nonlinearity is quadratic, the flow direction can be reversed without changing 

the solution. For any given semi-infinite body, we therefore could be computing the flow 

behind a representation of a ship's stern instead of a ship's bow. That stern flow will in 

general possess waves as in Figure 13 of amplitude A( F) far behind the body. For some 

(but clearly not all) bodies, A(F) will vanish at some Froude numbers F = Fn, and 
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Figure 12 

we may expect that then there exists an infinite number of such Fn, n = 1, 2, ... , with 

Fn-+ 0 as n-+ oo. (The flow without waves certainly exists at zero Froude number, 

i.e. at infinite gravity, or with a rigid free surface, for any choice of body shape). Now 

if we have a stern-like solution without downstream waves, we can reverse its direction 

to generate a smooth bow flow without upstream waves, as required. 

The remaining question is, even given that a smooth bow flow is achievable with 

one of the above special bow shapes at a specific Froude number F = Fn, what happens 

at other Froude numbers? And what happens to other bow shapes, that do not possess 

smooth solutions at any Froude number? This is not a question with a certain answer 

at this time. However, the answer seems to have something to do with splashing, or 

the formation of bow jets and bow wakes. 

·< 
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Figure 13 

I am at the present moment actively pursuing the numerical and asymptotic so-

lution of the Nekrasov integral equation, on the assumption (already suggested in 

Vanden-Broeck and Tuck [25]) that the flow topology is as sketched in Figure 14. This 

flow involves formation of a jet, say of thickness J = J(F). If one could compute 

this function J(F) for any given body, this would be a considerable achievement. For 

bodies like the simple right-angle bow, that do not permit any smooth bow flow, one 

would expect that J(F) never vanishes for any F > 0. But if one is working with a 

bulbous body shape, one would expect that J(F) = 0 at some F = Fn. 

Figure 14 
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There are considerable conceptual and numerical difficuties with this jet-like prob-

lem. In the first place, the jet as sketched in Figure 14 would fall back upon the incident 

flow. Mathematically, the jet can be forced onto a second Riemann sheet, so passing 

"through" the incident flow without disturbing it. However, even with this interpreta-

tion, no-one has yet been successful in computation of a jet that falls backward from a 

stagnation point, as sketched in Figure 14, and it is not certain at this time that any 

. 
such steady irrotational flow exists. There are other possibilities to avoid this difficulty, 

all along the lines of "catching" the splash before it falls, e.g. as sketched in Figure 

15, and it is these models that are being pursued, especially Figure 15b. 

Figure 15 

------.:~ 
~-----'~ 
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The other, more practical but numerically more daunting possibility, is to build in 

a model of what might actually happen when the splash hits the incident flow. In prac­

tice, there is a "mess" which can be idealised to a region of non-zero vorticity, or a bow 

wake (Mori [17]), perhaps as sketched in Figure 16. In a truly steady two-dimensional 

inviscid flow, Batchelor [2] has shown that such a wake must possess constant vortic­

ity w, and there has been recent progress (Moore et al [16]) in computation of such 

Batchelor flows in other contexts. If one could devise a program to compute such a 

flow, the output vorticity w = w(F) would have a similar character to the quantities 

A = A(F) or J = J(F), namely would vanish (together with the whole bow wake) 

for those bulbous shapes allowing smooth flow, at special discrete Froude numbers 

F = Fn. For other bodies, or at other Froude numbers, the information provided from 

this computation would be of value in estimating drag contributions from the splash 

(Baba [1]) and other flow properties near the bow. 

,, 

Figure 16 

Another conceptual difficulty with this class of splashing flows is associated with 

its singular character at infinity. The problem is quite like that for planing surfaces 

(Tuck [22]). For example, suppose we seek an asymptotic solution for large Froude 
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number F -> oo. At first sight, the formal limit is easy, and jet-like solutions to the 

problem without gravity have been available for some time (e.g. Oertel [18]). For any 

given body geometry, there is a one-parameter family of flows at g = 0, the parameter 

being the jet thickness J, only one member of which has a flat free surface at infinity at 

a finite height (the draft D) above the flat bottom of the given body. This special case 

(examples of which are shown in Figure 17) is such that the jet thickness is exactly 

equal to the draft, i.e. has J = D. Figure 17a is Oertel's [18] solution; Figure 17b 

gives exact computed streamlines for the g = 0 limit of Figure 15d. 

---= 

~) 

Figure 17 

However, it is not certain that this is the appropriate special family member when 

g is not zero, and indeed one expects then to find J < D. The zero-g solutions do 

not decay sufficiently rapidly at a great distance, and must be interpreted as inner 

approximations. The outer approximation re-introduces gravity in the far field, albeit 
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in a linearised form, and the asymptotic problem for large F is completed by matching 

these two approximations together. This has proved very difficult (Wu [29]) in the 

finite-length planing context with trailing waves, but the semi-infinite wave-less prob-

lem of interest here may prove more tractable. The singular-perturbation character of 

this problem is not just of relevance to large-F asymptotics, but is an indication of 

difficulties with the numerical solution at arbitrary F, and these difficulties have not 

yet been resolved. 
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