Chapter 6
THE APPROXIMATION POLYNOMIAL

1. The aim.

In the present chapter we shall construct a polynomial

T rm 1 i
ARy, Xm) = ), oo D) 3, .. gmXt " - Xm *0
i1=0 im=0

which has integral coefficients that are not ‘‘not large’’ and which vanishes
to a ‘“very high’’ order at the point

X1= £ 00y Xm = €3

here & is a given algebraic number. The importance of this approximation
polynomial will become clear in the next chapters.

The construction does not involve valuation theory, but it is convenient
to admit finite extensions of the rational number field.

2. The powers of an algebraic number.

Here and further on,
F(x) = Foxf + Fixf-1 4+ .+ F¢
denotes a fixed polynomial with integral coefficients such that
f=1, Fo+0, Fr+0

and therefore F(0)+0. We impose the additional condition that F(x) kas no
multiple factor, hence that F(x) and its derivative F'(x) are relatively prime.

Let © be an arbitrary (abstract) extension field of the rational field T’
in which F(x) splits into a product of linear factors

F(x) = Fo (x- £1)... (x-£f).
The f zeros
£ = §1,---, gf

of F(x) are thus all distinct and different from zero.
We use the abbreviation

c= 2max(|Fo|, lF;I,..., lFfl)
so that ¢ =2 is an integer.
Lemma 1: For every exponent 1=0, 1, 2,... there exist unique integers

gD & e cuch that

98
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(1): F &b, = ggl) + gﬁl)ﬁw + e +8§-l-)1 §fp'1 W =1.2,..,1),
(@) max(lg |, [g],..., lggl_)l ) <cl

Proof: First, the coefficients g are unique because the Vandermonde
determinant

15 ..t

1 & .. et

1 & gt

does not vanish. Secondly, the equations (1) hold trﬁrially for 1 < f-1 with
g{l)= F& and the other coefficients equal to zero. Third, for 12f-1,

F%HQ;IJI = FnEW(ggl) +g9‘)£ v +...+g£)1£f,;1)
= (F.oll) (1) o -1, () £-1
= (Fogo &, +FoBi £+t Foy p )-8 'y (Bt Fy g6+t Fub )
and therefore
-Fy g if¢=0
(1+1) £8f-1 ¢ =0,
g =
¢ Fogéi)l" Ff_¢g§{)l if ¢ = 1,2,...,f—1,

so that the coefficients are integers. Finally,

max(lg, 1g0],..., 160, ) = IFbl < ! s 1 2,

max(1g{*V], 1g8*1)],..., lgg‘;”l) < cmax(Ig)], lgV,..., lgg)ll) if 1211,

whence the inequalities (2).

3. A lemma by Schneider.

The following lemma is essentially due to Th. Schneider®. The proof is
taken from Cassels’ book on Diophantine Approximation. In the appendix, an
entirely different proof is used to prove a stronger result.

Lemma2: Let r,,...,rym be positive integers, and let s be a positive
number. Each of the two systems of inequalities

m
0<i <1y,..,0<iyp<Tm, ) ;—h-h < -;-(m-s)
h=1

1. J. reine angew. Math, 175 (1936), 182-192,
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0<1i <r,..,0s<iy =< Z r—h = (m4+s)

has at most

-@ (ry+1).

v (rm+1)

solutions in sets of integers (i1,...,im)-

Proof: The two systems of inequalities are changed into one-another by
the transformation

(11 geeey im)—’ (1‘1-11 geeey rm-im)

and so have the same number of solutions. It suffices therefore to consider
the first system. The proof is by induction for m.
First let m=1. The system

0<ij =< Ty, — I‘ 1(1 S)
has no integral solution if s>1, and it has not more than
ri+l <Es-(r1+1)

such solutions if s < 1; hence the assertion holds in this case.
Secondly let m=>2, and assume the lemma has already been proved for
inequalities in m-1 unknowns. We may assume that

s >/2m >1

because the assertion is trivial otherwise.
For fixed i=ip,, where 0<i<rp, the system (i,...,i;-1) satisfies the
inequalities

m-1 in
0<i<ry,..,0 <im-1 <Tm-1, ), h (m 1)-(s- 1+ )}
h=1
and so, by the induction hypothesis, has not more than
m-1) (r1+1)... (rp-1+1)
2i
s-1 + Y

possibilities. Hence, on putting

m-1

—_— r
N m 8
Tm+1 5 6 1+——21 ’
Tm

the original system has at most
4] %’ (r1 +1)./. (I‘m + 1)
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integral solutions (i1,...,im-1,1). The assertion is therefore proved if it can
be shown that

og=s1
Now
m r'm
L B 1 8 + 8
~ =
i=0 s-1+2L 2 4 (o142 g-1420m-1)
'm 'm 'm
Tm 2 'm o 2
8 8 8
=) — e, % 1 - g1 (tm+1),

whence, by 8 >V2m,
/fm-1 g /m-—l 2m 4m®-4m
O m 1 < m 2m-1" 4V 4m?-4m+1 <1l

4. The construction of A(xi,...,Xm). I.

As before, let ry,...,rm be positive integers. Let further a and s be
two positive numbers such that
@3): a=1, s=4f2m,
where f is the degree of F(x).

A polynomial of the form

Ir1 r'm

i i
B(X1,ee0sXm) = 2y eee )y bix..-imxll"'xlgl
$1=0 im=0

is said to be admissible if, (i) its coefficients bj, __ i
[a]+1 values

m Inay assume only the

0,1,2,..., [a],
and further, (ii)

m .
bi;...im = 0 unless -;—(m-s)< hz:l:‘_llll < %(mﬂa).

From Lemma 2, it follows immediately that the condition (ii) demands the
vanishing of not more than

29I (1, 1) +1) < g G+ D)o lomtd) € () o)
of the (r1+1)...(rm +1) coefficients of B. Hence not less than
%(r; +1)...(rm +1)

of the remaining coefficients of B may still run independently over [a] + 1
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distinct values. It follows then that there are not less than
1
2
M = ([a]+1)
admissible polynomials.

(r1+1)...(r;m +1)

5. The construction of A(x ,...,xm). II.
As in the last chapter, put

- timpe, .., xm)
fil eedm! 33,0 ... oxim

le .“jm(xl ’“.’xm =

Then
Iy I'm
= i im\ _i1-j2 im-im
le '"jm(xl )u-,Xm) hz:o..- inzl;=0bh "‘imG!) .u(jm)x‘ ...xm

has non-negative integral coefficients if B is admissible. The same estimate
as in §7 of last chapter leads to the majorant

(R ooy Xm) <<as2TrFeot T2 T (Lexy)T0

B
and hence to

l...jm

le 9 m(x,..., x) << q.9%1 et m (1+x)r1 teetTm

Here

(1+x)1'1 +eeetI'm << 21'!. +.-.+1‘m(1+x+xa+."+xr1 +-..+1‘m)’

so that

le .“jm(X,--., x) << 3,22(r1 +...+1'm)(1+x+xa+".+xr1 +.,.+rm).

Thus, for all non-negative suffixes ji,...,jm,

Tite,.+r
®,...,X), = 2 mﬂ{j)xl say,
1=0

is a polynomial in one variable x with non-negative integral coefficients B{j)
not greater than

By, ..im

a..22(n +eeet )

and of degree not exceeding
ri+...+T'm.

By Lemma 1, it follows now that
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P14t lpy £-1
S NI P S R M & i

1=0 $=0 " w
Z(;)B(j) Ww=1,2,..,1),
o=
where
0 T1+... 4Ty () wr1teeetrym-1 (1)
By = 1Z% o e
Hence

Tite.+Pm T1+e+mp-1
lBg)ls I_ZO a‘.22(1'1+...+rn,,)<%) ol <

o k
< goo2@ it Tm) Fitdry ) (%)
k=0

because |Fol < %c. Therefore, for all suffixes ji,...,jm and ¢,

IB(j)l < 2a(4c)1‘1+...+rm.

i W

and g ®

Here Bg) is an integer since B are integers. Each number B é

has then at most

2[2a(4c)™ HtTm] 4 1 < Ba(ac)* FtTm
possible values, and the set of all { coefficients
Bg) (¢ =0,1,...,1-1)
of B . (E ) has at most

{5a(4c)n +...+rm} f
possibilities.
Let (jl,...,jm) run over all systems of integers satisfying

m 1
0< j1i<ri,.,0<jm<rm, E Jh < -2-(m-a);
h=1 Th

by Lemma 2, there are not more than

B (ry+1)... (rm+1) < 4l—f (r1+1)...(rm+1)

such systems. The corresponding set of integral coefficients
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B

g), where ¢ =0,1,...,f-1; 0 < j1 < T1,...,0 < jyp ST z,ljr_l; § m-s),
has then at most

1
¥ = {5a(4c)n+...+rm}4 § 1+ Deem +1)

possibilities.

6. The construction of A(x:,....Xm). IlI

There are not less than
1
"‘(l‘]."'l) (rm+1) E(rl'l'l)...(rm'l'l)
= ([a]+1)
admissible polynomials B. We therefore choose
a= 5(40)1'1 +eeetTm
' so that
M> M*,
There are then more admissible polynomials B than corresponding sets of
coefficients B(j). Hence there exist two distinct admissible polynomials

)

_ I m im

B(xl,-..,Xm) = Z ™ Z bi], ol Xl .e .Xm
11=0 im=0

and

= B W Lo

B(x;,...,xm)= Z ees E bh---imxl . Xngn
i:l.=0 im-_-o

with the following property: Define integers E(j) and fg) such that

Fo B G By - z B8 o120
and
r1te. TS =),
Fo Bj]. .-.jm (gw,-.-ygw) = ¢§OB¢ gw (‘P = 1’2""’f)'
Then

OB A . 0<i. < ci <r. I _1
By =By M $=0,1,0,f-1; 0j1 <7100, 0 I S Ty h§1 <32 (m-s) .
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Put
A(X1 000y X)) = BX1 4000y Xm) - B(X1 4000, Xpy) =
I I'm
i i
= 0 e L By A e X
i1=0 im=0

Since B and B are distinct,
A(X1 ,.-.,Xm) * 0.
From the construction, the coefficients aj werlm of A are integers of absolute
values not exceeding a, thus satisfying
1 +4+...+T'm
'a'll ...iml < 5(40) ¢

Moreover,
1 My 1
2, .4y, =0 unless 3(m-s) < h§1?fl< 3 (mes),
and furthermore,
m
Aj £ ) =0 1 Y = 1,2, s 011 <1000 < rm; Y, B <L(mes)
1.0Jm pr Sy 325000y I3 jisr,..., m m,h_lrh 3 .

Instead, we may also say that Aj, ,_,jm(x,... ,X) is divisible by F(x) whenever

m

i
0= j1$r1,...,0 < jtn's I'm, E h

A ™ = %(m-s);

for the zeros £1,..., & of F(x) are all distinct. We note that the upper bound
for the coefficients of A implies again majorants analogous to those found
for B.

The following result has thus been proved.

Theorem 2: Let
F(x) = Fxf + Faxf™1 4.4 Fg, where f=1, Fo+0, Fg %0,

be a polynomial with integral coefficienis which has no multiple factors
and does not vanish for x=0. Pui

¢ = 2max(|Fol,|F1l,..., [Fg).

Let r1,...,tm be positive integers, and let 8 be a real number not less
than 4£V2m. There exists a polynomial

rr  rm L3
Ay, Xm) = ) e ) By g X1 e X #0
i1=0 1m=

with the following properties.
(1): Its coefficients aj, ey @€ integers salisfying
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lai; ...iml < 5(46)1'1 +...+rm;

and they vanish unless

(2):

(3):

—(m 8) < Z

rh 2 (m+s)

A, ...jm&se-s ) is divisible by F(x) whenever

o
0<j1 = r1,..,0<j,<rm, hzlﬁ < %(m-s).

The following majorants hold,

Ay ®a ey Xp) << 5@)™ H T TM(LL2) L (Laxp) ™,

Jm

Ay, . e X) << 5(8)H IR (1 gy Feet T

This theorem will be applied only for large values of m, and s will
always be small compared with m. The last two majorants hold, of course,
by the formula

Ay i &1 5eees Xm) << 2T et T g (g ) (Lt gy ™

«jm

proved in Chapter 5, §7, since in the present case,

a< 5(dc)ft et rm



